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ABSTRACT

In the geometrical-optics approximation for the Helm-
holtz equation with a point source, traveltimes and ampli-
tudes have upwind singularities at the point source.
Hence, both first-order and higher-order finite-difference
solvers exhibit formally at most first-order convergence
and relatively large errors. Such singularities can be factored
out by factorizing traveltimes and amplitudes, where one
factor is specified to capture the corresponding source
singularity and the other factor is an unknown function
smooth near the source. The resulting underlying unknown
functions satisfy factored eikonal and transport equations,
respectively. A third-order Lax-Friedrichs scheme is de-
signed to compute the underlying functions. Thus, highly
accurate first-arrival traveltimes and reliable amplitudes can
be computed. Furthermore, asymptotic wavefields are con-
structed using computed traveltimes and amplitudes in the
WKBJ form. Two-dimensional and 3D examples demon-
strate the performance of the proposed algorithms, and
the constructed WKBJ Green’s functions are in good agree-
ment with direct solutions of the Helmholtz equation before
caustics occur.

INTRODUCTION

The point-source Green’s function for the Helmholtz equation is
fundamental for seismic modeling, migration, and inversion. How-
ever, it is very costly and difficult to solve the Helmholtz equation
directly when the frequency-related wavenumber parameter is large;
consequently, some approximate methods such as one-way wave
equations and geometrical optics are used frequently. In geometrical
optics approximations for high-frequency wave propagation, the
point-source traveltime has an upwind source singularity, which
makes it extremely difficult to numerically compute the traveltime

field with high accuracy even by higher-order finite-difference
eikonal solvers. The resultant inaccurate traveltimes prevent reliable
computations of takeoff angles, out-of-plane curvatures, and ampli-
tudes. Even with accurate traveltime fields, the source singularity of
takeoff angles, out-of-plane curvatures, and amplitudes can also
make it difficult to obtain high accuracy with usual finite-difference
schemes.
Many finite-difference schemes have been introduced to solve the

eikonal equation with point-source conditions for first-arrival tra-
veltimes (Vidale, 1990; van Trier and Symes, 1991; Qin et al.,
1992; Schneider et al., 1992; Schneider, 1995; Kim and Cook,
1999; Sethian and Popovici, 1999; Qian and Symes, 2002a,
2002b; Tsai et al., 2003; Kao et al., 2004; Zhao, 2005; Leung
and Qian, 2006; Qian et al., 2007a, 2007b, Benamou et al., 2010).
Most of these finite-difference schemes suffer from the

upwind source singularity; in some situations, if the point-source
traveltime is not initialized properly, the so-called traveltime reci-
procity discrepancy can appear as shown in Tryggvason and
Bergman (2006) for the eikonal solver time3d developed in Podvin
and Lecomte (1991). Special treatments such as initializing the tra-
veltime field in a fixed grid-independent region of constant velocity
near the source point are employed to obtain high accuracy (Zhang
et al., 2006; Benamou et al., 2010; Serna and Qian, 2010). These
methods have drawbacks such as: (1) the velocity may not be homo-
geneous near the source, and/or (2) the size of the region of analytic
computations must be set by the user and bears no direct relation to
the grid parameters. The drawbacks of these methods can be over-
come with the adaptive grid-refinement method as proposed in Qian
and Symes (2002a). However, the adaptive grid-refinement method
requires some subtle data structures in numerical implementation.
In Luo and Qian (2011), these difficulties in computing higher-

