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A Fast Sweeping Method for Static Convex
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We develop a fast sweeping method for static Hamilton–Jacobi equations with
convex Hamiltonians. Local solvers and fast sweeping strategies apply to struc-
tured and unstructured meshes. With causality correctly enforced during sweep-
ings numerical evidence indicates that the fast sweeping method converges in a
finite number of iterations independent of mesh size. Numerical examples vali-
date both the accuracy and the efficiency of the new method.
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1. INTRODUCTION

We consider a class of static Hamilton–Jacobi equations of the following
form,

H(x,∇T (x))=1, x ∈Ω\Γ,

T (x)=g(x), x ∈Γ ⊂Ω,
(1.1)

where g(x) is a positive, Lipschitz continuous function, Ω is an open,
bounded polygonal domain in Rd , and Γ is a subset of Ω; H(x,p) is
Lipschitz continuous in both arguments, and it is convex in the second
argument. If H(x,p)= |p|H(x,p/|p|)= |p|F(x), then the eikonal equation
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for isotropic wave propagation results; otherwise, the so-called anisotropic
eikonal equation results.

Such equations arise in a multitude of applications, ranging from
seismic waves, crystal growth, robotic navigation to optimal control. Con-
sequently, it is necessary to develop accurate and efficient numerical meth-
ods for this nonlinear boundary value problem. In this paper, we extend
the fast sweeping method [1,33,28,13,14,24] to solve the above static
Hamilton–Jacobi equation on triangular meshes.

To tackle such anisotropic eikonal equations in seismics, Dellinger [7]
extended upwind finite difference methods [30] to compute the first-arrival
based viscosity solutions in an anisotropic medium; Qin and Schuster [25]
proposed a wavefront expansion method, and it is based on Huygens’
principle and computes the first-arrival traveltimes associated with seismic
energy propagating at the group velocity. As pointed out in Dellinger and
Symes [8], an anisotropic medium is different from an isotropic medium
in that for an isotropic medium the ray velocity vector (i.e., the group
velocity vector, or the characteristic direction) has the same direction as
the (negative) traveltime gradient (i.e., the phase velocity vector), which
enables us to use the traveltime gradient as a reliable indicator of energy
flow (and thus the causality) in propagating the traveltime field [30,25,29,
26,33], while for an anisotropic medium this is no longer true. Therefore
one may compute wrong solutions by extending fast marching methods
designed for isotropic eikonal equations to anisotropic eikonal equations
without taking into account the above essential differences as demon-
strated in [27].

Based on the above observation, Qian and Symes [18,20–22] proposed
a paraxial formulation for the static Hamilton–Jacobi equation by formu-
lating a relation between the characteristic direction and the traveltime
gradient direction, so that fast, efficient, and accurate methods with lin-
ear complexity can be obtained easily; furthermore, Qian et al. [23] made
further improvement by removing the paraxial assumption.

On the other hand, Sethian and Vladimirsky [27] designed ordered
upwind methods for the above static Hamilton–Jacobi equation. The spirit
of their single-pass method is the following: at a considered node which
is to be updated, first one estimates the possible numerical domain of
dependency by using the so-called anisotropic coefficient [27], the accepted
solution and the mesh size; secondly one uses the so-called control-
theoretic update-from-a-single-simplex formula [9] to evaluate a tentative
value at the standing node by taking the minimum among all possible val-
ues resulting from all the possible virtual simplexes constructed from its
numerical domain of dependency; thirdly one accepts the smallest value
of all the considered nodes to maintain causality; lastly one maintains the
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lists of accepted solutions and considered nodes. The resulting ordered
upwind methods have the computational complexity of O(ηM log M),
where η is the anisotropic coefficient depending on the Hamilton–Jacobi
equation, and M is the total number of mesh points.

As an iterative method for Hamilton–Jacobi equations, the fast
sweeping method was originated in Boue and Dupuis [1], and its first PDE
formulation was for implicit and nonparametric shape reconstruction from
unorganized points using a variational level set method [35]; Zhao [33]
proved the O(N) convergence of the method for the eikonal equation based
on the Godunov Hamiltonian on Cartesian meshes. Tsai et al. [28] applied
the fast sweeping methods to a class of static Hamilton–Jacobi equations
based on Godunov numerical Hamiltonians on uniform meshes, and they
have derived some explicit update formulae so that the Gauss–Seidel based
sweeping strategy can be easily carried out; numerical examples indicate
that the sweeping method has linear complexity. Kao et al. [13] proposed
a class of fast sweeping methods for the static Hamilton–Jacobi equations
based on discretizing the Bellman formula resulting from the Hamiltonian
directly on uniform meshes; numerical examples also indicate that the sweep-
ing method has linear complexity. Kao et al. [14] have extended fast sweeping
methods to deal with nonconvex Hamilton–Jacobi equations based on Lax–
Friedrichs numerical Hamiltonians on uniform meshes. Zhang et al. [32]
have developed higher-order fast sweeping methods based on weighted
essentially nonoscillatory schemes [17,12,11] on uniform meshes. Zhang et
al. [31] proposed fixed-point type sweeping methods on uniform meshes. All
of the above cited fast sweeping methods are based upon uniform meshes.
In [24] a class of novel fast sweeping methods was developed for isotropic
eikonal equations on triangular meshes for the first time. In [3], Cecil et
al. extended the fast sweeping method to deal with level set equations on
adaptive tree-based unstructured meshes. Various parallel implementations
of the fast sweeping method are developed in [34].

Mathematical foundation for the well-posedness of the Hamilton–
Jacobi equation traces back to the theory of viscosity solution [5], and
computability of viscosity solution by monotone finite difference methods
is established in [6]. There are two crucial tasks in developing an efficient
numerical method for such type of equations: one is designing a local
solver or discretization scheme that can capture causality of the solution
due to the hyperbolic nature of the equation, and the other is solving the
resulting large system of nonlinear equations after discretization. Many
finite difference schemes are available for discretizations on rectangular
grids. In most of these schemes causality and consistency are coupled and
enforced simultaneously in the local discretization. Due to nonlinearity of
the equation, the corresponding local solver may be quite complicated.
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In this paper, we develop a local solver that decouples consistency
and causality. This approach allows one to deal with much more general
Hamiltonians and applies to both structured and unstructured grids. Since
we are solving a nonlinear boundary value problem, a large nonlinear sys-
tem needs solving after discretization. We apply the fast sweeping strategy
developed in [24] to solve the system which gives an efficient and uncon-
ditionally stable iterative method. In particular the fast sweeping method
is an iterative method of Gauss–Seidel type, consisting of correct causal-
ity check and alternating sweepings. The key point is that all characteris-
tics can be divided into a finite number of groups and each group can be
captured simultaneously by one of the orderings. Recently this methodol-
ogy has been studied extensively and has also been applied successfully to
other hyperbolic problems [15].

