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Abstract. We present an efficient algorithm for reconstructing an unknown source in thermoacoustic and
photoacoustic tomography based on the recent advances in understanding the theoretical nature
of the problem. We work with variable sound speeds that also might be discontinuous across
some surface. The latter problem arises in brain imaging. The algorithmic development is based
on an explicit formula in the form of a Neumann series. We present numerical examples with
nontrapping, trapping, and piecewise smooth speeds, as well as examples with data on a part of
the boundary. These numerical examples demonstrate the robust performance of the Neumann
series–based algorithm.
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1. Introduction. Thermoacoustic tomography (TAT) and photoacoustic (PAT) tomog-
raphy are emerging medical imaging modalities [35, 33]. These are hybrid medical imaging
methods that combine the high resolution of acoustic waves with the large contrast of optical
waves. TAT and PAT have been developed to overcome the limitations of both conventional
ultrasound and microwave imaging. The physical principle underlying TAT and PAT is the
photoacoustic effect, which can be roughly described as follows. A short impulse of electro-
magnetic microwaves or light is sent through a patient’s body. The tissue heats up slightly, and
the heat expansion generates weak acoustic waves. These waves are measured away from the
patient’s body, and one tries to recover the acoustic source that gives information about the
rate of absorption at each point in the body, thus creating an image. One of the potential ap-
plications for TAT is early breast cancer detection. The American Cancer Society reports that
breast cancer is the second overall leading cause of death among women in the United States.
The mortality rate from breast cancer has declined in recent years due to progress in both
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early detection and more effective treatment. Better detection techniques, however, are still
needed. The significance of TAT and PAT is that they yield images of high electromagnetic
contrast at high ultrasonic resolution in relatively large volumes of biological tissues [35, 33].

A first step in TAT and PAT is to reconstruct the amount of deposited energy from time-
dependent boundary measurement of acoustic signals. To start with, we describe here the
widely accepted mathematical model of TAT and PAT [35, 33, 8]. Let Ω ⊂ R

n be an open
set with a smooth strictly convex boundary. Let c(x) > 0 be the sound speed that is either
smooth or piecewise smooth. Assume that c(x) = 1 outside Ω. The acoustic pressure u(t, x)
then solves the wave equation

(1)

⎧⎨
⎩
(∂2t − c2Δ)u = 0 in (0, T )× R

n,
u|t=0 = f,

∂tu|t=0 = 0,

where T > 0 is fixed and f(x) is a source that we want to recover supported in Ω̄. The
measurements are modeled by the operator

(2) Λf := u|[0,T ]×∂Ω.

Given Λf , the problem is to reconstruct the unknown f that is related to the absorbing
properties of the body at any point.

There have been significant advances in both mathematical theories and medical appli-
cations; see [1, 8, 9, 11, 12, 14, 15, 18, 19, 21, 25, 30, 31, 35, 38, 39, 16] and the references
therein. Theoretically, one is interested in uniqueness and stability of the solution for the
inverse problem; numerically, one is interested in designing efficient numerical algorithms to
recover the solution of the inverse problem. Naturally, the above two aspects have been well
studied in the case of the sound speed being constant. In fact, if the sound speed is constant
and the observation surface ∂Ω is of some special geometry, such as a planar, spherical, or
cylindrical surface, there are explicit closed-form inversion formulas; see [8, 34, 11, 12, 7] and
the references therein. In practice there are many cases when the constant sound speed model
is inaccurate [35, 16, 37, 20]. For instance, in breast imaging, the different components of
the breast, such as the glandular tissues, stromal tissues, cancerous tissues, and other fatty
issues, have different acoustic properties. The variations between their acoustic speeds can be
as great as 10% [16].

To tackle variable sound speeds in TAT and PAT, the time-reversal method has been
suggested in [8] and used in [36, 10, 14, 15]. However, only when the dimension is odd and
the sound speed is constant, does the time-reversal method give an exact reconstruction for T
large enough by the Huygens principle. When the dimension is even or the sound speed is not
constant, the time-reversal method yields only an approximate reconstruction as T � 1. A
natural question arises immediately: is there any exact reconstruction formula which is able
to handle both a variable sound speed and an irregular observation geometry for a fixed T ? It
turns out that the work [30] summarized below does provide such a formula and this formula
is the foundation for our algorithmic development. Some results about variable sound speeds
are contained in the references above, but a more complete analysis in this case has been given
in [30]. This analysis includes if-and-only-if conditions for uniqueness and stability, including
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the case with observations on a part of the boundary. An explicit recovery formula of a type
of convergent Neumann series is derived in [30] when Λf is known on the whole boundary
∂Ω and T is greater than the stability threshold. This formula is the base for our numerical
reconstruction, and we also apply it if the speed is trapping.

There is another situation related to a variable discontinuous sound speed which arises
in brain imaging [38, 22, 6]. The skull has a discontinuous sound speed which is piecewise
smooth with jump-discontinuities across the boundary of the skull. A typical situation is
that the speed in the skull is about twice as fast as that in the soft tissue; see, e.g., [38, 39].
Such speeds drastically change the way that singularities propagate; see Figure 1. In [31], the
second and third authors studied this model and proved that the Neumann series expansion
works as well, provided that all singularities issued from suppf have a path of nondiffractive
segments that reaches ∂Ω until time T . Based on the work in [31], we develop an efficient
numerical algorithm as well to handle the situation of variable discontinuous sound speeds in
PAT and TAT.

The rest of the paper is organized as follows. In section 2, we define the energy spaces and
provide some facts about propagation of singularities for the wave equation. In sections 3 and 4
we summarize the theoretical results for smooth sound speed in [30] for cases of both complete
and partial data and explain the consequences of the theory. Section 5 describes the theoret-
ical results in [31] when the sound speed is discontinuous. In section 6 we make comparisons
between smooth and nonsmooth sound speeds in terms of uniqueness and stability. The iter-
ative algorithm for constructing the Neumann series so that the inversion formula in [30] can
be implemented is presented in section 7. In sections 8, 9, and 10, we give extensive examples
to demonstrate the robustness of the Neumann series–based algorithm for PAT and TAT.

2. Preliminaries. Assume for now that c > 0 is smooth. The speed c defines a Riemannian
metric c−2dx2. For any piecewise smooth curve γ : t ∈ [a, b] �→ γ(t) ∈ R

n, the length of γ in
that metric is given by

length(γ) =

∫ b

a

|γ̇(t)|
c(γ(t))

dt.

The so-defined length is independent of the parameterization of γ. The distance function
dist(x, y) is then defined as the infimum of the lengths of all such curves connecting x and y.

For any (x, θ) ∈ R
n × Sn−1 we denote by γx,θ(t) the unit speed (i.e., |γ̇| = c(γ)) geodesics

issued at x in the direction θ.
Similar to the settings in [30, 31], the energy of u(t, x) in a domain U ⊂ R

n is given by

E(u(t)) =

∫
U

(|∇xu|2 + c−2|ut|2
)
dx,

where u(t) = u(t, ·). The energy of any Cauchy data (f, g) for (1) is given by

E(f, g) =

∫
U

(|∇xf |2 + c−2|g|2)dx.
The energy norm is defined as the square root of the energy. In particular, the energy of

(f, 0) in U is given by the square of the Dirichlet norm

‖f‖2HD(U) :=

∫
U
|∇xf |2 dx,
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where the Hilbert space HD(U) is the completion of C∞
0 (U) under the above Dirichlet norm.

