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Abstract. Ptychography is an emerging non-crystalline diffractive imaging

technique that can potentially reach diffraction limited resolution without the
need for high resolution lenses. To achieve high resolution one must solve a

phase-retrieval inverse problem using the diffraction patterns of many partially

overlapping subimage frames. We examine the mathematical formulation of
the ptychographic phase retrieval problem, and analyze some of the existing

methods for solving the inverse problem. We also discuss a number of prac-

tical techniques that can improve the efficiency and robustness of numerical
algorithms for solving the ptychographic phase retrieval problem.

1. Introduction

Pytchography is an emerging non-crystalline diffractive imaging technique by
which one can deduce the structure of an object from a number of diffraction pat-
terns; see Figure 1. It can be formulated as an inverse problem in which the phase
relationship between different parts of a scattered wave disturbance is deduced from
the magnitude of the wave that can be physically measured. Its usefulness lies in
its ability to recover structure information without using high resolution lenses or
defining properties of the scattering medium. The missing phase information is
obtained implicitly from the intensity recorded in the diffraction plane through an
iterative computational method [1, 2, 3]. In this paper, we examine the mathemat-
ical formulation of the ptychographic phase retrieval problem, and analyze some of
the existing algorithms for solving this type of inverse problems.

We consider reconstruction of two-dimensional (2D) objects, although the tech-
nique we discuss here can in principle be extended to 3D structure elucidation. In a
ptychography experiment, one collects a sequence of diffraction images of dimension
m × m. Each image frame yx(r′) represents the magnitude of the Fourier trans-
form of a(r)ψ0(r + x), where a(r) is a localized illumination (window) function or
a probe, ψ0(r) is the unknown object of interest, and x is a translational vector.
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Figure 1. A schematic drawing of a ptychography experiment in
which a probe scans through a 2D object in an overlapping fashion
and produces a sequence of diffraction patterns of the scanned
regions.

We can express yx as

(1.1) yx(r′) = |F{a(r)ψ0(r + x)}|,

where F{f} denotes the Fourier transform of f with respect to r.
In order to reconstruct the unknown object, we must retrieve the amplitude and

phase of ψ0(r) from a number of yx(r′) that are associated with different x’s. A few
methods have been proposed to recover ψ0(r) from ptychographic measurements
yx(r′) [1, 2, 3, 4, 5]. The connection among these methods is not entirely clear
from the existing literature. Furthermore, little detail is provided on convergence
properties or computational efficiency of these methods.

In this paper, we analyze some of the existing methods for solving ptycho-
graphic phase retrieval problem from a numerical optimization point of view. In
particular, we examine the local convergence properties of these methods by ana-
lyzing the gradient and Hessian of different objective functions, which we present in
section 2. We discuss a number of computational details such as weighting and pre-
conditioning that are important for achieving good performance in these methods in
section 3. We also describe the connection between optimization based algorithms
and projection algorithms that are frequently used in phase retrieval in section 3.2.
A number of computational examples are presented in section 4 to illustrate and
compare the convergence behavior of several methods for solving the ptychographic
phase retrieval problem.

We point out that the ptychographic minimization problem is not globally
convex, which means that iterative methods can be trapped at a local minimizer
if a poor starting guess is chosen. We show by a numerical example that one way
to escape from a local minimizer is to switch to a different objective function in
section 4.

We observed that the convergence of the optimization based iterative algorithms
used to perform ptychographic phase retrieval become faster when the amount of
overlap between two adjacent image frames increases. We provide a preliminary
analysis of how the amount of overlap between adjacent frames affects the conver-
gence of iterative optimization algorithms in section 4.
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We use standard linear algebra notation whenever possible to describe various
quantities evaluated in the iterative algorithms we present. To simplify notation we
use a/b to denote an element-wise division between two vectors a and b. Similarly,
we use a · b to denote an element-wise multiplication of a and b. We also use
a2 and a1/2 occasionally to denote the element-wise square and square root of a
respectively. The conjugate of a complex variable a is denoted by ā. The real part
of a is denoted by Re(a). The conjugate transpose of a matrix (or a vector) A is
denoted by A∗. The |x| symbol is reserved for the magnitude (or absolute value)
of x. The Euclidean norm of x is denoted by ‖x‖ =

√
x∗x. We use Diag (x) to

represent a diagonal matrix with the vector x on its diagonal.