Here is the outline of this paper. In Sect. 2, a local solver for general
convex Hamiltonians is described. The fast sweeping algorithm is summa-
rized in Sect. 3. Explicit formulae are derived for a class of anisotropic
eikonal equations in Sect. 4. Finally numerical examples are shown in
Sect. 5 to demonstrate both the efficiency and the accuracy of our method.

2. LOCAL SOLVERS

2.1. Some Basic Facts

Because Eq. (1.1) arises naturally from geometrical optics for wave
propagation [2], without any hesitation we decide to adopt some common
terminology from geometrical optics in the following presentation.

For the sake of simplicity in the following derivation we assume that
H is strictly convex and homogeneous of degree one; we will comment on
general cases later.

Wavefronts of the traveltime are level sets defined by

{x ∈Ω :T (x)= t, t ∈R}.

The wavefront normal at a point x ∈Ω is

n(x)= ∇T (x)

|∇T (x)| ,

whenever the gradient of traveltime T is well-defined, where p = ∇T (x)

is the slowness vector because it has the dimension of the reciprocal of
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velocity. Vp(x,n(x))= 1
|∇T (x)| is the so-called phase speed. Thus we have

p(x) = n(x)

Vp(x,n(x))
, (2.1)

Vp(x,n(x)) = H(x,n(x)), (2.2)

H(x,p) = 1. (2.3)

Since Eq. (1.1) is a nonlinear first-order equation, applying the
method of characteristics to the equation in phase space along ray trajec-
tories (x(t),p(t)) yields

dx
dt

= ∇pH, (2.4)

dp
dt

= −∇xH, (2.5)

dT

dt
= p · dx

dt
=p ·∇pH =1. (2.6)

The first equation defines the so-called group velocity vector, which points
into the same direction as the characteristic (ray) direction. Its magnitude
is

vg(x,p)=
∣
∣
∣
∣

dx
dt

∣
∣
∣
∣
=|∇pH |, (2.7)

which is the so-called group speed depending on the position x and the
slowness vector p, so that the group speed varies as the traveltime gradi-
ent does, implying the so-called directional dependence.

In a homogeneous anisotropic medium, H(x,p)=H(p), the traveltime
increment ∆T between any given two points of distance ∆d is computed
by the following relation:

∆T = ∆d

vg(p)
, (2.8)

where p is determined implicitly by the condition that the ray direction is
known which is the unit vector along the straight line connecting the two
given points. In general, we have to use a numerical procedure to compute
the above traveltime; for example, see [18].

Remark. In an isotropic medium the group velocity vector (the ray
direction) and the phase velocity vector (the traveltime gradient) are in the
same direction, and the group speed and the phase speed are equal. As a
result the computation of traveltime between any two points is straightfor-
ward. In an anisotropic medium those properties are no longer true.
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Remark. If limλ→0 ∇pH(x, λp)=0, then the strict convexity of H(x,p)

implies that
(∇pH(x,p)−∇pH(x, λq)

) · (p−λq)>0 for ∀p,q (2.9)

consequently, we have

p ·∇pH(x,p)�0 for ∀p. (2.10)

Therefore without using the homogeneity of H in p we conclude that
the solution value is nondecreasing along ray trajectories. Furthermore, if
p · ∇pH(x,p) > 0, then the solution value can be used as the running
parameter along ray trajectories in the above formulation. This is the most
essential condition for the fast sweeping method to work for Hamilton–
Jacobi equations. Hence all the following algorithmic development applies
as long as limλ→0 ∇pH(x, λp)=0 holds.

2.2. A Local Solver Based on Fermat’s Principle

We treat the two-dimensional case first. We consider a triangula-
tion Th of Ω into non-overlapping, nonempty, and closed triangles T ,
with diameter hT which is the longest side of the triangle T , such that
Ω̄=∪T ∈Th

T . We assume that Th satisfies the following conditions:

• there are no obtuse triangles;
• no more than µ triangles have a common vertex, and the intersec-

tion of any two triangles is either empty, a single vertex or an entire
edge;

• h= supT ∈Th
hT <1;

• Th is regular in the sense that there exists a constant ω0, indepen-
dent of h, such that if ρT is the diameter of the largest ball B ⊂T ,
then for all T ∈Th, hT �ω0ρT .

Therefore, Eq. (1.1) is solved in the domain Ω, which has a triangu-
lation Th. We consider every vertex and all the triangles which are directly
associated with this vertex; see Fig. 1 for a vertex C and its n triangles
T1, T2,. . . , Tn. For a typical triangle �ABC we denote A : (xA, yA), B :
(xB, yB), and C : (xC, yC); ∠A=α, ∠B =β, and ∠C = γ ; AB = c,AC = b,

and BC =a are the lengths of the edges AB, AC and BC, respectively.
During the solution process we need a local solver at the vertex C for

each triangle; see Fig. 2. Given the values TA and TB at A and B of tri-
angle �ABC, we want to calculate the value TC at C.

If TA and TB are used to update TC , then there must be a ray ema-
nating from the segment AB and hitting point C; namely there is an
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Fig. 1. The vertex C and the local mesh.

γ

α β

C

F

BA

Fig. 2. Update the value at C in a triangle.

F(s) located in between A and B, where s parametrizes the segment AB:
F(0)=A and F(1)=B.

According to Fermat’s principle the traveltime at C is given by mini-
mizing the functional

TC(s) = sTB + (1− s)TA + d(s)

vg(C)
(2.11)

with respect to s, where

d(s)=CF(s) =
√

b2 + c2s2 −2bcs cosα, (2.12)

vg(C; s) = vg(C;TC(s), TA, TB) (2.13)
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namely,

TC = min
s∈[0,1]

{

sTB + (1− s)TA + d(s)

vg(C; s)

}

. (2.14)

This is the so-called control-theoretic update-from-a-single-simplex for-
mula as used in [9,27].

The main difficulty in implementing this formula is that we have
to compute the group speed vg(C; s) by using the current ray direction
defined by C and F(s). By the above formula we can immediately con-
clude that

TC �min{TA,TB} (2.15)

if there exists a characteristic emanating from the segment AB to hit point
C. However, since the wave front normal ∇T does not coincide with the
characteristic direction in general, ∇T may not fall into the triangle; there-
fore, it is not necessarily true that

TC �max{TA,TB}. (2.16)

These two facts are observed in our numerical examples.