We always assume below that the initial condition f ∈ HD(Ω). We will denote by ‖ · ‖ the
norm in HD(Ω), and in the same way we denote the operator norm in that space.

There are two main geometric quantities that are crucial for the results below. First we
set

(3) T0 := max{dist(x, ∂Ω) : x ∈ Ω̄},
where dist(x, ∂Ω) is the distance in the given Riemannian metric c−2dx2. Let T1 ≤ ∞ be the
supremum of the lengths of all maximal geodesics lying in Ω̄. Clearly, T0 < T1; however, while
the first number is always finite, the second can be infinite. It actually can be shown that

(4) T0 ≤ T1/2.

One of the main ingredients of our approach in [30, 31] was to understand the microlocal
nature of the problem. We recall the definition of a wave front set of a function, or, more
generally, a distribution; see [13]. The definition is based on the known property of the Fourier
transform: one can tell whether a compactly supported function f is smooth by looking at the
decay of the Fourier transform f̂(ξ) as |ξ| → ∞: f ∈ C∞

0 if and only if |f̂(ξ)| ≤ CN (1+ |ξ|)−N

for any N . The idea behind the wave front set is to localize this near a fixed x0 and in a
conic neighborhood of a fixed ξ0 �= 0. Conic neighborhoods are defined as open conic sets,
i.e., sets of the type Γ = {rθ; r > 0, θ ∈ V }, where V is an open subset of Sn−1. We say that
(x0, ξ0) �∈ WF(f), ξ0 �= 0, if there exist φ ∈ C∞

0 with φ(x0) �= 0 and a conical neighborhood Γ
of ξ0, so that

|φ̂f(ξ)| ≤ CN (1 + |ξ|)−N ∀ξ ∈ Γ, ∀N.
If (x, ξ) ∈ WF(f), we say that (x, ξ) is a singularity of f , or that f is singular at (x, ξ). Since
singularities are defined by conic sets, we can restrict ξ to unit vectors. For example, the
Dirac Delta function δ(x) has a wave front set at x = 0 and all directions, i.e., WF(δ) =
{(0, ξ); ξ �= 0}, and a piecewise smooth function f that has a jump across some smooth
surface S (and nowhere else) is singular at all points of S in (co)normal directions, i.e.,
WF(f) = {(x, ξ); x ∈ S, 0 �= ξ ⊥ S at x}.

The propagation of singularities for the wave equation (1) can be described as follows. If
(x, θ) ∈ WF(f), then at time t, both (γx,θ(t), γ̇x,θ(t)) and (γx,θ(−t), γ̇x,θ(−t)) are in WF(u(t, ·)),
where u is the solution of (1). This is due to the fact that the symbol of the wave operator is
τ2−c2|ξ|2, which has two characteristic roots, τ = ±c(x)|ξ|, and that the initial velocity in (1)
is zero; therefore each singularity splits into two equal parts starting to propagate in opposite
directions. While this is a classical result in the linear PDE theory, we refer the reader to [30]
for more details in this specific case.

3. Smooth speed and data on the whole ∂Ω. We will describe below the theoretical
results in [30].

3.1. Uniqueness. If T � 1, Λf recovers f uniquely. We have the following sharp result
based on the unique continuation theorem by Tataru [32].

Theorem 1. Let Λf = 0. Then f(x) = 0 for dist(x, ∂Ω) ≤ T . Moreover, f can be arbitrary
in the set dist(x, ∂Ω) > T if the latter set is nonempty.
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Corollary 1. Λ is injective on HD(Ω) if and only if T ≥ T0.
We refer to [30] for proofs.

3.2. Stability. We showed in [30] that Λf recovers f in a stable way if each singularity
(x, ξ), i.e., each element of the wave front set WF(f), reaches ∂Ω for time t (positive or
negative) such that |t| < T . In other words, if functions f are a priori supported in a fixed
compact K ⊂ Ω̄, then we have the following equivalent statement:

For any (x, θ) ∈ K × Sn−1, the unit speed geodesic through (x, θ) at t = 0

reaches ∂Ω at time |t| < T .
(5)

Moreover, the following condition is sufficient regardless of the choice of K:

(6) T1/2 < T.

This condition is equivalent to (5) if K = Ω̄.
Furthermore, to formulate a condition equivalent to (5) by taking K into account, we

define T1 = T1(K) as above, which is explicitly related to geodesics that pass through K.
If T1 = ∞, then the sound speed c is called trapping (in Ω). In this case, there is no

stability regardless of the choice of T .
We summarize the above discussion in the following.
Theorem 2. Let K ⊂ Ω be compact.
(a) Let T > T1(K)/2. Then there exists a constant C > 0 so that

‖f‖ ≤ C‖Λf‖H1([0,T ]×∂Ω).

(b) Let T < T1(K)/2. Then for any C > 0, s1, and s2, there is f ∈ C∞ supported in K
so that

‖f‖Hs1 ≥ C‖Λf‖Hs2 ([0,T ]×∂Ω).

In other words, T > T1(K)/2 is a sufficient and necessary condition for stability for
functions f supported in K up to replacing the < sign by ≤.

Visible and invisible singularities. Condition (5) can be explained in the following way.
As a general principle, for a stable recovery in such a linear inverse problem, we need to
detect all singularities. We refer the reader to [29] for more details. As explained above, each
singularity starts to travel in a positive and a negative direction because ut = 0 at t = 0, so
it can leave two traces on ∂Ω. It is enough to detect one of them for stability. On the other
hand, if we can detect both, we can expect better numerical results. Condition (5) then says
that all singularities are visible at the boundary.

We want to emphasize that T1 can be much larger than diam(Ω) := max{dist(x, y); (x, y) ∈
∂Ω× ∂Ω}. If there are no conjugate points in Ω̄, then those two quantities coincide. If there
are conjugate points, however, those two quantities do not necessarily coincide. If there are
closed geodesics, then T1 = ∞, while diam(Ω) is finite. In this case, although we always have
uniqueness for some T � 1, we never have stability. Finally, we notice that while T0 and
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diam(Ω) can always be estimated analytically or numerically, T1 is much harder to estimate
or even to tell whether it is finite or not. In any case,

(7) diam(Ω) ≤ T1.

If γx,θ does not hit the boundary at time |t| ≤ T , we call (x, θ) an invisible (possible) singu-
larity. It is easy to show that if one such pair exists, then there is a nonempty open set of
invisible singularities.

3.3. Reconstruction. The reconstruction method in [30] is based on the following ideas.
If we knew the Cauchy data (u, ut) on {T} ×Ω, we could just solve a mixed problem like the
one below with that Cauchy data on t = T and boundary data given by Λf . Although we
do not know (u, ut) on {T} × Ω, we do know the boundary values of u on ∂Ω for t = T , i.e.,
u on {T} × ∂Ω. Assuming that [f, 0] is in the energy space, i.e., f ∈ HD(Ω), we can only
say that ut(T, ·) is in L2(Ω), and its boundary values might not be well defined. Now from
all possible functions with prescribed boundary values on {T} × Ω, we choose the one that
minimizes the energy norm ‖ · ‖HD(Ω). By the Dirichlet principle, the function is given by the
harmonic extension of u(T, ·)|∂Ω.