order accurate first-arrival traveltimes and amplitudes are overcome
with a factorization approach. The idea of factorization with respect
to constant velocity solutions has been used as celerity parameter-
ization in Pica (1997) and Zhang et al. (2005), and it was further
developed in Fomel et al. (2009) to treat point-source singularity
in the context of first-order fast sweeping methods for eikonal
equations. Inspired by the factored eikonal equation in Fomel
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et al. (2009), Luo and Qian (2011) first proposed to factor the take-
off angle additively and the out-of-plane curvature multiplicatively
so that the source singularities are well-captured by known
functions corresponding to constant velocities; then based on these
factorizations, they further designed a weighted essentially nonos-
cillatory (WENO) (Liu et al., 1994; Jiang and Shu, 1996; Jiang and
Peng, 2000) based Lax-Friedrichs scheme to compute the resulting
underlying functions which are smooth near the source point; thus,
they were able to compute the traveltime, the takeoff angle, and the
amplitude with high accuracy.
In this work, we apply this factorization approach directly to the

amplitude without calculating the takeoff angle and the out-of-plane
curvature. We factor the amplitude into two multiplicative factors,
one of which is the amplitude for a homogeneous medium. This
factor captures the source singularity so that the other factor (the
underlying function) is smooth near the source. Then we apply
the third-order WENO-based Lax-Friedrichs sweeping scheme
(Kao et al., 2004; Zhang et al., 2006; Luo and Qian, 2011) to nu-
merically compute the underlying function. Therefore, we are able
to compute the amplitude accurately in both 2D and 3D cases.
All the above cited works and discussions hinge on the concept of

viscosity solution (Crandall and Lions, 1983) which singles out a
unique, globally defined, physically relevant weak solution among
many possible generalized solutions for the eikonal equation, and
the resulting solution is the so-called first-arrival traveltime.
Although the usefulness of first-arrival traveltimes for Kirchhoff
migration has been questioned in Geoltrain and Brac (1993) and
Gray and May (1994) because the first-arrival traveltimes in com-
plex media usually do not correspond to the most energetic travel-
times crucial for imaging complex structures (Nichols, 1994), the
first-arrival based Kirchhoff migration methods can still be used as
long as velocity variations do not generate multiple arrivals
as illustrated in Gray and May (1994). On the other hand, Bevc
(1997) has used first-arrival traveltimes in his semi-recursive
Kirchhoff migration to image the Marmousi model successfully
by partitioning the imaging domain into several subdomains and
carrying out recursive wave-equation datuming and Kirchhoff mi-
gration in a layer-stripping fashion. Moreover, first-arrival eikonal
solvers are essential components for developing efficient algorithms
for computing multiple arrivals in a domain-decomposition-
type manner (Symes and Qian, 2003; Rawlinson and Sambridge,
2004), though a popular trend for computing multiple arrivals is
to use a phase-space formulation as shown in the following refer-
ences: Engquist et al. (2002); Fomel and Sethian (2002); Osher et al.
(2002); Qian et al. (2003); Leung et al. (2004, 2007); Qian and
Leung (2004, 2006).
We mention that higher-order accurate first-arrival traveltimes are

also important in solving linearized eikonal equations with respect
to the velocity which arise in traveltime tomography (Aldridge,
1994; Franklin and Harris, 2001; Alkhalifah, 2002; Leung and
Qian, 2006; Taillandier et al., 2007, 2008, 2009) and in solving lin-
earized eikonal equations with respect to the source location which
arise in velocity estimation (Alkhalifah and Fomel, 2010). In these
linearized eikonal equations, the traveltime gradient appears as the
coefficient, which usually is obtained by numerically differentiating
computed traveltimes, thus higher-order accurate traveltimes will be
crucial for solving linearized eikonal equations with high accuracy.
Therefore, the higher-order schemes for first-arrival traveltimes and
amplitudes proposed here will be useful in many applications, such

as semi-recursive Kirchhoff migration (Bevc, 1997), traveltime
tomography (Leung and Qian, 2006; Taillandier et al., 2007,
2008, 2009), and velocity estimation (Alkhalifah and Fomel, 2010).
In terms of computing traveltimes, one can use ray-tracing meth-