Remark. In the special case of the eikonal equation, the wave front
normal coincides with the direction of characteristics and hence either one
can be used to check causality condition; since ∇T points away from C

and is in between the two sides CA and CB a causality-satisfying TC must
be larger than max{TA,TB}.

Remark. The above formulation involves optimization which is avoid-
able by adopting a fully Eulerian viewpoint.

2.3. A Local Solver Based on an Eulerian discretization

Consider an acute triangle �ABC. By definition we have

TC −TA

b
= ∇T (C) ·

(
xC −xA

b
,
yC −yA

b

)t

+O(h2), (2.17)

TC −TB

a
= ∇T (C) ·

(
xC −xB

a
,
yC −yB

a

)t

+O(h2), (2.18)
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where t denotes transpose of vectors and matrices. Furthermore we have
( TC−TA

b
TC−TB

a

)

=P∇T (C)+O(h2), (2.19)

where

P=
(

xC−xA

b
,

yC−yA

b
xC−xB

a
,

yC−yB

a

)

≡
(

rt
1

rt
2

)

. (2.20)

Assuming a linear approximation of T locally near C to ignore
higher-order terms and solve for ∇TC , we have

∇T (C)≈P−1

(
TC−TA

b
TC−TB

a

)

, (2.21)

where P−1 =PtQ,

PPt =
(

1, cos γ

cos γ, 1

)

and

Q= (PPt)−1 = 1

sin2 γ

(

1, − cos γ

− cos γ, 1

)

.

Inserting ∇T (C) into the Hamilton–Jacobi equation at the mesh
point C, we have a consistent discretization of the equation in the triangle
�ABC:

H(C,∇T (C)) ≈ 1, (2.22)

Ĥ

(

C,
TC −TA

b
,
TC −TB

a

)

= 1 (2.23)

or

Ĥ (C,TC, TA,TB) = 1. (2.24)

Since in general this is a nonlinear equation for TC , we have to
numerically solve the equation to obtain TC if TA and TB are given.

It is possible that we have multiple solutions of TC when solving the
nonlinear Eq. (2.24); thus we have to choose the one that satisfies causal-
ity, the so-called characteristic condition.

The fundamental idea is the following. If there is no solution to Eq.
(2.24) it means that this triangle does not support a consistent TC . If there
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is one or more solutions we need to check the causality condition. Using
the computed TC and the above equation, we get a ∇T (C) which can be
used to compute the ray direction ∇pH(C,∇T (C)). The computed TC sat-
isfies the causality condition if the characteristic starting from C against
the direction ∇pH(C,∇T (C)) intersects the line segment AB, as illustrated
in Fig. 2. If there is no TC satisfying this causality condition it means
that this triangle does not support a TC that is both consistent and cau-
sality satisfying. If, after the causality check, there are multiple TC ’s from
this triangle, then we choose the smallest one using the first-arrival time
principle.

Now we rigorously establish the above causality principle.
Since H(x,p) is strictly convex in the p argument, for a given x any

straight line in the slowness space intersects the slowness surface defined
by H(x,p) = 1 at two points at most; see Fig. 3(a). In general, there are
three cases:

1. two different intersections;
2. two repeated identical intersections;
3. no intersection.

In the first case two outward normals ∇pH at those two intersections
give two possible characteristic directions according to Eq. (2.4) at the
given point x. In the second case, we have two repeated identical intersec-
tions, and the outward normal at the intersection point also points into a
characteristic direction at that point x.

We have the following geometrical observation. For a given x, the
slowness surface {p: H(x,p) = 1} is strictly convex and closed; there are
exactly two horizontal and two vertical lines in the slowness space which

O P1

P2

O m1

m2

Fig. 3. (a). A straight line intersects the convex slowness surface at two points at most.
(b) Embed the outward normals into a Cartesian coordinate system.
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are tangent to the slowness surface. This fact can be proved rigorously by
writing sectors of the slowness surface as graph functions; see [22].

According to the above observation, we have four tangent points
denoted as p(i) = (p

(i)

1 , p
(i)

2 ), (i =1,. . .,4), yielding
(

Hp1(x,p(1))>0,Hp2(x,p(1))=0
)

,

(

Hp1(x,p(2))=0,Hp2(x,p(2))>0
)

,

(

Hp1(x,p(3))<0,Hp2(x,p(3))=0
)

and
(

Hp1(x,p(4))=0,Hp2(x,p(4))<0
)

.

Next we can embed the above four vectors into a two-dimensional
m1-m2 Cartesian coordinate system by making (m1,m2) = (1,0) and
(m1,m2) = (0,1) point into the same direction as ∇pH(x,p(1)) and ∇p
H(x,p(2)), respectively. Accordingly, (m1,m2) = (−1,0) and (m1,m2) =
(0,−1) have the same direction as ∇pH(x,p(3)) and ∇pH(x,p(4)), respec-
tively. See Fig. 3(b). By this embedding each nonzero vector in this coor-
dinate system defines a possible ray direction at x.

Now consider the straight line Eq. (2.21) parametrized by TC in the
slowness space, which is rewritten as

p = r TC + r0, (2.25)

where

r =P−1
(

b−1

a−1

)

= a −b cosγ

a b sin2 γ
r1 + b−a cosγ

a b sin2 γ
r2, (2.26)

r0 =P−1
(−TA b−1

−TB a−1

)

= b TB cosγ −a TA

a b sin2 γ
r1 + a TA cosγ −b TB

a b sin2 γ
r2.

(2.27)

This straight line intersects the slowness surface in exactly the same way
as described above in terms of the following three cases.

The first case: two different outward normals. In general there are three
situations, referring to Fig. 3(b):
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• Case (i): two outward normals are in the same quadrant in the m1-
m2 coordinate system;

• Case (ii): two outward normals are in the neighboring quadrants in
the m1-m2 coordinate system;

• Case (iii): two outward normals are in the opposite quadrants in the
m1-m2 coordinate system.

Consider an acute triangle �ABC in Cartesian coordinates with the
origin at the mesh point C.

In Case (i), we have two possible rays hitting C, and we choose the
one yielding the smallest traveltime using the first-arrival time principle.