Consequently, given h defined on [0, T ]× ∂Ω which eventually will be replaced by Λf , we
first solve the elliptic boundary value problem

(8) Δφ = 0, φ|∂Ω = h(T, ·),

and we introduce the notation PΩ for the Poisson operator of harmonic extension: PΩh(T, ·) :=
φ. In fact, the equation is c2Δu = 0, but c2 cancels out. Then we perform the modified back-
projection

(9)

⎧⎪⎪⎨
⎪⎪⎩
(∂2t − c2Δ)v = 0 in (0, T )× Ω,
v|[0,T ]×∂Ω = h,

v|t=T = PΩh(T, ·),
vt|t=T = 0.

Note that the initial data at t = T satisfy compatibility conditions of first order (no jump at
{T} × ∂Ω). Then we define the following left pseudoinverse of Λ:

(10) Ah := v(0, ·) in Ω̄.

The operator A is not an actual inverse (unless n is odd, c is constant, and T is greater
than the diameter), and we have

AΛ = I−K,

where K is an “error” operator. We showed in [30] that

(11) ‖Kf‖HD(Ω) ≤ ‖f‖HD(Ω) ∀f ∈ HD(Ω),

for any smooth speed, trapping or not, and for any time T > 0. If T > T0, the inequality is
strict; see [30]. To show that K is a contraction requires some assumptions, however.
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Theorem 3. (a) Let c be nontrapping, and let T > T1/2. Then AΛ = I − K, where
‖K‖HD(Ω)→HD(Ω) < 1. In particular, I−K is invertible on HD(Ω), and the inverse thermoa-
coustic problem has an explicit solution of the form

(12) f =
∞∑

m=0

KmAh, h := Λf.

(b) Let T > T1. Then in addition to the conclusions above, K is compact in HD(Ω).
For a proof, see [30, Theorem 1] and [31, Remark 2.2].
In other words, under condition (6), we have not only stability but an explicit solution

in the form of a convergent Neumann series as well. On the other hand, if (6) fails, i.e., if
T < T1/2, there is no stability by Theorem 2. This does not mean that the series (12) will
not converge in this case. If it does, it will converge to f for T > T0. Indeed, then it is easy
to see that the limit g solves (I−K)(g − f) = 0, and since (11) is strict in this case, f = g.

Based on this theorem and its proof, we can expect good convergence when T > T1, and
the first term would already be a good approximation of the high frequency part of f .

If T1/2 < T < T1, we can expect the first term in the series to recover only a fraction of
the high frequency part of f and the successive terms to improve this gradually; the series
(12) would still converge, but that convergence would be slower.

If T < T1/2, then ‖K‖ = 1. Indeed, if we assume that ‖K‖ < 1, we would get uniform
convergence of the Neumann series and stability; on the other hand, there is no stability in
this case.

3.4. Summary: Dependence on T .
(i) T < T0.

Λf does not recover f uniquely; see Theorem 1. Then ‖K‖ = 1, and for any f
supported in the inaccessible region, Kf = f .

(ii) T0 < T < T1/2.
This can happen only if there is a strict inequality in (4). Then we have uniqueness
but not stability. In this case, ‖K‖ = 1, ‖Kf‖ < ‖f‖, and we do not know if the
Neumann series (12) converges. If it does, it converges to f .

(iii) T1/2 < T < T1.
This assumes that Ω is nontrapping for c. The Neumann series (12) converges expo-
nentially but maybe not as fast as in the next case. There is stability, and ‖K‖ < 1.

(iv) T1 < T .
This also assumes that Ω is nontrapping for c. The Neumann series (12) converges
exponentially. There is stability, ‖K‖ < 1, and K is compact.

3.5. Recovery of singularities. In cases (iii) and (iv), we explicitly recover the whole f ,
including its singularities. If the goal is to recover only the singularities of f (the wave front
set WF(f)) with less computation, then one can perform the classical back-projection (time
reversal) as follows; see [36, 10, 14, 15, 21].

Let χ ∈ C∞
0 (R) be such that χ(t) = 1 for t ∈ [0, T ], and χ(t) = 0 near t = T ′, where

T ′ > T is “close enough” to T . Set

(13) Rf = AχΛf,
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where A is as above, but the time reversal is done from t = T ′ to t = 0. Since χΛ = 0 near
t = T ′, the harmonic extension is actually zero in this case, and we have the classical time
reversal. In general, Rf is not close to f unless T → ∞; see [14].

In case (iv), R is a parametrix of infinite order; see [30]. Therefore, it correctly recovers
all singularities, including jumps across smooth surfaces—it will correctly recover the location
and the size of the jump.

In case (iii), R is elliptic but not a parametrix itself; see [30, Theorem 3]. Then Rf will
have the singularities at the right places, but the amplitudes will be in general between 1/2
and 1.

In cases (i) and (ii), only singularities “close enough to the boundary” will be recovered
with amplitudes between 1/2 and 1.

Finally, if the speed is trapping in Ω, i.e., if T1 = ∞, then Rf recovers the visible singu-
larities up to time T by choosing χ appropriately.

These comments are just another way to formulate [30, Theorem 3].

3.6. Comparison with the time-reversal method. Let T1 < ∞ first; i.e., assume that
c is nontrapping. Let the time-reversal approximation be defined as in (13) with χ = 1
in a neighborhood of [0, T1]. Then R is a parametrix of infinite order, i.e., Rf = f − Qf ,
where Qf ∈ C∞ for any f . On the other hand, ‖Q‖ is not necessarily small for any fixed T .
Assuming that χ is properly chosen, as T → ∞, this norm gets smaller at a rate dictated by
the local energy decay for the wave equation: ‖Q‖ = O(t1−n) for n even and ‖Q‖ = O(e−Ct)
for n odd; see [14]. Therefore, for T � 1 so that ‖Q‖ < 1, one can write

Rf = (I−Q)f,

and one can solve this equation by a Neumann series as above. However, it is not straight-
forward to impose sharp conditions on χ and T to guarantee ‖Q‖ < 1. On the other hand,
for the method that we propose, that condition is T > T1 and it is sharp for a stable inver-
sion. Also, the proposed method minimizes the norm of the “error” operator, and when both
Neumann expansions converge uniformly, the one in Theorem 3 will converge faster in the
uniform topology. Numerical experiments not shown here confirm this.

If T1 = ∞ (c is trapping), then the error in the time reversal-method decays like O(1/ log T )
if f ∈ H2

0 (Ω), and the error decays even slower if f ∈ HD(Ω) only; see [4]. The first term
of the Neumann series inversion has an error no greater than this, and numerically the error
improves with a few more terms. We do not know whether the Neumann series converges or
not, however.

4. Smooth speed and data on a part of ∂Ω. Let Γ ⊂ ∂Ω be a relatively open set of
∂Ω, and assume that we only have data available on [0, T ] × Γ. We will suppose that f is
supported in some compact set K ⊂ Ω.