2. Ptychographic reconstruction as an inverse problem

The phase retrieval problem has a long history in both the optics and inverse
problem communities. The uniqueness question of phase retrieval has been inves-
tigated under various conditions in different contexts [6, 8, 9]. Recently, it has
been shown that the problem can be formulated as a low-rank matrix completion
problem [10] and solved by convex programming techniques if the standard diffrac-
tion experiments can be modified to generate additional information. In this paper,
we examine efficient algorithms for solving another special class of phase retrieval
problems in which the unknown object ψ0 is recovered from a number of intensity
measurements represented by (1.1). For a finite set of translational vectors xi, we
will denote each measurement by

bi = |FQiψ0|, i = 1, 2, ..., k,

where ψ0 is the sampled unknown object that contains n pixels, bi is a sampled
measurement that contains m pixels, F is the matrix representation of a discrete
Fourier transform, and Qi is an m× n “illumination matrix” that extracts a frame
containing m pixels out of an image containing n pixels. Each row of Qi contains
at most one nonzero element. The nonzero values in Qi are determined by the
illumination function a(r).

Given a set of measurements, b1, b2, ..., bk, we may attempt to recover ψ0 by
solving either the least squares problem

min
ψ
ρ(ψ) ≡ min

ψ

1

2

k∑
i=1

‖|zi| − bi‖2, or(2.1)

min
ψ
ε(ψ) ≡ min

ψ

1

2

k∑
i=1

‖|zi|2 − b2i ‖2,(2.2)

where zi ≡ FQiψ. The advantage of using (2.2) is that it is slightly smoother
than (2.1), hence more amenable to analysis. In practice, we found the objective
function in (2.1) to be a better choice in terms of computational efficiency in most
cases.

To obtain the minimizers of (2.1) or (2.2) using numerical optimization tech-
niques, we often need to evaluate the gradient and possibly the Hessian of these
objective functions. Because both (2.1) and (2.2) are real-valued functions of a
(potentially) complex vector ψ, one can either take the derivative of (2.1) and (2.2)
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with respect to the real and imaginary parts of ψ independently or follow the CR-
calculus formalism established in [11, 12] by treating ψ and ψ̄ as two independent
variables. The latter approach is what we use throughout this paper.

2.1. Gradient. If we let ri ≡ |zi|2 − b2i and define

r ≡
(
rT1 , r

T
2 , · · · rTk

)T
,

we can rewrite (2.2) as ε(ψ) = rT r/2. It is not difficult to show that [13]

(2.3) ∇ε =

k∑
i=1

Q∗iF
∗Diag(zi)[|zi|2 − b2i ].

The gradient of the objective function ρ(ψ) in (2.1) is slightly more complicated.
By rewriting |zi| as (|zi|2)1/2 and using the chain rule, we obtain

(2.4) ∇ρ(ψ) =
1

2

k∑
i=1

[
Q∗iQiψ −Q∗iF ∗Diag

(
zi
|zi|

)
bi

]
.

Note that both (2.3) and (2.4) remain real when ψ is real and when bi is obtained
from a discrete Fourier transform of a real image (so that conjugate symmetry is
preserved in Diag (zi/|zi|) bi.)

2.2. Hessian. The Hessians of ε(ψ) and ρ(ψ) provide information on the con-
vexity of these objective functions. Again, because both ε(ψ) and ρ(ψ) are real
valued functions of a potentially complex vector ψ, their Hessians are defined as

Hf =

(
Hf
ψψ Hf

ψψ̄

Hf

ψ̄ψ
Hf

ψ̄ψ̄

)
,

where

Hf
ψψ ≡

∂

∂ψ

(
∂f

∂ψ

)∗
, Hf

ψ̄ψ
≡ ∂

∂ψ̄

(
∂f

∂ψ

)∗
, Hf

ψψ̄
≡ ∂

∂ψ

(
∂f

∂ψ̄

)∗
, Hf

ψ̄ψ̄
≡ ∂

∂ψ̄

(
∂f

∂ψ̄

)∗
,

and f is either ε or ρ.
It is not difficult to show that [13]

Hε =

( ∑
iQ
∗
iF
∗Diag

(
2|zi|2 − b2i

)
FQi

∑
iQ
∗
iF
∗Diag (zi)

2
FQi∑

iQ
T
i F

TDiag (z̄i)
2
FQi

∑
iQ

T
i F

TDiag
(
2|zi|2 − b2i

)
FQi

)
.

If we let tji ≡ |tji|eiµji , ζji ≡ |ζji|eiθji and βji be the jth component of ti =
FQiφ, zi = FQiψ and bi respectively, then the curvature τε(ψ, φ) at ψ along any
direction φ can be shown to be

τε(ψ, φ) = (φ∗ φT )

(
Hε
ψψ Hε

ψψ̄

Hε
ψ̄ψ

Hε
ψ̄ψ̄

)(
φ
φ̄

)

= 2

k∑
i=1

n∑
j=1

|tji|2(|zji|2 − β2
ji) + 2|tji|2|zji|2 cos2(µji − θji).(2.5)