In Cases (ii) and (iii), these two outward normals must have either
opposite signs in the second component, which correspond to downgoing
rays and upgoing rays, respectively, or have opposite signs in the first com-
ponent which correspond to left-going and right-going rays, respectively.
We show that only one of those two ray directions may satisfy the causal-
ity condition, since the acute triangle must belong to one of the following
cases:

1. if �ABC is completely located in the upper half plane, then
a downgoing ray emanating from the segment AB should be
selected to hit point C;

2. if �ABC is completely located in the lower half plane, then a
upgoing ray emanating from the segment AB should be selected
to hit point C;

3. if �ABC is located completely in the right half plane, then a left-
going ray emanating from the segment AB should be selected to
hit point C;

4. if �ABC is located completely in the left half plane, then a right-
going ray emanating from the segment AB should be selected to
hit point C.

Finally to ensure that the characteristic indeed emanates from the seg-
ment AB, one has to verify that the selected outward normal allows a ray
to start from point C and intersect with the segment AB. If the above is
true, we accept the corresponding TC ; if not we use the two rays along the
edges AC and BC, respectively, to hit C; this will be dealt with in the third
case.

The second case: two identical outward normals. We can use the similar
arguments as in the first case to decide whether to accept the correspond-
ing characteristic or not; if not we go to the third case.

The third case: no valid outward normals. In this case, we force rays
to travel along either edge AC or edge BC. Since the ray direction is
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given and the Hamiltonian is convex, we can find the corresponding group
speed by inversion of the relation (2.4) (see [18] for more details). Then the
traveltime at C is given by

TC =min

{

TA + |AC|
vAC

g
, TB + |BC|

vBC
g

}

, (2.28)

where vAC
g and vBC

g denote the group speed along the edge AC and BC,
respectively.

Remark. Rectangular grids can be considered as special cases. There
are two possible virtual triangulations on a rectangular grid as illustrated
in Fig. 4 for two spatial dimensions. In Case (a) four triangles are created,
analogous to a five-point stencil used in finite-difference schemes. In
Case (b) eight triangles are connected which result in a nine-point stencil.
Case (b) will give more accurate solutions on the same Cartesian grid
than Case (a) due to better directional resolution. As we will show in our
numerical examples, the gain in accuracy of Case (b) justifies the extra
cost compared to Case (a).

We can summarize the above into an algorithm for updating an acute
triangle.

A two-dimensional local solver: (given TA and TB , determine TC =
TC(TA,TB).)

C C

(a) Four three-point stencils. (b) Eight three-point stencils.

Fig. 4. Triangulation based on regular meshes.
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1. Solve Eq. (2.24) for two possible roots, T 1
C and T 2

C , either analyt-
ically or numerically.

2. If there are two roots, T 1
C and T 2

C , then

(a) if T 1
C satisfies the characteristic condition, then

TC =min{TC,T 1
C};

(b) if T 2
C satisfies the characteristic condition, then

TC =min{TC,T 2
C};

(c) if none of the two roots satisfies the characteristic con-
dition, then

TC =min

{

TC,TA + |AC|
vAC

g
, TB + |BC|

vBC
g

}

;

3. else

TC =min

{

TC,TA + |AC|
vAC

g
, TB + |BC|

vBC
g

}

.

2.4. Consistency and Monotonicity

Considering an acute triangle �ABC in which TA and TB are given,
we update the travel-time TC at the vertex C. Denoting

q1 = TC −TA

b
, q2 = TC −TB

a
, q = (q1, q2)

t

we adopt the framework given in [4] to show consistency and monotonic-
ity of the Godunov numerical Hamiltonian resulting from the local solver.

Lemma 2.1 (Consistency and Monotonicity). The numerical Hamilto-
nian Ĥ is consistent:

Ĥ

(

C,
TC −TA

b
,
TC −TB

a

)

= H(C,p) (2.29)

if ∇Th = p∈R2, where Th is the numerical solution defined by linear inter-
polation at the three vertexes on each triangle. The numerical Hamiltonian
Ĥ constructed in the local solver is monotone if the causality condition
holds.
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Proof. By ∇Th = p∈R2, we have

q =
( TC−TA

b
TC−TB

a

)

=Pp. (2.30)

Inserting this into the numerical Hamiltonian, we have Eq. (2.29).
Differentiating Ĥ (C, q1, q2) with respect to q1 and q2, the monotonic-

ity of the Hamiltonian requires

∂Ĥ (C, q1, q2)

∂q1
�0,

∂Ĥ (C, q1, q2)

∂q2
�0 (2.31)

since Ĥ (C,q)=H(C,P−1q), the above inequalities can be satisfied if and
only if the following holds component-wise:

(Pt )−1∇pH �0 (2.32)

namely,

∇pH · (r1 − r2 cos γ )�0,

∇pH · (r2 − r1 cos γ )�0.

The last inequalities mean that the characteristic direction ∇pH at C is a
linear combination with positive coefficients of the two vectors CA and
CB, which is exactly the condition that we have imposed in choosing the
characteristic direction in the local solver, the upwind condition.

We note that the above monotonicity in turn implies the monotonic-
ity of TC with respect to TA and TB by the implicit function theorem.

2.5. How to Compute the Group Speed?

In the above discussions, we have to compute the group speed from a
given ray direction. Since in general anisotropic media we cannot find an
explicit formula for the group speed in terms of a given ray direction, we
have to use a numerical procedure to determine the group speed approxi-
mately.

Fortunately for the static Hamilton–Jacobi equation with the Hamil-
tonian H being convex in the gradient argument we can easily modify a
shooting method [18] to compute the group speed from a given ray direc-
tion which is uniquely determined by two given points in a homogeneous
medium. Since the algorithm is well explained in [18], we will not pursue
it any further.
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2.6. Acute Versus Obtuse Triangles

In developing our local solver, we have assumed that the triangula-
tion does not consist of obtuse triangles. What happens if the triangula-
tion does have obtuse triangles? We illustrate the consequences by using
the paraxial eikonal theory and a geometrical argument.

2.6.1. Isotropic Cases

Consider the isotropic eikonal equation. Assuming that we have an
obtuse triangle �ABC in which TA and TB are given, we update the trav-
eltime TC at the vertex C. Let the unit directional vector r1 along edge CA

and r2 along edge CB be in the second and fourth quadrant, respectively;
see Fig. 5.

Then according to Eq. (2.26) we have vector r located in between r1
and r2, as showed in Fig. 5, and the straight line defined by Eq. (2.25) has
r as its directional vector. Depending on r0, i.e., on TA, TB and the trian-
gle, the straight line may have no intersection, two identical intersections,
and two different intersections with the slowness surface defined at C:

|p|F(C)=1 (2.33)

see Fig. 5.