4.1. Uniqueness. As in (3), set

(14) T0 := T0(K,Γ) = max{dist(x,Γ) : x ∈ K}.

Theorem 1 has the following analogue in this case.
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Theorem 4. Let Λf = 0 on [0, T ] × Γ. If T ≥ T0, then f = 0. If T < T0, then f = 0 on
K ∩ {x; dist(x,Γ) < T} and can be arbitrary in the complement of this set in K.

The proof of this theorem is not easy. It combines Tataru’s uniqueness theorem with
arguments that first appeared in [8] in the case of constant speeds and were extended later in
[30] to variable speeds.

As a corollary, Λf |[0,T ]×Γ uniquely determines f if and only if T ≥ T0.

4.2. Stability. The following condition guarantees that we can detect all singularities
originating from K as singularities of our data:

For any (x, θ) ∈ K × Sn−1, the unit speed geodesic through (x, θ) at t = 0

reaches Γ at time |t| < T .
(15)

Let T1/2 ≤ ∞ be the maximum of all such times. The following condition is then equivalent
to (15):

(16) T1/2 < T.

Theorem 5. Let K ⊂ Ω be compact.
(a) Let T > T1/2. Then there exists a constant C > 0 so that

‖f‖ ≤ C‖Λf‖H1([0,T ]×Γ).

(b) Let T < T1/2. Then for any C > 0, s1, and s2, there is f ∈ C∞ supported in K so
that

‖f‖Hs1 ≥ C‖Λf‖Hs2 ([0,T ]×Γ).

In other words, T > T1/2 is a sufficient and necessary condition for stability for functions

f supported in K up to replacing the < sign by ≤. Part (a) is proved in [30], while part (b)
follows from [28].

4.3. Reconstruction. An explicit formula of the type (12) is not available in this case,
but one can show that the recovery is reduced to a Fredholm equation if (16) holds.

Let χ ∈ C∞([0, T ]×Γ) be a cutoff function supported in [0, T ]×Γ so that χ = 1 on a slightly
smaller set [0, T ′]×Γ′ that still satisfies the condition. Assume also that 0 ≤ χ ≤ 1. Then we
know χΛf . Apply the time-reversal operator A to this to get AχΛf . Since χ(·, T ) = 0, the
harmonic extension is zero, so this is the classical time reversal. Let K be the “error operator”

K = I−AχΛ.

To find f , we need to solve

(17) (I−K)f = h, h := AχΛf

with h determined by the data. By [30, Theorem 3], AχΛ is a pseudodifferential operator
that is elliptic under the stability condition (15). Its principal symbol is given by

1

2
χ(γx,ξ(τ+(x, ξ))) +

1

2
χ(γx,ξ(τ−(x, ξ))),
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where τ±(x, ξ) is the positive/negative time of the (unit speed) geodesic γx,ξ through (x, ξ) to
reach ∂Ω. Then K is also a pseudodifferential operator with the principal symbol

(18) σp(K) = 1− 1

2
χ(γx,ξ(τ+(x, ξ))) − 1

2
χ(γx,ξ(τ−(x, ξ))).

Since 0 ≤ χ ≤ 1, and by the stability condition, at least one of the χ terms above is equal to
1/2. Therefore,

0 ≤ σp(K) ≤ 1

2
.

Away from the set {0 < χ < 1}, σp(K) is either 0 or 1/2. This set is relatively small in
applications because we do not want to lose data but not too small in order to keep |∂tχ|+|∂xχ|
not too large. By the Gȧrding inequality, one can express K in the form

K = K1 +K2, ‖K1‖ ≤ 1

2
, K2 compact,

and if Γ �= ∅, one can show that actually ‖K1‖ = 1/2. This does not allow us to claim that the
Neumann series (12) converges. However, by [24], since the distance from K to the compact
operators is less than one, for a fixed f ,

(19)

∞∑
m=0

KmAχΛf

converges if and only if KmAχΛf → 0 as m→ ∞. It is trivial to see that the limit g solves

(20) AχΛg = AχΛf.

While we know that χΛ is injective for T > T0, this is not true for A, so we cannot draw the
conclusion that g = f . The original equation χΛf = h with h in the range of Λ is Fredholm
with a trivial kernel, but (20) for g is Fredholm which may have a nontrivial kernel.

On the other hand, the partial sums

(21) gN :=

N∑
m=0

KmAχΛf

used in the reconstruction below recover singularities of f asymptotically as N → ∞. This
follows from the standard pseudodifferential calculus.

For the purpose of the numerical reconstruction, we take χ to be a function of x ∈ ∂Ω
only, independent of t. In particular, we no longer have χ = 0 near t = T . Then we define
A as before, but this time the harmonic extension of χΛf(T, ·) is not trivial in general. Then
we use partial sums as in (21).

If the stability condition (16) is not satisfied, then inverting χΛ is not equivalent to
solving a Fredholm equation anymore and it is unstable. One can show that K is the sum
of an operator with norm not exceeding 1 and a compact operator. Of course, this does not
guarantee convergence of the Neumann series, and the partial sums asymptotically recover
the visible singularities only. In the numerical example below, we check the norm of each
successive term in the partial sum (21) and stop when that norm starts to increase.
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Figure 1. Rays in the case of a discontinuous sound speed. Dotted lines represent negative times.

5. Discontinuous sound speed: Modeling brain imaging. We will briefly review the
results in [31]. Let c(x) be piecewise smooth with a nonzero jump across one or several
smooth closed nonintersecting surfaces that we call S in Ω. We still assume that c = 1 outside
Ω. The formulation of the problem is still the same, and classical solutions u(t, x) are assumed
to be in C1. This implies the following transmission conditions across S where c(x) jumps:
the limits of u(t, x) and its normal derivative match as x approaches S from either side.

5.1. Propagation of singularities. It is well known that this case is quite different from
the previous one from the viewpoint of propagation of singularities. Let us see what happens
when a “ray” (a geodesic) approaches S from one of its sides, which we call an interior one.
Let c− be the limit of c on S from inside, and let c+ be the limit from outside.

If c− > c+, this ray splits into two parts when hitting S. One reflects according to the
usual laws of reflection and goes back to the interior. The other one goes into the exterior
and refracts by changing its angle with respect to the boundary. The incoming and outgoing
angles α± with the normal satisfy Snell’s law:

(22)
sinα−
sinα+

=
c−
c+
.

Assume now that c− < c+. Then there is a critical angle 0 < α0 < π with the normal at
any point so that if α− < α0, there are still a reflected and a transmitted (refracted) ray as
above satisfying Snell’s law. If α− > α0, then there is no refracted ray, while the reflected one
still exists. This is known as a full internal reflection. This critical angle can be computed
from Snell’s law: it is the value of α− that forces sinα+ to be equal to 1, and therefore to
be greater than 1 when α− > α0. Therefore, α0 = sin−1(c−/c+). Propagation of singularities
when α− = α0 is more delicate and will not be analyzed here.

After splitting or not into two rays, each segment may split into two, etc. Assuming that
we never get rays tangent to S, reflection and refraction occur in the same way as above.
Figure 1 shows a possible time evolution of a single singularity, both for positive and negative
time. The sound speed in the “skull” is higher than that on either side.
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We define the distance function dist(x, y) as the infimum of the length (in the metric
c−2dx2) of all piecewise smooth curves connecting x and y that intersect S transversely.