ods and their variants (Cerveny et al., 1977; Vinje et al., 1993,1996;
Meng and Bleistein, 1997; Sava and Fomel, 2001) which yield not
only first arrivals but also multiple arrivals. However, ray-tracing
based methods suffer from nonuniform distribution of rays with in-
evitable shadow zones and cumbersome interpolation onto uniform
meshes. To obtain traveltimes distributed on uniform meshes, one
can also utilize the shooting method to solve two-point boundary
value problems for every source-receiver pair (Pereyra et al.,
1980). However, such shooting methods might fail to converge
in complex velocity media and might not yield first-arrival travel-
times. Moreover, the shooting method is difficult to implement in
3D cases. On the other hand, the first-order version of the proposed
method is proved to be convergent and unconditionally stable
(Serna and Qian, 2010), and it is guaranteed to yield first-arrival
traveltimes on uniform meshes; in addition, the proposed higher-
order schemes are easy to implement in 2D and 3D cases.
A natural question is: what are the advantages that the proposed

higher-order schemes for first-arrival traveltimes and amplitudes
bring to bear? The advantages are multifold. First, to achieve a cer-
tain specified accuracy, a higher-order scheme needs a much coarser
mesh than a first-order scheme does, thus higher-order schemes are
much more efficient than first-order schemes in terms of computa-
tional cost. Second, higher-order accurate traveltimes can be
numerically differentiated to yield reliable traveltime gradients
while first-order accurate traveltimes cannot, as demonstrated in
Qian and Symes (2002a). Consequently, our proposed higher-order
schemes for traveltimes will be significant for solving linearized
eikonal equations in traveltime tomography (Leung and Qian,
2006; Taillandier et al., 2009) and velocity estimation (Alkhalifah
and Fomel, 2010). Third, because according to geometrical-optics,
traveltime and amplitude functions are independent of the
frequency parameter in the Helmholtz equation, traveltimes and am-
plitudes computed by the proposed higher-order schemes on a fixed
uniform mesh can be used to construct Green’s functions for the
Helmholtz equation for all the frequencies in a certain frequency
band as long as no aliasing appears. At this point, we recall that
the frequency parameter in the Helmholtz equation needs to be fixed
at the start when one solves the equation directly to compute the
Green’s function. Therefore, the proposed higher-order schemes
for traveltimes and amplitudes will be useful for constructing
Green’s functions for multiple frequencies, which are exactly
needed for Kirchhoff migration and imaging.
This paper is organized as follows. We begin presenting the meth-

odology by first recalling the factorization for the traveltime in
Fomel et al. (2009) and Luo and Qian (2011), then we present the
factorization for the amplitude. We further present the third-
order WENO-based Lax-Friedrichs scheme to solve the factored
equations in 3D (Kao et al., 2004; Zhang et al., 2006; Luo and Qian,
2011). Both 2D and 3D examples are presented in numerical experi-
ments. We use our results to construct asymptotic Green’s functions
and compare the resulting Green’s functions with those obtained by
theHelmholtz solver in Erlangga et al. (2006) and Engquist andYing
(2011). Concluding remarks are given at the end.
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METHODOLOGY

Traveltime and amplitude

For a source ðx0; y0; z0Þ in an isotropic solid, the traveltime
τðx; y; zÞ is the viscosity solution of an eikonal equation (Lions,
1982; Crandall and Lions, 1983),

j∇τj ¼ sðx; y; zÞ; (1)

with the initial condition

lim
ðx;y;zÞ→ðx0;y0;z0Þ

�
τðx; y; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2
p −

1

vðx; y; zÞ
�

¼ 0; (2)

where v ¼ 1∕s is the velocity.
Based on the traveltime field, one can approximate the amplitude

field by solving a transport equation (Cerveny et al., 1977),

∇τ · ∇Aþ 1

2
A∇2τ ¼ 0. (3)

Equation 3 is a first-order advection equation for the amplitude A.
To get a first-order accurate amplitude field, one needs a third-order
accurate traveltime field because the Laplacian of the traveltime
field is involved (Qian and Symes, 2002a).
Traveltime τ and amplitude A have an upwind singularity at the