P1

P2

O

r1

r2

r

D1 D2

D3

D4

Fig. 5. An obtuse triangle and its consequences in isotropic wave propagation.
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By the characteristic condition, if the triangle supports a consistent
discretization then we will choose the intersection with the outward nor-
mal satisfying that the characteristic starting from C against the direc-
tion provided by the outward normal intersects the edge AB. As r var-
ies in between r1 and r2, we have two extreme intersections defined by
extending r1 and r2 to the isotropic slowness surface; they are D1 and
D4 as illustrated in the figure. However, as observed from the figure the
ray direction defined by the outward normal at D1 has negative first-
component and positive second-component while the ray direction defined
by the outward normal at D4 has positive first-component and negative
second-component; similar observations can be made about D2 and D3.

In fact we can rigorously prove that as r varies from r1 to r2, the ray
direction defined by the corresponding outward normal changes its signs
from (+,−) to (−,+), noting that the ray direction hitting C is opposite
to the outward normal direction in the figure. According to the proposed
local solver, varying r between r1 and r2, the possible ray direction hitting
C will change its sign from (+,−) to (−,+) going through

(+,−)→ (0,−)→ (−,−)→ (−,0)→ (−,+)

or

(+,−)→ (+,0)→ (+,+)→ (0,+)→ (−,+)

due to the convexity of the slowness surface.
Therefore according to the paraxial eikonal theory [18] one cannot

define a locally stable, uni-directional propagation problem to update the
traveltime at the vertex C by using traveltimes at A and B.

In summary, the criterion for splitting an obtuse angle is when the
two ray directions corresponding to the two edges subtend an arc that
contains two sonic points. For the isotropic case it simply means that the
two ray directions have opposite signs in both corresponding components.

2.6.2. Anisotropic Cases

Next we consider the anisotropic eikonal equation. Assuming that we
have an obtuse triangle �ABC in which TA and TB are given, we update
the traveltime TC at the vertex C.

Let the unit directional vectors r1 along edge CA and r2 along edge
CB be in the second and fourth quadrant, respectively; the slowness sur-
face defined at C is given as illustrated in Fig. 6. Then according to equa-
tion (2.26) we have vector r located in between r1 and r2, as showed in
Fig. 6, and the straight line defined by Eq. (2.25) has r as its directional
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vector. Depending on r0, i.e., on TA, TB and the triangle, the straight line
may have no intersection, two identical intersections, and two different
intersections with the convex slowness surface defined at C:

H(C,p)=1 (2.34)

see Fig. 6.
We note that this particular configuration as illustrated in Fig. 6 has

the following property: the sector of the slowness surface subtended by r1,
r, and r2 has both horizontal and vertical tangent lines, and they are both
unique due to the strict convexity in this sector.

By the characteristic condition, if the triangle supports a consistent
discretization then we will choose the intersection with the outward nor-
mal satisfying that the characteristic starting from C against the direction
provided by the outward normal intersects the edge AB. As r varies in
between r1 and r2, we have two extreme intersections defined by r1 and r2,
respectively; they are D1 and D4 as illustrated in the figure. However, as
observed from the figure the ray direction defined by the outward normal
at D1 has negative first-component and positive second-component while
the ray direction defined by the outward normal at D4 has positive first-
component and negative second-component; similar observations can be
made about D2 and D3.

In fact we can rigorously prove that as r varies from r1 to r2, the ray
direction defined by the corresponding outward normal changes its sign
from (+,−) to (−,+). According to the proposed local solver, varying r
between r1 and r2, the possible ray direction hitting C will change its sign

P1

P2

O

r

r2

r1

D2
D1

D3

D4

Fig. 6. An obtuse triangle and its consequences in anisotropic wave propagation.
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from (+,−) to (−,+) going through

(+,−)→ (0,−)→ (−,−)→ (−,0)→ (−,+)

or

(+,−)→ (+,0)→ (+,+)→ (0,+)→ (−,+)

due to the convexity of the slowness surface.
According to the paraxial eikonal theory [18], if the traveltime at C

is to be updated by the wave propagated from A and B to C, then the
ray components at A and B must have a common sign in at least one
of the components. However, by the above analysis, this is not true for
the case under consideration. Therefore, one cannot define a locally sta-
ble, uni-directional propagation problem to update the traveltime at C by
using traveltimes at A and B.

For the anisotropic case, the criterion for splitting an obtuse angle is
the same as that for the isotropic case. When the two ray directions cor-
responding to the two edges subtend an arc on the slowness surface that
contains two sonic points, we need to split the obtuse angle.

2.7. Generalizations to Higher Dimensions

The above procedure can be easily extended to higher dimensions.
The design principle for the local solver still holds; namely, we first use
consistency to find possible candidates and then check the causality con-
dition. The only thing to which we need to pay attention is how to com-
pute the group speed in higher dimensions if we are given two points.
Although, in this case, we have to solve an implicit nonlinear system, the
problem still has a unique solution by the convexity of the slowness sur-
face. Therefore, we can use a similar shooting method as the one in [18].

As an illustration, we consider the three-dimensional case. There are
six special tangent planes to the slowness surface: two having the normal
vectors (±1,0,0), two having the normal vectors (0,±1,0) and two hav-
ing the normal vectors (0,0,±1). The corresponding tangent points on
the slowness surface will be used to classify ray directions and design the
shooting method, and so on.

3. THE FAST SWEEPING ALGORITHM

We now describe the complete algorithm combining the local solver
explained in the previous section with the fast sweeping strategy that we
developed in [24].
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• Step 1, sorting. Sort all the nodes (vertexes) according to the lp

distance to a few reference points. In all our tests we use the l1 dis-
tance.

• Step 2, initialization. Assign large positive values to all vertexes
except those that belong to or near the boundary (the initial front).
Those boundary nodes are assigned exact values or approximated
values by a shooting method, and these values are fixed in later iter-
ations.

• Step 3, sweeping. Start Gauss–Seidel iterations with alternating
sweeping orderings according to the distances of nodes to the cho-
sen reference points.

Given the consistency and monotonicity of the local solver by Lemma
2.1, one can establish the following result by using the ideas in [33,24]:

Theorem 3.1. There exists a unique solution for the discretized non-
linear system and the fast sweeping iteration converges.

Using similar arguments from [33,24] one can show that the total
number of sweepings needed depends only on the specific properties of the
PDE, such as the turns of characteristics, which can be computed from
the characteristic Eq. (2.4); in turn, this indicates how many sweepings are
needed to cover the tangent directions along a characteristic curve in the
computational domain consecutively.

Letting M be the total number of nodes, the complexity of the above
algorithm is the following:

• on rectangular grids: O(M);
• on unstructured meshes: O(M log M).