At the minimizer of ε(ψ), |zi| = bi. So the first term of (2.5) is zero. Because the
second term of (2.5) is nonnegative, τ ≥ 0, i.e., ε is locally convex at the solution.
Moreover, the convexity of ε is preserved in the area where |zji| ≥ βji.
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A similar observation can be made from the curvature of ρ. It is not difficult
to show that

Hρ =


k∑
i=1

W ∗
i

[
1

2
I − 1

4
Diag

(
bi
|zi|

)]
Wi

1
4

k∑
i=1

W ∗
i Diag

(
bi · z2i
|zi|3

)
W i

1
4

k∑
i=1

WT
i Diag

(
bi · z2i
|zi|3

)
Wi

k∑
i=1

WT
i Qi

[
1

2
I − 1

4
Diag

(
bi
|zi|

)]
W i

 ,

where Wi = FQi. It follows that

(2.6) τρ(ψ, φ) =

k∑
i=1

n∑
j=1

|tji|2
(

1− βji
|ζji|

sin2(µji − θji)
)
.

Thus, τρ ≥ 0 when |ζji| ≥ βji for all j = 1, 2, ..., n and i = 1, 2, ..., k. Even if
|ζji| is slightly less than βji for some j and i, τρ may remain positive when the

corresponding sin2(µji−θji) is sufficiently small and other terms in the summation
in (2.6) are sufficiently large and positive.

A classical problem encountered in optics is associated with k = 1. When only
one diffraction image is recorded, experience shows that local minima are common.
Regions of negative curvature separate local minima from the global solution [16].

3. Iterative algorithms based on nonlinear optimization

Because the gradient and Hessian of (2.1) and (2.2) are relatively easy to eval-
uate, we may use standard minimization algorithms such as the steepest descent
method, the Newton’s method and the nonlinear conjugate gradient method to find
the solution to the ptychographic reconstruction problem.

3.1. Unconstrained minimization. When the objective function (2.1) or (2.2)
is minimized directly, we construct a sequence of approximations to ψ0 by

(3.1) ψ(`+1) = ψ(`) + βp(`),

where p(`) is a search direction along which the objective function (2.1) or (2.2)
decreases, and β > 0 is an appropriate step length chosen through a line search
procedure that ensures global convergence [17]. Global convergence can also be
achieved by introducing an additional inequality constraint that limits the size of
the update within a “trust region” [18].

To accelerate convergence, we may also introduce an appropriate weighting
matrix into least squares objective functions (2.1) and (2.2) by expressing them as

ρ(ψ) =
1

2

k∑
i=1

〈|zi| − bi, |zi| − bi〉B ,

and

ε(ψ) =
1

2

k∑
i=1

〈|zi|2 − b2i , |zi|2 − b2i 〉B

respectively, where 〈x, y〉B = x∗By with B being a symmetric positive definite
matrix. As we will show in section 4, the choice of B = Diag(bi)

−1 is particularly
useful for accelerating the convergence of all iterative methods we have looked at.
To maintain numerical stability and reduce noise amplification, it is often necessary
to add a small constant to the diagonal of B to prevent it from becoming singular
or ill-conditioned. In the presence of noise, the choice of B can be made according
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to a stochastic characterization of the noise. This leads to a maximum likelihood
formulation of the phase retrieval problem [15].

Another useful technique for accelerating iterative methods for solving uncon-
strained minimization problems is preconditioning. Instead of minimizing ρ(ψ) or
ε(ψ), we make a change of variable and minimize ρ̂(φ) and ε̂(φ), where φ = Kψ,
and K is a preconditioner that is usually required to be Hermitian and positive def-
inite. The purpose of introducing the preconditioner K is to reduce the condition
number of the Hessian of the objective function. A highly ill-conditioned Hessian
often leads to slow convergence of an iterative method. A well-known example is
the zig-zag behavior of the steepest descent algorithm when it is applied to the
Rosenbrock function.

It follows from the chain rule and (2.4) that the gradient of ρ̂(ψ) is simply

∇ρ̂(ψ) =
1

2
K−1

k∑
i=1

[Q∗iQiψ −Q∗iF ∗Diag

(
zi
|zi|

)
bi],

where zi = FQiψ.
If we take the preconditioner to be the constant term on the diagonal blocks of

Hρ
ψψ, i.e.,

(3.2) K =

k∑
i=1

Q∗iQi,

which is a diagonal matrix, the gradient of ρ̂ simply becomes

∇ρ̂(ψ) =
1

2

[
ψ −

( k∑
i=1

Q∗iQi

)−1( k∑
i=1

Q∗iF
∗Diag

(
zi
|zi|

)
bi

)]
,

and the corresponding preconditioned steepest descent algorithm with a constant
step length of 2 yields the following updating formula:

ψ(`+1) =

( k∑
i=1

Q∗iQi

)−1( k∑
i=1

Q∗iF
∗Diag

(
z

(`)
i

|z(`)
i |

)
bi

)
,

where z
(`)
i = FQiψ

(`). This updating formula is identical to that used in the error
reduction algorithm or alternate projection algorithm [16], which is guaranteed to
converge to at least a local minimizer as shown in section 3.2.