source ðx0; y0; z0Þ. Any first-order or higher-order finite-difference
eikonal solvers or finite-difference methods for the amplitude
formally can have at most first-order convergence and large errors
because the low accuracy near the source can spread out to the
whole space. In Qian and Symes (2002a), an adaptive method based
on the WENO technique for the paraxial eikonal equation over-
comes this difficulty. The mesh needs to be refined near the source
until expected accuracy requirement is satisfied. In Fomel et al.
(2009), the traveltime is factorized into two multiplicative factors,
one of which is already known and captures the source singularity.
This factorization results in an underlying function that is smooth
near the source. The underlying function satisfies a factored eikonal
equation. Numerical schemes can be designed to compute the un-
derlying function. As a consequence, the accuracy of the traveltime
can be greatly improved as demonstrated in Fomel et al. (2009).
This factorization approach has been extended in Luo and Qian
(2011) for takeoff angles and out-of-plane curvatures to obtain
reliable amplitudes. Takeoff angles can be decomposed into two
additive factors and out-of-plane curvatures can be decomposed
into two multiplicative factors. In both cases, one of the two factors
is known corresponding to a homogeneous medium and captures
the source singularity.
In this work, we apply the factorization idea to the amplitude A in

the transport equation 3. We decompose A into two multiplicative
factors. One of them is the amplitude corresponding to a constant
velocity field, and it is known analytically. The factorization of A
results in an underlying function that satisfies a factored advection
equation. For the factored equations, we use the Lax-Friedrichs
scheme based on third-order WENO differences (Kao et al.,
2004; Zhang et al., 2006; Luo and Qian, 2011) to solve them
numerically.

Factorization of traveltime and amplitude

Consider the following factored decompositions (Fomel et al.,
2009; Luo and Qian, 2011),

�
τðx; y; zÞ ¼ τ0ðx; y; zÞuðx; y; zÞ;
sðx; y; zÞ ¼ s0ðx; y; zÞαðx; y; zÞ; (4)

and assume that τ0 satisfies

j∇τ0j ¼ s0; (5)

with the initial condition,

lim
ðx;y;zÞ→ðx0;y0;z0Þ

�
τ0ðx; y; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2
p − s0ðx; y; zÞ

�

¼ 0: (6)

If we choose s0 as some constant, we have

τ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2

p
v0

;

which is the traveltime corresponding to the constant velocity
field v0 ¼ 1∕s0.
The function substitution transforms the eikonal equation 1 into

the factored eikonal equation (Fomel et al., 2009; Luo and Qian,
2011),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20j∇uj2 þ 2τ0u∇τ0 · ∇uþ u2s20

q
¼ s: (7)

The factor τ0 captures the source singularity such that the under-
lying function u is smooth in a neighborhood of the source.
Denote A0 as the amplitude corresponding to the constant velo-

city v0, and consider the following decomposition for A:

Aðx; y; zÞ ¼ A0ðx; y; zÞDðx; y; zÞ: (8)

Substituting A ¼ A0D and τ ¼ τ0u into equation 3, we get the fac-
tored transport equation,

A0ðτ0∇uþ u∇τ0Þ · ∇D

þ
�
τ0∇u · ∇A0 þ A0∇τ0 · ∇uþ 1

2
A0τ0Δu

�
D ¼ 0. (9)

A0 is known analytically and captures the source singularity, thus
the underlying factor D is smooth in a neighborhood of the source.
To get first-order accurate A, we need first-order accurate D. In

the factored transport equation 9, to get first-order accurate D, we
need at least third-order accurate u, because Δu is involved. There-
fore, we need to solve the factored eikonal equation 7 for u with at
least third-order accuracy. Traveltime τ0 and amplitude A0 corre-
sponding to the constant velocity field v0 capture the source singu-
larity properly, which makes it easy to design high-order methods to
solve equations 7 and 9 for the underlying functions u and D.
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Lax-Friedrichs scheme based on third-order WENO