Remark. On unstructured meshes the log M factor comes from the
initial sorting of all nodes. Once the sorting is done the complexity of the
fast sweeping iterations is O(M). Usually the sorting can be incorporated
into the mesh generation easily with little extra cost.

Remark. The constant in the complexity formula does not depend
on the anisotropy of the Hamiltonian. As an example, for elliptical aniso-
tropic eikonal equations, if the coefficients are constant, then the char-
acteristics are straight lines; the number of iterations needed for the fast
sweeping method to converge is independent of the anisotropy of the
Hamiltonian.
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Remark. The criterion for an optimal choice of reference points and
their locations on a triangular mesh is: all directions of characteristics
should be covered with minimal redundancy. In practice, it is better if
these reference points are evenly spaced both spatially and angularly with
respect to the data set or boundary where the solution is prescribed. In
our numerical tests we use the corners as reference points if the computa-
tional domain is rectangular. Other points, such as the center point of the
domain or middle points of each edge, can be used as well.

4. APPLICATION: AN ELLIPTICAL ANISOTROPIC EIKONAL
EQUATION

We apply the above procedure to derive an explicit local solver for
anisotropic eikonal equations of the following type

[∇T (x)M(x)∇T (x)]1/2 =1, x ∈Rd, (4.35)

where M(x) is a d ×d symmetric positive definite matrix. In particular M

can be considered as a specific metric for the medium in which the wave
front is propagating or in which we want to compute geodesics.

For simplicity let us consider the two-dimensional case,

H =
√

a(x)p2
1 −2c(x)p1 p2 +b(x)p2

2 =1, (4.36)

where a >0, b>0 and c2 −ab<0. Without abusing notations we use a, b,
and c to denote the coefficients in the anisotropic eikonal equation in the
sequel.

Denote matrix P in Eq. (2.20) by

P=
(

n11, n12
n21, n22

)

,

where n11 = (xC − xA)/lb, n12 = (yC − yA)/lb, n21 = (xC − xB)/la , n22 = (yC −
yB)/la ; lb, la , and lc are the lengths of edge CA, CB, and AB, respectively.
Then

P−1 = 1

sin2 γ

(

n11 −n21 cosγ, n21 −n11 cosγ

n12 −n22 cosγ, n22 −n12 cosγ

)

≡
(

p11, p12
p21, p22

)

.

From (2.21), we have

∇T (C)≈




(
p11
lb

+ p12
la

)

TC −
(

p11
lb

TA + p12
la

TB

)

(
p21
lb

+ p22
la

)

TC −
(

p21
lb

TA + p22
la

TB

)



≡
(

g1TC +g2

g3TC +g4

)

,

(4.37)
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where

g1 ≡ p11

lb
+ p12

la
, (4.38)

g2 ≡ −
(

p11

lb
TA + p12

la
TB

)

, (4.39)

g3 ≡
(

p21

lb
+ p22

la

)

, (4.40)

g4 ≡ −
(

p21

lb
TA + p22

la
TB

)

. (4.41)

Substituting ∇T (C) in (4.37) into the Hamilton–Jacobi Eq. (4.36), we
obtain the quadratic equation

w1T
2
C +w2TC +w3 −1=0, (4.42)

where

w1 ≡ ag2
1 +bg2

3 −2cg1g3, (4.43)

w2 ≡ 2ag1g2 +2bg3g4 −2c(g1g4 +g2g3), (4.44)

w3 ≡ ag2
2 +bg2

4 −2cg2g4, (4.45)

where a =a(xC), b=b(xC), and c= c(xC).
If the quadratic Eq. (4.42) has real roots

TC =
−w2 ±

√

w2
2 −4w1(w3 −1)

2w1
(4.46)

then we check the causality for the positive roots.
If TC is a positive root, then we reconstruct ∇T (C)= (p, q) by (4.37)

and calculate the characteristic direction

d =
(

ap − cq

bq − cp

)

next we check whether the characteristic line with direction d passing ver-
tex C falls inside the triangle �ABC or not. If the characteristic line is
inside the �ABC, causality is satisfied and we update TC if this new value
is smaller than the current numerical value of TC . Otherwise, if the qua-
dratic Eq. (4.42) has no positive root satisfying the causality condition,
then we have to use the group speed along edges AC and BC, and

TC =min

{

TC,TA + |AC|
vAC

g
, TB + |BC|

vBC
g

}

.
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5. NUMERICAL EXPERIMENTS

In all the examples, we choose four corners in a two-dimensional
rectangular domain as the reference points and sort the nodes according
to the l1 metric by using the quicksort method, as in [24].

The convergence of iteration is measured in terms of the L1-norm as
advocated by Lin and Tadmor [16]; i.e., the iteration stops when the suc-
cessive error satisfies ‖T n+1 −T n‖L1 <10−10. To compute the L1 error on
a general triangular mesh, we follow the definition of the L1 norm. First
we calculate the errors e1, e2, e3 at three vertices on each triangle, then we
take 1

3 (e1 + e2 + e3) to be the average error on this triangle. Afterward,
we multiply the average error on each triangle by the area of the trian-
gle and sum up these products over all triangles. Finally we divide the
sum by the area of the computational domain to get the normalized L1

error.
In all of our test cases one sweeping means one Gauss–Seidel itera-

tion through all nodes with a particular ordering.
A typical acute triangulation is shown in Fig. 7. When we check the

accuracy of our methods, we refine the mesh uniformly, i.e., cutting each
triangle into four smaller similar ones. Exact solutions needed in initial-
izing the algorithm and checking accuracy are computed by the shooting
method [18], whenever possible.

X

Y

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Triangulation
5716 nodes,11264 triangles

Fig. 7. A typical acute triangulation.
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5.1. Example 1

We consider the following equation
√

a T 2
x +b T 2

y −2c Tx Ty =1, (x, y)∈ (−2,2)× (−2,2), (5.1)

T (0,0)=0, (5.2)

where a >0, b>0, and c2 −ab<0.
In a homogeneous anisotropic metric, the eigenvalues of the symmet-

ric positive definite matrix

M =
(

a, −c

−c, b

)

characterizes the anisotropy of the metric. According to [27] the anisot-
ropy coefficient of the metric is defined by

η=
√

λmax(M)

λmin(M)
,

where λmax(M) and λmin(M) are the larger and smaller eigenvalues of M,
respectively.