3.2. Fixed-point iteration and projection algorithms. An alternative
approach to finding a minimizer of (2.1) is to set its gradient to zero and seek ψ
that satisfies the first order necessary condition of the minimization problem. If∑k
i=1Q

∗
iQi is nonsingular, by setting∇ρ(ψ) = 1

2

∑k
i=1

[
Q∗iQiψ −Q∗iF ∗Diag

(
zi
|zi|

)
bi

]
to 0, we obtain

(3.3) ψ = f(ψ)

where

(3.4) f(ψ) =

( k∑
i=1

Q∗iQi

)−1
[

k∑
i=1

Q∗iF
∗Diag

(
zi
|zi|

)
bi

]
.

Recall that zi ≡ FQiψ. Clearly, ψ is a fixed point of the function f .
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A simple iterative technique one may use to find the solution to (3.4) is the
fixed point iteration that has the form

ψ(`+1) = f(ψ(`)).

Replacing f with the right hand side of (3.4) yields

(3.5) ψ(`+1) =

(
k∑
i=1

Q∗iQi

)−1 [ k∑
i=1

Q∗iF
∗Diag

(
z

(`)
i

|zi|(`)

)
bi

]
,

where z
(`)
i ≡ FQiψ

(`). This is the same sequence of iterates produced in what is
known as the error reduction algorithm in standard phase retrieval literature [16].
This method is also known as the alternate projection algorithm for reasons to be
discussed below.

It is easy to verify that the updating formula in (3.5) is identical to that pro-
duced by a preconditioned steepest descent algorithm in which the preconditioner

K is chosen to be K =
∑k
i=1Q

∗
iQi, and a constant step length of 2 is taken at each

iteration, i.e.,

ψ(`+1) = ψ(`) − 2∇ρ(ψ(`)).

The sequence of iterates {ψ(`)} produced by (3.5) is guaranteed to converge to
the fixed point of f(ψ) from any starting point {ψ(0)}, if the spectral radius (i.e.,
the largest eigenvalue) of the Jacobian of f (with respect to ψ) is strictly less than
1. Because the function f in (3.3) can be viewed as a function of ψ and ψ̄, we
should examine the Jacobian matrix of the system

ψ =

(
k∑
i=1

Q∗iQi

)−1 [ k∑
i=1

Q∗iF
∗Diag

(
zi
|zi|

)
bi

]
,(3.6)

ψ̄ = (

k∑
i=1

QTi Qi)
−1

[
k∑
i=1

QTi F
TDiag

(
z̄i
|zi|

)
bi,

]
(3.7)

where (3.7) is simply the conjugate of (3.6). It is not difficult to show that this
Jacobian matrix has the form

(3.8) J =

(
K−1 0

0 K
−1

)(
K − 2Hρ

ψψ −2Hρ

ψψ̄

−2Hρ

ψ̄ψ
K − 2Hρ

ψ̄ψ̄

)
,

where Hρ
ψψ, Hρ

ψψ̄
, Hρ

ψ̄ψ
and Hρ

ψ̄ψ̄
are as defined in the formula for Hρ.

If (λ, φ) is an eigenpair of J , we can easily show that

2

(
Hρ
ψψ Hρ

ψψ̄

Hρ

ψ̄ψ
Hρ

ψ̄ψ̄

)(
φ
φ̄

)
= (1− λ)

(
K 0
0 K

)(
φ
φ̄

)
.

If we again let tji ≡ |tji|eiµji , ζji ≡ |ζji|eiθji and βji be the jth component of the
vectors ti = FQiφ, zi = FQiψ and bi respectively, we can easily show that

λ =

∑k
i=1

∑n
j=1 sin2(µji − θji)|tji|2βji/|ζji|∑k

i=1

∑n
j=1 |tji|2

.(3.9)

Clearly, when βji ≤ |ζji| for all j = 1, 2, ...,m and i = 1, 2, ...n, |λ| ≤ 1, and the
fixed point iteration is guaranteed to converge to at least a local minimizer of ρ.
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The fixed point of f may also be obtained by applying Newton’s method or a
quasi-Newton algorithm to seek the root of r(ψ) = 0, where r(ψ) = ψ − f(ψ).

This approach is equivalent to applying Newton’s method or a quasi-Newton
algorithm (with appropriate line search and trust region strategies) to minimize
ρ(ψ).