5.2. Uniqueness. Theorem 1 and Corollary 1 still hold in this case; see [31, Proposi-
tion 5.1] and its proof. The definition of T0 in this case is the same.

5.3. Stability. Visible and invisible singularities. The general principle that we should
be able to detect each singularity for stable recovery still applies. However, in the case of full
internal reflection, there might be singularities that never reach ∂Ω. For example, let Ω be the
ball B(0, R) (centered at 0 with radius R), and let S be the sphere |x| = R1, R1 < R. Assume
also that inside the sphere S, the speed is a constant less than that outside S, where it is also
a constant. Then all rays coming from the interior of S, hitting S at an angle smaller than
the critical one, will reflect and give rise to no transmitted rays. By the rotational symmetry,
those reflected rays will hit S again at the same angle, fully reflect, etc. Such singularities
will be invisible, no matter what T we choose. This is similar to the trapping situation in the
case of a smooth sound speed. Of course, we may also have rays that are trapped but never
reach the interface S. Therefore the singularities that are certain to be visible up to time T
consist of the following set:

U =
{
(x, θ) ∈ (Ω \ S)× Sn−1; there is a path of the “geodesic” issued from either

(x, θ) or (x,−θ) at t = 0 never tangent to S, that is outside Ω̄ at time t = T
}
.

(23)

If we restrict our attention to f a priori supported in some compact K ⊂ Ω \ S, then the
stability condition can be formulated as follows:

∀(x, θ) ∈ K × Sn−1, there is a path of the “geodesic” issued from either

(x, θ) or (x,−θ) at t = 0 never tangent to S, that is outside Ω̄ at time t = T .
(24)

The reconstruction formula below shows that this condition is sufficient not only for stability
but also for an explicit convergent formula of the type (12).

Similar to the smooth case, we can define T1/2 (instead of defining T1 directly) to be the
infimum of all T satisfying (24) when K = Ω̄. Then (6) remains a necessary and sufficient
condition (up to replacing < by ≤) for stability in this case as well.

5.4. Reconstruction. In [31], we also analyzed the energy at high frequencies that is
carried by the reflected and the transmitted rays. We showed that if none of the incident,
reflected, and transmitted rays are tangent to S, then a positive fraction of the energy reflects
and transmits at high frequencies. Therefore, even though under condition (24) the corre-
sponding singularity is visible at ∂Ω, only a fraction of it would be measured. This fraction
could be quite small, depending on the speed, the number of reflections and refractions before
the ray hits ∂Ω, and the angles there. So we should not expect the first term in the series
(12), even if it converges, to be a good approximation even at high frequencies. Theorem 6
proved in [31], shows that an analogue of (12) still converges but needs to be modified first.

The needed modification is connected to the following problem. When applying A to Λf
with suppf ⊂ K, we get AΛf that may be supported everywhere in Ω. The successive terms
in (12) would then force AΛ to be applied to the result. To “restrict” AΛf to K, we cannot
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just restrict in the usual sense, because this may take the results out of the energy space (no
zero trace on ∂K). For this reason, we project orthogonally on HD(K). It turns out that the
orthogonal projection is given by ΠKf := f − PK(f |∂K), where PK is the Poisson operator of
harmonic extension from ∂K to K defined in (8).

Theorem 6. Let K satisfy (24). Then ΠKAΛ = I − K in HD(K), with ‖K‖HD(K) < 1.
In particular, I − K is invertible on HD(K), and Λ restricted to HD(K) has an explicit left
inverse of the form

(25) f =
∞∑

m=0

KmΠKAh, h = Λf.

Note that the theorem does not say how to reconstruct f when suppf is not in a set K
satisfying (24). Estimate (11) still holds, but we do not know if I −K can be inverted by a
Neumann series. In the numerical examples, however, we work with f supported everywhere
in Ω, and then ΠK = ΠΩ̄ = I.

6. Comparison between the smooth and the nonsmooth case. If the sound speed c is
smooth, then there is always uniqueness for large enough T because T0 < ∞ and T > T0/2
suffices for uniqueness. On the other hand, there is stability and the Neumann series converges
to a solution only when c is nontrapping and T > T1/2. In the trapping case, one still has
stability and an explicit solution of the type in Theorem 3 under the a priori assumptions
that suppf ⊂ K and all singularities with base points x ∈ K are visible. The assumption
suppf ⊂ K means that we need to know f outside K; then we can subtract that part from f
and apply the reconstruction procedure.

When c is of jump type, we may still have rays that are trapped even if they never
reach S. On the other hand, S may split some rays. Under the stability condition (24)
which is equivalent to (6) with the modified definition of T1, we still have stability and an
explicit solution for suppf ⊂ K. We still need to know f outside K for a full reconstruction.
The essential difference is that even though all singularities except those (of measure zero)
contributing to tangent rays on S will be detected in the best possible case, T1 < ∞ and
T > T1/2, they might be detected with a loss of energy even when T � 1. In the example
presented in Figure 1, the singularity that exits at the top has been split twice before that,
and each such event takes away a fraction of the energy. In contrast, in the case of a smooth
sound speed, such a singularity will exit for t > 0 with half of the energy of f , while the other
half will exit for a negative time; as such, for example, we will detect both in case (iv). Going
back to the nonsmooth case, the Neumann series (25) will gradually restore the right strength
of the singularity, and the whole f , actually, but we can expect this to be more sensitive to
noise and computational errors.

7. Algorithmic formulations. The main issue in implementing the above Neumann series
formulation is how to compute the operator K. In the case of data available on the whole ∂Ω,
by definition, K = I −AΛ. Thus, given a function ψ,

Kψ = ψ −AΛψ.
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Thus we need an efficient computational algorithm to carry out the actions of time-reversal
operator A and the measurement operator Λ. Since the measurement operator Λ can be
simulated by forward modeling, we will detail the implementation of forward modeling first.

7.1. Complex scaling/perfectly matched layers for the acoustic wave equation. Since
the forward model equation (1) is formulated as a pure initial value problem, we have to
truncate the computational domain to be finite. The truncated domain has to be large enough
to enclose the domain where the measurements are taken along its boundary. On the other
hand, we have to impose some artificial boundary conditions on the boundary of the truncated
domain. To perform accurate long-time simulation, we will adopt the complex scaling method
(see [27] and the references therein), also known as perfectly matched layers (PML) as an
absorbing boundary condition for acoustic waves [2, 5, 23]. This is done so that waves will
not be reflected into the computational domain.

To derive the PML for the equation, we follow [23]. We rewrite the second-order equa-
tion as a first-order system by introducing the two-component velocity vector v(x, y, t) =
(vx(x, y, t), vy(x, y, t)):

∂v

∂t
= −∇u,(26)

∂u

∂t
= −c2∇ · v.(27)

By using the complex coordinate stretching [2, 5, 23], we have the following equations:

∂vη
∂t

+ ωηvη = −∂u
∂η
,(28)

∂u(η)

∂t
+ ωηu

(η) = −c2∂vη
∂η

,(29)

where η = x, y, u = u(x) + u(y), and ωη represents a loss in the PML and is zero in a regular
non-PML region.