Case 1: a homogeneous, mild anisotropic case. We take a = 1, b = 1,
and c = 0.9; η =√

19. Since the point source problem has an upwind sin-
gularity at the source [19] we have to measure the order of accuracy of
the fast sweeping method away from the singularity. Otherwise the accu-
racy will degenerate to h log h [33]. To achieve this we fix a small region,
[−0.2,0.2]× [−0.2,0.2], around the source, assign the exact solution to the
grid points inside this small region, and compute the numerical error only
for the grid points outside the small region; this is the so-called wrapping
technique. As shown in Table I, with this wrapping technique we are able
to observe the expected first-order accuracy while without the wrapping

Table I. The Order of Convergence; a =1, b=1, c=0.9

Wrapping [−0.2,0.2]× [−0.2,0.2] No wrapping

Nodes Elements L1 error Order Iter L1 error Order Iter

1473 2816 6.45E−2 – 4 7.47E−2 – 4
5716 11264 3.27E−2 0.98 4 4.68E−2 0.68 4
22785 45056 1.75E−2 0.91 4 2.87E−2 0.71 5
90625 180224 8.88E−3 0.97 4 1.71E−2 0.75 5
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a=1, b=1, c=0.9
5716 nodes, 4 iterations

Fig. 8. a =1, b=1, c=0.9, η=√
19; convergence after four sweepings.

Table II. Comparison of the Accuracy between the Four Three-Point Stencils and the Eight
Three-Point Stencils (Fig. 4); Wrapping [−0.2,0.2]× [−0.2,0.2]; a =1, b=1, c=0.9

Four three-point stencils Eight three-point stencils

Mesh L1 error Order Iter L1 error Order Iter

40×40 1.17E−1 – 4 1.57E−2 – 4
80×80 6.35E−2 0.88 4 8.18E−3 0.94 4
160×160 3.39E−2 0.90 4 4.18E−3 0.97 4
320×320 1.78E−2 0.93 4 2.12E−3 0.98 4

technique we are only able to observe the degraded first-order accuracy.
In Table I, we also observe that the number of iterations needed for con-
vergence is almost a constant which is independent of mesh sizes. Figure 8
shows the contour plot for this test case.

Next we test our algorithm on rectangular grids, which can be consid-
ered as special cases. See the discussion in Sect. 2 and Fig. 4. The sweep-
ing directions are based on the l1 metric. The accuracy and the number
of iterations are listed in Table II for both the four three-point stencils
and the eight three-point stencils (Fig. 4). Apparently the eight three-point
stencils can result in a higher accuracy than the four three-point stencils.

In this case of rectangular grids we also test the i, j orderings as
that used in the fast sweeping method on rectangular meshes; the same
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a=2, b=1, c=0
5716 nodes, 5 iterations
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a=20, b=1, c=0
5716 nodes, 5 iterations
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a=200, b=1, c=0
5716 nodes, 5 iterations
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a=2000, b=1, c=0
5716 nodes, 5 iterations

(a) (b)

(c) (d)

Fig. 9. (a). a =2, b=1, c=0, η=√
2; convergence after five sweepings; (b). a =20, b=1, c=

0, η =√
20; convergence after five sweepings; (c). a = 200, b = 1, c = 0, η =√

200; convergence
after five sweepings; (d). a =2000, b=1, c=0, η=√

2000; convergence after five sweepings.

accuracy and the same number of sweepings are obtained; we omit the
results here.

Case 2: Homogeneous, strong anisotropic cases. We carry out a
sequence of tests to study the power and the robustness of our sweeping
methods.

First we increase the coefficient a successively from 2 to 2000 with
b = 1 and c = 0 fixed. Figure 9 shows the contour plots of the results for
a=2,20,200,2000 computed by using the same mesh with 5716 nodes and
11264 triangles. In addition for a = 200,2000 we use a finer mesh with
90625 nodes and 180224 triangles; the results are shown in Fig. 10, which
have higher resolution than the ones shown in Fig. 9.
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a=200, b=1, c=0
90625 nodes, 5 iterations
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Fig. 10. Refined mesh. (a). a = 200, b= 1, c= 0, η=√
200; convergence after five sweepings;

(b). a =2000, b=1, c=0, η=√
2000; convergence after five sweepings.
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a=150.25, b=50.75, c=86.16953
90625 nodes, 5 iterations
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a=1500.25, b=500.75, c=865.5924
90625 nodes, 5 iterations
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Fig. 11. (a). a = 150.25, b = 50.75, c = 86.16953, η =√
200; convergence after five sweepings;

(b). a =1500.25, b=500.75, c=865.5924, η=√
2000; convergence after five sweepings.

The above cases have the symmetrical axis of the slowness surface
aligned with the Cartesian axis, which may not be able to test out the full
power of the sweeping method. To test out the full power of the method
we take out the two cases, (a=200, b=1, c=0) and (a=2000, b=1, c=0),
and apply to the resulting matrices M a similarity transform defined by a
rotation with angle π

6 . Then we have (a = 150.25, b = 50.75, c = 86.16953)

and (a =1500.25, b=500.75, c=865.5924); the resulting anisotropic coeffi-
cients are η=√

200 and η=√
2000, respectively.

Figure 11 shows the contour plots for the two cases with the compu-
tational mesh of 90625 nodes and 180224 triangles. Numerical errors and
order of convergence are shown in Table III and Table IV.
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Table III. The Order of Convergence; a =150.25, b=50.75, c=86.16953

Wrapping [−0.2,0.2]× [−0.2,0.2] No wrapping

Nodes Elements L1 error Order Iter L1 error order iter

1473 2816 8.78E−3 – 4 8.87E−3 – 4
5716 11264 4.04E−3 1.12 4 5.38E−3 0.72 4
22785 45056 2.10E−3 0.94 4 3.22E−3 0.74 5
90625 180224 1.04E−3 1.02 4 1.88E−3 0.77 5

Table IV. The Order of Convergence; a =1500.25, b=500.75, c=865.5924

Wrapping [−0.2,0.2]× [−0.2,0.2] No wrapping

Nodes Elements L1 error Order Iter L1 error Order Iter

1473 2816 6.23E−3 – 4 5.72E−3 – 4
5716 11264 2.89E−3 1.11 4 3.33E−3 0.78 4
22785 45056 1.53E−3 0.92 4 1.93E−3 0.79 5
90625 180224 7.66E−4 1.00 4 1.10E−3 0.80 5

These results demonstrate that our sweeping method is robust enough
to handle the equation with a very high-anisotropy coefficient. Unlike
other methods with numerical domain of dependency depending on the
anisotropy coefficient η which may be very large when η is large, our iter-
ative methods do not have such a shortcoming and thus are efficient and
robust. As discussed in Sect. 3, the number of sweepings is independent
of mesh size and anisotropy, but it depends on the behavior of character-
istics. In the case of homogeneous media, the characteristics are straight-
lines, and, that is, why we only need 4–5 sweepings.