If we multiply (3.6) from the left by Qi for i = 1, 2, ..., k, and let y(`) = Qψ(`),
where Q = (Q∗1 Q∗2 ... Q∗k)∗, we obtain

(3.10) y(`+1) = PQPF (y(`)),

where PQ = Q(Q∗Q)−1Q∗, and

PF (y) = F̂ ∗
y

|y|
· b,

where F̂ = Diag (F, F, ..., F ) and b = (bT1 bT2 ... bTk )T .
Because a fixed point y of PQPF is in the range of Q, which is typically full

rank when mk > n, we may recover the corresponding fixed point of f from y via
the least squares solution ψ(`) = (Q∗Q)−1Q∗y(`).

This nonlinear map is the composition of a (linear) orthogonal projector PQ
and a (nonlinear) Fourier magnitude projector PF . A fixed point iteration based on
(3.10) is also called alternating projection (AP) algorithm in the phase retrieval lit-
erature because the approximation to the solution of (3.10) is obtained by applying
PQ and PF in an alternating fashion.

It is easy to verify that PF is indeed a projection operator in the sense that

(3.11) ‖PF (y)− y‖ ≤ ‖w − y‖ for all w ∈ {w|w = PF (w)}.
This property of PF , together with the fact that PQ is an orthogonal projection

operator, i.e. ‖PQy − y‖ ≤ ‖w − y‖ for all w ∈ Range(Q), allows us to show that

the residual error ‖PF (y(`)) − y(`)‖ decreases monotonically in the AP algorithm.
The proof of this observation was provided by Fienup in [19].

The simple alternating projection algorithm has been extended to the hy-
brid input-output (HIO) algorithm [19], the relaxed averaged alternating reflection
(RAAR) algorithm [20], and many other variants [21, 16] in the phase retrieval
literature. Just to give a few examples, in the HIO and RAAR algorithms, the
approximation to the solutions of (3.7) and (3.10) are updated by

y(`+1) = [PQPF + (I − PQ)(I − βPF )] y(`), and

y(`+1) = [2βPQPF + (1− 2β)PF + β(PQ − I)] y(`),

respectively, where β is a constant often chosen to be between 0 and 1, and the
object itself can be recovered from y(`) through ψ(`+1) = (Q∗Q)−1Q∗y(`).

Although these algorithms tend to accelerate the convergence of y(`), their
convergence behavior is less predictable and not well understood.

4. Numerical examples

In this section, we demonstrate and compare the convergence of iterative al-
gorithms for ptychographic reconstruction using two test images. The first test
image is a 256× 256 real-valued cameraman image shown in Figure 2. The image
is often used in the image processing community to test image reconstruction and
restoration algorithms. The second test image is a complex valued image. It also
contains 256× 256 pixels that correspond to the complex transmission coefficients
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of a collection of gold balls embedded in some medium. The amplitude and phase
angles of these pixels are shown in Figure 3.

Figure 2. The cameraman test image.

(a) Amplitude (b) Phase

Figure 3. The amplitude and phase of the transmission coefficient
of a collection of gold balls.

All numerical examples presented in this paper are performed in MATLAB.

4.1. Numerical comparison of iterative methods. In this section, we
show the convergence behavior of a few iterative algorithms for solving the pty-
chographic reconstruction by numerical experiments. In the cameraman image
reconstruction experiment, we choose the illuminating probe a(r) to be a 64 × 64
binary probe shown in Figure 4(a). The pixels within the 32 × 32 square at the
center of the probe assume the value of 1. All other pixels take the value of 0. The
zero padding of the inner 32 × 32 square ensures that the diffraction pattern of a
64× 64 frame associated with this probe is oversampled in the reciprocal space. In
the gold ball image reconstruction experiment, the illuminating probe is chosen to
be the amplitude of the Fourier transform of an annular ring with inner radius of
r1 ≈ 5.4 and outer radius of r2 ≈ 19.4. This probe mimics the true illumination
used in a physical experiment.

In the cameraman experiment, the probe is translated by 8 pixels at a time in
either horizontal or vertical direction. To prepare a stack of k diffraction images
bi, i = 1, 2, ..., k, we start from the upper left corner of the true image, extract a
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(a) The binary probe used in the recon-

struction of the cameraman image.

(b) The probe used in the reconstruction

of the gold ball image.

Figure 4. The illuminating probes a(r) used in ptychographic
reconstructions of the cameraman and gold ball images.

64 × 64 frame, and multiply it with the probe, and then apply a 2D FFT to the
product. The magnitude of transform is recorded and saved before we move either
horizontally or vertically to obtain the next frame. If the lower right corner of the
frame goes outside of the image (which does not happen in this particular case), we
simply “wrap the probe around” the image as if the image is periodically extended.
As a result, the total number of diffraction frames we use for each reconstruction
is k = (256/8) · (256/8) = 1024.