In our simulation, we will take the following ωη : [0, 1] → R+:

ωη(s) =

⎧⎪⎪⎨
⎪⎪⎩

b
σ

(
s−σ
σ

)2
, s ∈ [0, σ],

0, s ∈ [σ, 1− σ],

b
σ

(
s−1+σ

σ

)2
, s ∈ [1− σ, 1],

where σ > 0 and b > 0 are some appropriate constants. Depending on the computational
domain, this function will be rescaled accordingly.

Equations (28) and (29) are discretized by a staggered finite-difference scheme, and the
details are omitted; see [23].

7.2. T0 and the time reversal operator A. To compute the critical time T0, we first solve
the eikonal equation

c|∇T̃ | = 1,(30)

T̃ |Γ = 0(31)
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by using the fast sweeping finite-difference scheme as designed in [40, 17, 26], where Γ can be
the whole boundary ∂Ω or a part of ∂Ω. Then T0 = max{T̃}.

The Poisson equation defining the harmonic extension is solved by a V-cycle multigrid
method [3], which converges with the optimal rate independent of the mesh size.

The time-reversal wave equation (9) with terminal and boundary conditions is solved by
a standard second-order finite-difference time-domain scheme.

7.3. Partial data. When the data are available only on a part of the boundary, we impose
vanishing boundary conditions on the inaccessible boundary. To have overall compatible
boundary conditions, we apply a smooth taping function (varying from 1 to 0) to transition
from available data to artificial vanishing data.

7.4. Discontinuous sound speeds. In our current formulation, we use finite-difference
methods on Cartesian meshes to simplify our implementation. As such, we will design our
meshes so that interfaces of discontinuous sound speed are located on one of the Cartesian
mesh lines. Therefore, in our current work, the discontinuous sound speeds shown in our
numerical examples allow only some special geometry.

Nevertheless, let us emphasize that the methodology presented in this work can be equally
applied to discontinuous sound speeds with irregular geometry because we easily replace a
finite-difference method with a finite-element method for wave equations which allows us to
treat arbitrary geometry. Such a line of research is under way, and we will report it in an
upcoming paper.

8. Numerical results: Smooth speed, data on the whole ∂Ω. In this section we show
two-dimensional numerical examples to validate our algorithms.

Our computational domain is taken to be [−1.5, 1.5]2, and Ω = [−1.28, 1.28]2 . We work
with three sound speeds:

c1(x, y) = 1.0 + 0.2 sin(2πx) + 0.1 cos(2πy),(32)

c2(x, y) =
9(x2 + y2)

1 + 9(x2 + y2)
+ exp (−90(x2 + y2))− 0.4 exp

(
−10(3

√
(x2 + y2)− 2)2

)
,(33)

c3(x, y) = 1.25 + sin(2.0πx) cos(2πy).(34)

See Figure 2, with some geodesics plotted. We also use a smooth cutoff for a smooth transition
of those speeds to 1 near ∂Ω and outside Ω.

In the numerical examples presented in the following sections, we use mesh sizes Δx =
Δy = 0.01 to discretize the domain into a 301×301 mesh. The PML are distributed around the
ring [−1.5, 1.5]2 \ [−1.4, 1.4]2 . To solve the wave equation, we impose the Courant–Friedrichs–
Lewy condition to decide the time step according to given mesh sizes. In our examples, we
take Δt = 0.5Δx/max{c}, where c is the sound speed.

In all examples below, we use the abbreviation NS for the Neumann series, and TR for
time reversal. We also mention that the (modified) TR corresponds to the first term (10) of
the NS solution. We take a finite number, k + 1, of terms in the NS expansion by stopping
when the error gets below 5% in the stable cases and somewhat higher in the nonstable ones.
Taking more terms, especially in the cases where we have stability, improves the error several
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(a) (b)

(c)

Figure 2. Sound speed models. (a) The variable nontrapping sound speed c1. (b) The variable radial
trapping sound speed c2. (c) The variable trapping speed c3.

times, but we do not show those examples. Next, we compute and comment on only the L2

error since all test images model non-H1 functions. We also show a diagram of the distance
function, dist(x, ∂Ω).

In practice, we might not know the exact solution that we look for. To test for the
convergence of the NS method, we will monitor the size of each term in the NS, and we
will stop when the sizes of successive terms do not vary too much. We will study such a
convergence criterion in a future work.

8.1. Example 1: The Shepp–Logan phantom.

8.1.1. Nontrapping speed c1, Figures 3–5. The sound speed is given by (32); see Fig-
ure 2(a). The original image as the source function f is shown in Figure 3(b). Numerically,
we estimate T0 to be T0 ≈ 1.1767. A rough estimate of T1 is 3 < T1 < 4. We add four bright
disks (f = 1 there) to the classical Shepp–Logan phantom.

Figure 3. T = 2T0 ≈ 2.3535. The time T is slightly above the stability threshold T1/2
but below T1. The error of the NS solution with k = 8 (9 terms) of the series is 6.63% vs.
error 37.76% for the TR solution. Since T < T1, the TR solution does not recover the correct
size of the jumps—they are recovered with amplitudes ranging from 1/2 to 1, and for many
of them, it is just 1/2; this is clear from the slice diagrams. In contrast, the NS solution has
the right amplitudes and would improve with more terms.

Figure 4. T = 4T0. The time T is doubled, and it is greater than T1. The error of the NS
solution with k = 8 (9 terms) of the series is 4.99% vs. error 7.07% for the TR solution. The TR
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Figure 3. Example 1 with the nontrapping speed c1. Case 1: T = 2T0. (a) The boundary distance map.
(b) The exact initial condition. (c) The TR solution. (d) The NS solution. (e) x-slices of the TR solution
(continuous line) and the exact solution (dashed line). (f) x-slices of the NS solution (continuous line) and the
exact solution (dashed line). (g) y-slices of the TR solution (continuous line) and the exact solution (dashed
line). (h) y-slices of the NS solution (continuous line) and the exact solution (dashed line).
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Figure 4. Example 1 with the nontrapping speed c1. Case 2: T = 4T0. (a) The boundary distance map.
(b) The exact initial condition. (c) The TR solution. (d) The NS solution. (e) x-slices of the TR solution
(continuous line) and the exact solution (dashed line). (f) x-slices of the NS solution (continuous line) and the
exact solution (dashed line). (g) y-slices of the TR solution (continuous line) and the exact solution (dashed
line). (h) y-slices of the NS solution (continuous line) and the exact solution (dashed line).
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reconstruction gets better, as expected. While the singularities are recovered correctly, the
low frequency part in the TR reconstruction is still not well recovered, as evidenced in the
slice diagrams. For example, in Figures 4(e) and 4(g) for the TR reconstruction there are
oscillations in some flat regions; in contrast, in Figures 4(f) and 4(h) for the NS reconstruction
those oscillations are gone in the same flat regions.