5.2. Example 2

We consider the following equation with variable coefficients

√

a(x, y)T 2
x +b(x, y)T 2

y −2c(x, y)Tx Ty =1, (x, y)∈ (−1,1)× (−1,1),

T (x, y)=0, (x, y)∈Γ,

where Γ is a unit square in the middle of the domain: Γ ={x =±0.5, |y|�
0.5}∪ {y =±0.5, |x|�0.5}.

We choose a(x, y)= 150.25(1 +λ sin2(πxy)), b(x, y)= 50.75(1 + δ cos2

(πxy)), c(x, y)=86.16953(1−ε sin2(πxy)), where λ, δ, and ε are constants



Static Convex Hamilton–Jacobi Equations 265

Table V. Comparison of Iteration Numbers of the Four Three-Point Stencil (Fig. 4 (a)), the
Eight Three-Point Stencil (Fig. 4 (b)) and the Regular Triangular Stencil (Fig. 1), a(x, y) =
150.25(1 + λ sin2(πxy)), b(x, y) = 50.75(1 + δ cos2(πxy)), c(x, y) = 86.16953(1 − ε sin2(πxy))

where λ=1, δ =1, ε =0.125

Four three-point stencil Eight three-point stencil Triangular stencil

Mesh Iter Mesh Iter Mesh nodes Iter
40×40 11 40×40 9 1473 9
80×80 13 80×80 10 5761 7
160×160 13 160×160 11 22785 8
320×320 13 320×320 13 90625 9

to be selected; this is a perturbation of the homogeneous case (a, b, c) =
(150.25,50.75,86.16953).

We solve this equation on three different sets of stencils: a regular tri-
angular mesh and two virtual meshes constructed from uniform rectangu-
lar grids; the latter two consists of four three-point stencils at each node
and eight three-point stencils at each node, respectively.

We take λ = 1, δ = 1, and ε = 0.125. The results in terms of mesh
refinement are shown in Table V. Figure 12 shows contours of the solu-
tions on different meshes.

5.3. Example 3: The Five-Ring Problem

We consider the following equation

√

a T 2
x +b T 2

y −2c Tx Ty =1, (x, y)∈ (0,1)× (0,1), (5.3)

T (0,0)=0, (5.4)

where a > 0, b > 0, and c2 − ab < 0. A five-ring obstacle is placed in the
computational domain. This example is borrowed from [10]. Due to the
geometrical complexity of the obstacle, it is difficult to use a rectangular
mesh; on the other hand, our method based on unstructured meshes can
be used with an advantage. We treat the five rings as a part of the compu-
tational boundary, and we triangulate the resulting computational domain.
A typical triangulation is shown in Fig. 13.

We apply our fast sweeping method to cases with increasing anisot-
ropy; the method converges in almost the same number of sweepings in
all the cases.

Figure 14(a) shows the result of the isotropic case; the wavefronts
near the source are circular. Figure 14(a), (b), (c), and (d) show the
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Fig. 12. a(x, y) = 150.25(1 + λ sin2(πxy)), b(x, y) = 50.75(1 + δ cos2(πxy)), c(x, y) =
86.16953(1 − ε sin2(πxy)) where λ = 1, δ = 1, ε = 0.125. (a). On a general triangular mesh
with 22785 nodes, convergence after eight sweepings; (b). on the 160×160 rectangular mesh,
using the eight three-point stencils, convergence after 11 sweepings; (c) on the 160 × 160
rectangular mesh, using the four three-point stencils, convergence after 13 sweepings.
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Fig. 13. A typical triangular mesh for the five-ring problem. 12116 nodes, 22391 triangles.
(a). the whole mesh; (b). the zoom in.
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Fig. 14. The five-ring problem. The source is at (0,0). (a). the isotropic case, a = 1, b =
1, c=0; convergence after 31 sweepings; (b). a =1, b=1, c=0.5; convergence after 29 sweep-
ings; (c). a =1, b=1, c=0.7; convergence after 29 sweepings; (d): a =1, b=1, c=0.9; conver-
gence after 28 sweepings.

wavefronts with increasing anisotropy; near the source, we can see that the
wavefronts change from circular to noncircular to nearly planar shapes;
inside the rings, we can see that local secondary sources generate non-
circular wavefronts in Fig. 14(b), (c), and (d). We note that two families
of wavefronts are colliding along the diagonal near the upper-right corner
because the geometry of the five-ring obstacle is symmetric with respect to
the diagonal from the lower-left to the upper-right corner, and the source
is located on this diagonal; for convenience we name this diagonal the
lower-right diagonal. As c is decreased from 0.9 to 0.0 while a and b are
fixed, we can observe that near the upper-right corner the two families of
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Fig. 15. The five-ring problem. The source is at (0,0). (a). a = 1, b = 1, c = −0.3; conver-
gence after 31 sweepings; (b). a = 1, b = 1, c = −0.5; convergence after 31 sweepings; (c). a =
1, b=1, c=−0.7; convergence after 31 sweepings; (d): a =1, b=1, c=−0.9; convergence after
31 sweepings.
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Fig. 16. The five-ring problem. The source is at (0.6,0). a = 1, b = 1, c =−0.9; convergence
after 23 sweepings.
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wavefronts are colliding at angles which are becoming smaller, the result-
ing kinks becoming sharper as shown in Fig. 14(d), (c), (b), and (a).

If c is decreased further from 0.0 to −0.9 as shown in Fig. 15, we can
observe that near the upper-right corner the two families of wavefronts are
colliding at even smaller angles, the resulting kinks becoming even sharper.
In particular, when c = −0.9, the two families of wavefronts are nearly
planar and nearly parallel, and the colliding angles are very small; even
for such a case the fast sweeping method is robust enough to give good
results based on the given mesh. To verify the above reasoning, we may
move the source location from (0,0) to (0.6,0.0) so that it is no longer
located on the lower-right diagonal; as shown in Fig. 16, two families of
wavefronts are colliding at locations near (0.4,0.9), the resulting kinks no
longer sharp.

6. CONCLUSIONS

We develop a fast sweeping method for static Hamilton–Jacobi equa-
tions with convex Hamiltonians. Local solvers and fast sweeping strategies
apply to structured and unstructured meshes. With causality correctly
enforced during sweepings numerical evidence indicates that the fast
sweeping method converges in a finite number of iterations independent
of mesh size. Numerical examples validate both the accuracy and the effi-
ciency of the new methods.
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