As we will show in section 4.3, the size of translation, which determines the
amount of overlap between adjacent frames, has a noticeable effect on the conver-
gence of the iterative reconstruction algorithms.

Figure 5 shows the convergence history of several iterative algorithms discussed
in section 3 when they are applied to the diffraction frames extracted from the
cameraman image. We plot both the relative residual norm defined by

(4.1) res =

√∑k
i=1 ‖|zi|(`) − bi‖2√∑k

i=1 ‖bi‖2
,

where |zi|(`) = |FQiψ(`)| and ` is the iteration number, and the relative error of the
reconstructed image defined by err = ‖ψ(`) − ψ0‖/‖ψ0‖. In these runs, an exact
line search is used in both the steepest descent (SD) method and the nonlinear
conjugate gradient (CG) method. The Steihaug’s trust region technique [23] is
used in the Newton’s method (NT). We set the starting guess of the solution ψ0 to

ψ(0) =

(
k∑
i=1

Q∗iQi

)−1 k∑
i=1

Q∗i bi.

It is clear from Figure 5 that NT converges much faster than the other algorithms.
Its performance is followed by the CG algorithm which is much faster than the
error reduction (ER), SD, Gauss-Newton (GN) and the hybrid input-output (HIO)
algorithms. Similar convergence behavior is observed when other random starting
guesses are used, although occasionally, a random starting guess can lead to stag-
nation or convergence to a local minimizer. We will discuss this issue in section 4.2.
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(a) Change of the relative residual norm

(res) for the reconstruction of the cam-

eraman image.

(b) Change of the relative error (err) for

the reconstruction of the cameraman im-

age.

Figure 5. A comparison of the convergence behavior of different
iterative ptychographic reconstruction algorithms for the camera-
man image.

We set the maximum number of iterations allowed in all runs to 30. This is some-
what excessive for both NT and CG algorithms. Typically, when the relative error
of the reconstructed image falls below 10−3, it is nearly impossible to visually dis-
tinguish the reconstruction from the true image. When the relative error is larger,
the reconstructed cameraman images may contain visible artifacts such as those
shown in Figures 6(a) and 6(b) which are produced at the end of the 30th ER and
SD iterations respectively.

(a) ER reconstruction (b) SD reconstruction

Figure 6. The reconstructed cameraman images by ER and SD
algorithms contain visible ringing artifacts.

For the reconstruction of the gold ball image, we choose the starting guess to
be

ψ(0) =

(
k∑
i=1

Q∗iQi

)−1 k∑
i=1

Q∗iDiag (bi) Diag (|ui|)−1
ui,

where ui is a complex random vector, and the real and imaginary part of each
component has a uniform distribution within [−1, 1].

In this experiment, the probe is translated by a larger amount (16 pixels) in
either horizontal or vertical direction. Figure 7 shows the convergence history of
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ER, SD, CG, HIO, and NT. From Figure 7(a), it appears that CG is the best
among all the methods we tried. The HIO algorithm performs well in the first
60 iterations, but then stagnates. As we can see from Figure 7 that neither the
residual norm nor the relative error associated with HIO changes monotonically.
This is not completely surprising because HIO does not try to minimize either
objective functions. For this example, the performance of NT lags behind CG by a
large margin although both algorithms exhibit monotonic convergence with a more
predictable error reduction. We should mention that to measure the relative error
associated with a reconstructed gold ball image ψ(`), we need to multiply it by a
constant phase factor γ first, i.e., the relative error is defined as

err =
‖γψ(`) − ψ0‖
‖ψ0‖

.

(a) Change of the relative residual norm
(res) for the reconstruction of the gold

ball image.

(b) Change of the relative error (err) for
the reconstruction of the gold ball image.

Figure 7. A comparison of the convergence behavior of different
iterative ptychographic reconstruction algorithms for the gold ball
image.

4.2. Local minimizer and the choice of the objective function. As we
indicated in section 2.2, based on the analytic Hessian and curvature expression,
neither ε(ψ) nor ρ(ψ) is globally convex. This observation suggests that all iter-
ative optimization algorithm discussed above may converge to a local minimizer.
Although we found that in practice, local minimizers are not easy to find, they do
exist as the following example shows.

In order to find a local minimizer, we construct many random starting guesses
using the MATLAB rand function. To save time, we choose to reconstruct a 64×64
subimage of the cameraman image shown in Figure 2. This subimage is shown in
Figure 10(a). A 16× 16 binary probe that has a value 1 in the 8× 8 center of the
probe and 0 elsewhere is used. The diffraction stack consisting of 64 diffraction
images is obtained by translating the probe 4 pixels a time in either the horizontal
or the vertical direction.