Figure 5. T = 4T0 with 10% noise. The time T is doubled, and it is greater than T1.
The error of the NS solution with k = 8 (9 terms) of the series is 7.07% vs. error 9.71%
for the TR one. The TR reconstruction gets better as expected. While the singularities
are recovered correctly, the low frequency part in the TR reconstruction is still not well
recovered, as evidenced in the slice diagrams. For example, in Figures 5(e) and 5(g) for the
TR reconstruction there are oscillations in some flat regions; in contrast, in Figures 5(f) and
5(h) for the NS reconstruction those oscillations are gone in the same flat regions.

8.1.2. Trapping sound speed c3, Figure 6. The sound speed is c3 given by (34) and
Figure 2(c). Although it is hard to show that the speed is actually trapping, one can easily
construct numerically geodesics of length at least 20; therefore, based on this numerical evi-
dence, T1 is at least 20 and possibly ∞. The times T that we choose are much smaller than
20/2, so there is a considerable set of singularities that are not detected.

We have T0 ≈ 1.25. In Figure 6, we present reconstructions with T = 4T0. The phantom
in the middle of the NS image (error 18.11%, k = 8) can be separated from the background,
while in the TR one (error 39.56%), this is much harder. The invisible singularities in this
case are distributed in a chaotic way, and what appears as noise in both images is due to the
fact that there are singularities there that cannot be resolved—even if the actual image is not
singular there!

8.2. Example 2: Zebras, Figures 7–11.

8.2.1. Nontrapping speed c1. The sound speed is given by (32), and it is visualized in
Figure 2(a). Here f is now represented by the zebras image that has more complex structure.

Figure 7. T = 4T0. Both methods give a good reconstruction, and with k = 2 only,
the NS one has error 4.6%, which is about half of the TR one. The error can be improved
significantly with more terms.

Figure 8. T = 4T0 with 10% noise. Here with k = 8, the NS has an error of 6.25%, which
is about half of the TR one.

8.2.2. Trapping sound speed c3. The sound speed is given by (34). As we indicated
above, T0 ≈ 1.23, T1 > 20, and the geodesic flow is somewhat chaotic with invisible singular-
ities that have also chaotic distribution.

Figure 9. T = 4T0. The NS reconstruction with k = 20 is much cleaner with error 9.64%,
which is a bit less than 1/2 of the TR error.

Figure 10. T = 4T0 with noise. The noise slightly increases the errors in both cases.

8.2.3. Trapping speed c2.
Figure 11. T = 4T0. The sound speed is given by (33), and we estimate T0 to be

T0 ≈ 2.1547. It is trapping with the circles of radii approximately 0.23 and 0.67 being stable
trapped rays. The invisible singularities are much more structured now and are in some
neighborhoods of those two circles. As a result, jumps across radial and close to radial lines
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Figure 5. Example 1 with the nontrapping speed c1. Case 3: T = 4T0 with 10% noise. (a) The boundary
distance map. (b) The exact initial condition. (c) The TR solution. (d) The NS solution. (e) x-slices of the TR
solution (continuous line) and the exact solution (dashed line). (f) x-slices of the NS solution (continuous line)
and the exact solution (dashed line). (g) y-slices of the TR solution (continuous line) and the exact solution
(dashed line). (h) y-slices of the NS solution (continuous line) and the exact solution (dashed line).
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Figure 6. Example 1 with the trapping speed c3. T = 4T0. (a) The boundary distance map. (b) The exact
initial condition. (c) The TR solution. (d) The NS solution. (e) x-slices of the TR solution (“-”) and the
exact solution (“o”). (f) x-slices of the NS solution (“-”) and the exact solution (“o”). (g) y-slices of the TR
solution (“-”) and the exact solution (“o”). (h) y-slices of the NS solution (“-”) and the exact solution (“o”).
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Figure 7. Example 2 with the nontrapping speed c1. Case 1: T = 4T0. (a) The boundary distance map. (b)
The exact initial condition. (c) The TR solution. (d) The NS solution. (e) x-slices of the TR solution (“-”)
and the exact solution (“o”). (f) x-slices of the NS solution (“-”) and the exact solution (“o”). (g) y-slices of
the TR solution (“-”) and the exact solution (“o”). (h) y-slices of the NS solution (“-”) and the exact solution
(“o”).
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Figure 8. Example 2 with the nontrapping speed c1. Case 2: T = 4T0 with 10% noise. (a) The boundary
distance map. (b) The exact initial condition. (c) The TR solution. (d) The NS solution. (e) x-slices of the
TR solution (“-”) and the exact solution (“o”). (f) x-slices of the NS solution (“-”) and the exact solution
(“o”). (g) y-slices of the TR solution (“-”) and the exact solution (“o”). (h) y-slices of the NS solution (“-”)
and the exact solution (“o”).
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Figure 9. Example 2 with the trapping speed c3. Case 1: T = 4T0. (a) The boundary distance map. (b)
The exact initial condition. (c) The TR solution. (d) The NS solution.

near those circles are affected more. Notice that the NS solution with k = 20 is much cleaner
in the smooth parts close to the boundary, and the TR one is brighter than the original close
to the center. This shows that the NS solutions reconstruct the low frequency modes better.

9. Numerical results: Discontinuous sound speed. We present here numerical examples
with two discontinuous sound speeds illustrated in Figure 12. The first one, which we denote
by c4, is equal to 0.8 in the square [−1, 1]2, then jumps by about a factor of 2 from the interior
to the exterior, and then jumps to 1. The second one, c5, has similar jumps but inside the
square [−1, 1]2 is variable, equal to the speed (32).

If the speed jumps by a factor of 2 when going out of a square, all rays hitting the boundary
at an angle less than 60 degrees are completely reflected. Those rays that hit the boundary at
an angle greater than 30 degrees generate a reflected ray hitting the boundary again without
a transmitted component, etc. Therefore, all rays hitting the boundary of the smaller square
at angles between 30 and 60 degrees are completely trapped for all times.

9.1. Example 3: The Shepp–Logan phantom, Figures 13–14.

9.1.1. Piecewise constant discontinuous speed c4.
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Figure 10. Example 2 with the trapping speed c3. Case 2: T = 4T0 with 10% random noise. (a) The
boundary distance map. (b) The exact initial condition. (c) The TR solution. (d) The NS solution.

Figure 13. The sound speed is c4, given by Figure 12(a). We have T0 ≈ 1.50 with
T = 4T0. The artifacts in the TR image are quite strong and can be explained by the way
that singularities propagate in this case. In Figure 1, for example, the ray that exits on the
top carries a fraction of the energy only. When we reverse the time, at the first contact with
the outer boundary of the “skull,” this ray will create a reflected one (not seen in the figure)
together with the transmitted one, shown there. The reflected one is not part of the actual
graph that we are trying to invert. It will reflect off ∂Ω and go back to the interior of Ω,
creating more artificial rays, etc. If we had an infinite time T , then those artificial rays would
be canceled by other such artificial rays, leading to an exact reconstruction, as T → ∞ (at a
very slow logarithmic rate for smooth f); this explains the artifacts in the TR image. The NS
expansion with k = 16 creates very few artifacts, and the few that are seen are mostly due to
singularities near or on the “skull.”