Figure 8 shows that one of the random starting guesses leads to the convergence
of the CG algorithm to a local minimizer. In particular, the relative residual (4.1)
which is proportional to the objective function ρ stagnates around 0.9 after the first
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15 iterations (Figure 8(a)), whereas the relative gradient ‖∇ρ(ψ(`))‖/‖ψ0‖ decreases
to 10−8 after 40 iterations.

Figure 10(b) shows how the reconstructed image compares with the true image
for this particular starting guess used. In this case, the local minimizer appears to
contain visible artifacts in a small region near top of the tripod. The amplitude of
this localized error is also revealed in the relative error plot shown in Figure 9(a).
The phase error associated with a particular frame of the reconstruction obtained
from

Qiψ

|Qiψ|
· Qiψ0

|Qiψ0|
,

for some particular Qi is shown in Figure 9(b).

(a) Change of the relative

residual norm (res).

(b) Change of the relative gra-

dient.

Figure 8. The convergence of CG to a local minimizer.

(a) Amplitude error in the re-

construct image

(b) Phase error in degrees asso-

ciated with a particular frame

Figure 9. The error associated with a local minimizer.

We should also note that for this particular starting guess, all methods we tried
converged to the same local minimizer. This is not all that surprising. It simply
shows (empirically) that a local minimizer of (2.1) exists, and our starting guess is
sufficiently close to it.

However, what is interesting is that if we choose to minimize (2.2) by using any
one of the iterative methods discussed above from the same starting guess, we are
able to obtain the correct solution. For example, Figure 11(a) shows that when the
NT applied to the weighted (scaled) objective function

(4.2) ε̃(ψ) =
1

2

k∑
i=1

(|zi|2 − b2i )TDiag (bi)
−1

(|zi|2 − b2i ),
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(a) True image. (b) The reconstructed image (a

local minimizer).

Figure 10. The artifacts produced by a local minimizer of ρ.

where |zi| = |FQiψ| and bi = |FQiψ0|, an accurate reconstruction can be obtained
in roughly 350 iterations. Admittedly, the convergence rate is much slower in this
case when compared to the convergence of NT applied to (2.1) from a different
starting point. The convergence is even slower if no weighting (or scaling) is used,
i.e. when (2.2) is used as the objective function. However, the fact that conver-
gence can be reached for (4.2) but not (2.1) from the same starting point is quite
interesting. Furthermore, Figure 11(b) shows that if we take the local minimizer
returned from an iterative minimization of (2.1) as the starting guess for minimizing
(4.2), convergence can be reached in 12 iterations. This experiment suggests that
it may be useful to have a hybrid optimization scheme in which (2.1) is minimized
first. If a local minimizer of (2.1) is identified, one can then try to minimize (4.2)
starting from the local minimizer of (2.1). A local minimizer can be recognized
by examining the norm of gradient, which should be very small, and the objective
function (2.1) or (2.2) itself, which is not close to zero at a local minimizer.

(a) The convergence of the NT
algorithm when it is applied

to (2.2) (red) and (4.2). The
starting guess chosen in these

runs is the same one used in the

minimization of (2.1).

(b) The convergence of the NT
algorithm when the starting

guess is chosen to be the lo-
cal minimizer shown in Fig-

ure 10(b)

Figure 11. The convergence of the NT algorithm when applied
to (2.2) (red) and (4.2) (blue).

4.3. The effect of overlapping on the convergence of iterative algo-
rithm. When there is no overlap between two adjacent frames, the ptychographic
phase retrieval problem reduces to that of classical phase retrieval for a number
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of isolated diffraction images. For this type of problems, optimization based algo-
rithms often converge to a local minimizer. On the other hand, when all frames
completely overlap, the phase retrieval problem is equally difficult to solve because
overlapping does not provide any new information and phase retrieval is essentially
performed on a single diffraction image.

Apart from these two extreme cases, having significant overlap among adjacent
frames as we move the probe generally helps improve the convergence of opti-
mization algorithms. The following example show that the amount of overlap has
a noticeable effect on the convergence of optimization based iterative algorithms
(e.g., CG, NT, SD etc.) A similar observation is also reported in [24].

In this example, we try to reconstruct the gold ball image from four different
diffraction stacks. Each stack contains a set of 64 × 64 diffraction frames. These
frames are generated by translating the probe shown in Figure 4(b) by different
amount (∆x) in horizontal and vertical directions. The larger the translation, the
smaller the overlap is between two adjacent images. Figure 12(a) shows that CG
converges very slowly when the diffraction stack contains diffraction frames obtained
by translating the probe 20 pixels at a time (the black curve). Faster convergence
is observed when the amount of translation is decreased to ∆x = 16, 12, 8. It is
interesting to see from Figure 12(b) that the amount of overlap does not affect the
convergence of the HIO algorithm.

(a) The effect of overlapping on the con-

vergence of CG for the gold ball image

reconstruction.

(b) The effect of overlapping on the con-

vergence of HIO for the gold ball image

reconstruction.

Figure 12. The effect of overlapping on the convergence of CG
and HIO algorithms.

To explain the effect of overlapping on the convergence of optimization based
iterative algorithms such as the nonlinear CG, we examine the structure of the
Hessian of the objective function ρ in (2.1). It is not difficult to show [13] that Hρ

can be written as

(4.3) Hρ =

(
(F̂Q)∗

(F̂Q)T

)(
B11 B12

B21 B22

)(
F̂Q

F̂Q

)
,

where B11 = B22 and B12 = B∗21 are all diagonal, F̂ is a block diagonal matrix of

discrete Fourier transforms, i.e. F̂ = Diag (F, F, ..., F ), and Q = (Q∗1 Q
∗
2 ... Q

∗
k)∗.

The diagonal elements of B11 and B12 are simply 1−βji/(2ζji) and βjiζ
2
ji/(2|ζji|3)

respectively for i = 1, 2, ..., k and j = 1, 2, ...,m.
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We will show that Hρ is diagonal-dominant when there is a sufficient amount
of overlap between adjacent diffraction frames. To simplify our discussion, let us
assume for the moment that bi is a 1D diffraction pattern obtained from a binary
probe that illuminates three pixels at a time, and the probe is translated one pixel
at a time so that the adjacent image frames overlap by two pixels. In this case, the
F̂Q term in (4.3) has the form

f1 f2 f3 . . . 0

0 f2 f3
. . .

...

0 0 f3
. . . fk

f1 0 0
. . . fk

f1 f2 0 . . . fk


,

where fi is the ith column of F .
As a result, a typical diagonal term of Hρ has the form

(4.4) Hρ
i,i = f∗i Di−2fi + f∗i Di−1fi + f∗i Difi = trace(Di−2 +Di−1 +Di),

where Di is a diagonal matrix that contains elements 1− βji/(2ζji) for j = 1, 2, 3.
When ψ is near the solution, zi is close to bi. Hence, Di is likely to contain posi-

tive entries only. Therefore, the diagonal elements of Hρ are likely to be much larger
compared to the nonzero off-diagonal elements which contain terms in the form of
either f∗jDif` and its conjugate, where j 6= `, or fTj Eifj and its conjugate, where

Ei is a diagonal matrix (and part of B12) that contains elements βjiζ
2
ji/(2|ζji|3)

for j = 1, 2, 3. Due to the phase difference between fj and f`, Di’s do not add
up “coherently” on the off-diagonal of Hρ as they do on the diagonal. Neither do
nonzero entries in Ei’s add up coherently on the off-diagonal blocks of Hρ. Hence,
the matrix Hρ becomes diagonal-dominant when there is a large amount of overlap
between two adjacent frames. In fact, the diagonal of Hρ may become so dominant
that the spectral property of Hρ is determined largely by the diagonal part of the
matrix, which is typically well conditioned due to the averaging of Di in (4.4).
This observation provides an intuitive explanation on why increasing the amount
of overlap between adjacent frames tends to improve the convergence rate of CG
and other optimization based iterative ptychographical phase retrieval algorithms.
Although this is not a precise analysis of the spectral property of Hρ, the analysis
does match with observations made in our numerical experiments. Moreover, this
type of analysis can be extended to the 2D case in which F is represented as a
tensor product of two 1D discrete Fourier transforms.

5. Conclusion

We formulated the ptychographic phase retrieval problem as a nonlinear op-
timization problem and discussed how standard iterative optimization algorithms
can be applied to solve this problem. We showed that the optimization problems we
solve are not globally convex. Hence standard optimization algorithms can produce
local minimizers. However, the Hessians of the objective functions we minimize do
have special structures that may be exploited.

We compared the performance of several optimization algorithms and found
that both Newton’s method with Steihaug’s trust region technique and the non-
linear conjugate gradient algorithm are efficient for solving this type of problems.
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An even more efficient algorithm based on an augmented Lagrangian formulation
the problem and the use alternating direction method has recently developed by
authors in [25].

We demonstrated by a numerical example that the convergence rate of an
optimization algorithm depends on the amount of overlapping between two adjacent
diffraction frames. We provided a preliminary analysis on why this occurs. More
research is needed to provide a more rigorous study on this phenomenon.

In practice, the diffraction measurements often contain some noise. As a result,
regularization techniques must be used in the iterative reconstruction algorithms to
limit the amplification of noise. For most of the iterative algorithms described in this
paper, regularization amounts to terminating the iterations early [26]. Other reg-
ularization techniques include reformulating the problem as a maximum likelihood
estimation problem [15] and imposing additional constraints to the optimization
problem [7], which can be solved by an augmented projection method [7]. We will
describe and compare these technique in a future publication.
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