9.1.2. Discontinuous speed c5.
Figure 14. The sound speed c5 is given by Figure 12(b). Here, T0 ≈ 1.36, T = 4T0. The

speed is not so symmetric anymore, and the artifacts in the TR image are still strong but
more random. The variable speed inside improves the NS image, where k = 16.
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Figure 11. Example 2 with the trapping speed c2. T = 4T0. (a) The boundary distance map. (b) The exact
initial condition. (c) The TR solution. (d) The NS solution.
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Figure 12. Sound speed models. (a) A discontinuous piecewise sound speed c4. (b) A nonpiecewise constant
discontinuous sound speed c5.
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Figure 13. Example 3 with the discontinuous sound speed c4. T = 4T0. (a) The boundary distance map.
(b) The exact initial condition. (c) The TR solution. (d) The NS solution.

9.2. Example 4: Zebras, Figure 15.
Figure 15. The sound speed c5 is given by Figure 12(b). Here, T0 ≈ 1.36, and we

take T = 4T0. As in Figure 14, the TR reconstruction (error 21.83%) contains many wrong
singularities, while the NS image (error 8%, k = 16) is very clean.

10. Numerical results: Partial data. We present here numerical examples with data
given on three or two sides only. In the first case, we remove data on the right-hand side of
the square; in the second, we remove data on the right-hand side and on the bottom of the
square. We also use a smooth cutoff. We present examples with the nontrapping and the
trapping speeds that we used before. Note that the notion of trapping changes with partial
data since the stability depends on whether all singularities can reach Γ for times ≤ T . Still,
removing the data on some of the sides in addition to the much longer times that signals need
to reach Γ produces worse reconstructions when the speed is trapping.

10.1. Partial data, nontrapping speed c1. The speed c1 is given by (32). In all three
cases, T = 4.7.
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Figure 14. Example 3 with the discontinuous sound speed c5. (a) The boundary distance map. (b) The
exact initial condition. (c) The TR solution. (d) The NS solution.

10.1.1. The Shepp–Logan phantom, Figures 16(a) and 16(b). We estimate T0 to be
T0 ≈ 2.5. It is greater than before because Γ is not the whole ∂Ω anymore. We have data on
two adjacent sides. If the speed were constant, the singularities below the lower-left-to-upper-
right diagonal that would exit in the sides without measurements would be invisible. That
would affect jumps across surfaces in that triangle with normals parallel or nearly parallel to
that diagonal, roughly speaking. The speed is variable but not too far from constant, and
we see the expected behavior. Note that this is an unstable case, and our analysis does not
exclude an even exponential divergence (in the low frequency part), but the error gets smaller
up to k = 8 when the computation is stopped.

10.1.2. Zebras, Figures 17(a) and 17(b). We have data on three sides. In this case,
T1 ≈ 1.35, and we would have stability if the speed were constant. However, the speed is not
constant, but in some sense it is not too far from a constant one. There might be a small
set of geodesics that enter through the right-hand side and exit there as well, thus creating
instability. The reconstruction is very good, however, with an error of 6.11%, k = 10. The
chosen T is slightly greater than what would be the stability time, but the result is computed
without the contribution of those geodesics.
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The exact initial condition
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(c)

The time reversal solution
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(d)

The Neumann series solution
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Figure 15. Example 4 with the discontinuous speed c5: Figure 12(b). (a) The boundary distance map. (b)
The exact initial condition. (c) The TR solution. (d) The NS solution.
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Figure 16. Nontrapping speed c1 with partial data on two adjacent sides. T = 4.7. (a) The boundary
distance map, data on two sides. (b) The Shepp–Logan phantom reconstruction.
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(b)

The Neumann series solution
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(c)
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(d)

The Neumann series solution
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Figure 17. A modified example with the nontrapping speed c1, partial data. T = 4.7. (a) The boundary
distance map, data on three sides. (b) The reconstructed “zebras” image. (c) The boundary distance map, data
on two sides. (d) The reconstructed “zebras” image.

10.1.3. Zebras, Figures 17(c) and 17(d). We use data on two sides. This is a very
unstable case, and one can see artifacts where the invisible singularities lie—in the lower
right-hand triangle, with slopes close to 1, roughly speaking (jumps across curves with slopes
in a neighborhood of −1). The error is 10.6%, and k = 10.

10.1.4. Zebras, Figures 18(a) and 18(b). The zebras image reconstructed in Figure 17(d)
does not have so many invisible singularities in this particular setup (data on two sides), how-
ever. For this reason, we present another example, Figures 18(a) and 18(b), with a modified
image that shows the expected behavior of the visible and invisible singularities. The error is
11.39%, and k = 11.

10.2. Partial data, trapping sound speeds c3 and c2. The sound speed is c3 (the first
two examples) and c2 (the third example).

10.2.1. Figures 19(a) and 19(b). Here, T = 4.93 > T0 ≈ 1.3, with data on three sides.
The “chaotic” trapping speed c3 makes the reconstruction worse than before. This is an
unstable case because the trapping speed leaves many singularities invisible. As expected, the
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(b)

The Neumann series solution
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Figure 18. Nontrapping speed c1 examples, partial data on the left and the upper side. T = 4.7. (a) The
exact initial condition. (b) The reconstructed “zebras” image.

worst part is near the side with no observations due to geodesics that enter and exit through
that side. There are invisible singularities everywhere as well, due to the speed. The error is
19.25%, and k = 10.

10.2.2. Figures 19(c) and 19(d). Here, T = 4.93 > T0 ≈ 2.1, with data on two sides,
and the speed is the same as above. As expected, the reconstruction is quite bad near the
sides with no data. The error is 28.60%, and k = 16.

10.2.3. Figures 19(e) and 19(f). Here, T = 8.61 > T0 ≈ 2.6, with data on two sides,
and the speed is c2. The time T is larger than above, but T0 is slightly larger as well.
The reconstruction is better due to the larger time and (probably) due to the fact that the
trapping region of this speed is farther away from the sides where no observations are done.
Experiments with times T closer to that in the two examples above (not shown) still yield a
better reconstruction with this speed. The error is 16.17%, and k = 16.

11. Conclusions. We have implemented an efficient Neumann series–based algorithm for
reconstructing an unknown source in TAT and PAT. The algorithm is built on the recent
advances in understanding the theoretical nature of the problem. We worked with variable
sound speeds that might also be discontinuous across some surface. The latter problem arises
in brain imaging. Our algorithm is based on an explicit formula in the form of a Neumann
series. We first modify the data at t = T using a harmonic extension, then do time reversal,
and then iterate. The extensive numerical examples demonstrate the robust performance of
the algorithm.

This approach also has the potential to improve the reconstruction when the possibly
discontinuous speed is not well known by extracting most of the useful information for lim-
ited values of the observation time T ; see [6]. Future applications include incorporating our
algorithm into some practical experiments to see how the algorithm will behave on practical
data. We will report on this in an upcoming paper.
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The Neumann series solution
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(c)
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(d)

The Neumann series solution
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The Neumann series solution
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Figure 19. Examples with the trapping speeds c3 (the first two rows) and c2 (the last row). (a) The boundary
distance map, data on three sides. (b) The reconstructed “zebras” image, T = 4.92. (c) The boundary distance
map, data on two sides. (d) The reconstructed “zebras” image, T = 4.92, k = 16. (e) The boundary distance
map, data on two sides. (f) The reconstructed “zebras” image, T = 8.62, k = 16.
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