We present the Lax-Friedrichs scheme for the factored equa-
tions 7 and 9 on a rectangular mesh Ωh with grid size h covering
the domain Ω (Kao et al., 2004; Zhang et al., 2006; Luo and Qian,
2011). Consider the following equation in a generic form,

Hðx; y; z; u; ux; uy; uzÞ ¼ fðx; y; zÞ: (10)

At a grid point ði; k; jÞ ¼ ðxi; yk; zjÞ with neighbors,

Nfi; k; jg ¼ fðxi−1; yk; zjÞ; ðxiþ1; yk; zjÞ; ðxi; yk; zj−1Þ;
ðxi; yk; zjþ1Þ; ðxi; ykþ1; zjÞ; ðxi; yk−1; zjÞg;

we design a third-order WENO-based Lax-Friedrichs scheme for
this equation as detailed in Appendix A.
Consequently, the third-order Lax-Friedrichs sweeping method

for equation 10 is summarized as follows (Kao et al., 2005; Zhang
et al., 2006; Luo and Qian, 2011):

1) Initialization: assign exact values or interpolate values at grid
points within a cubic volume centered at the source point with
side-length equal to 2hþ 2h, such that the number of grid
points is enough for the third-order WENO approximations.
These values are fixed during iterations.

2) Iterations: update unewi;k;j in equation A-11 by Gauss-Seidel itera-
tions with eight alternating directions

ð1Þ i ¼ 1∶I; k ¼ 1∶K; j ¼ 1∶J;

ð2Þ i ¼ 1∶I; k ¼ 1∶K; j ¼ J∶1;

ð3Þ i ¼ 1∶I; k ¼ K∶1; j ¼ 1∶J;

ð4Þ i ¼ 1∶I; k ¼ K∶1; j ¼ J∶1;

ð5Þ i ¼ I∶1; k ¼ 1∶K; j ¼ 1∶J;

ð6Þ i ¼ I∶1; k ¼ 1∶K; j ¼ J∶1;

ð7Þ i ¼ I∶1; k ¼ K∶1; j ¼ 1∶J;

ð8Þ i ¼ I∶1; k ¼ K∶1; j ¼ J∶1.

3) Convergence: if

���unewi;k;j − uoldi;k;j

���
∞
≤ δ;

where δ is a given convergence threshold value, the iteration
converges and stops.

We use this scheme to solve the factored equations:

• Equation 7 with Hamiltonian H and f as,

Hðx; y; z; u; ux; uy; uzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20j∇uj2 þ 2τ0u∇τ0 · ∇uþ u2s20

q
;

f ¼ s:
• Equation 9 with Hamiltonian H and f as,

Hðx; y; z; D;Dx;Dy;DzÞ ¼ A0ðτ0∇u þ u∇τ0Þ · ∇D

þ ðτ0∇u · ∇A0 þ A0∇τ0 · ∇uþ 1

2
A0τ0ΔuÞD;

f ¼ 0:

NUMERICAL EXPERIMENTS

In this section, we present several 2D and 3D examples to de-
monstrate the performance of the method. For all the examples,
the convergence criterion δ is chosen to be 10−9.

2D examples

For all 2D examples, we show computed traveltimes and ampli-
tudes, and we use computed results to approximate Green’s func-
tions for the Helmholtz equation with high frequencies,

∇2G2ðx; z;ωÞ þ
ω2

v2ðx; zÞG2ðx; z;ωÞ

¼ −δðx − x0Þδðz − z0Þ; (11)

where G2ðx; z;ωÞ is the Green’s function dependent on the fre-
quency ω.
We approximate the 2D Green’s function in the WKBJ form (See

Page 38 in Babich and Buldyrev, 2009 or Appendix C in Leung
et al., 2007),

G2ðx; z;ωÞ ≈
1ffiffiffiffi
ω

p Aðx; zÞeiðωτðx;zÞþπ
4
Þ: (12)

First, we use the following two velocity models, and we compare
the WKBJ Green’s functions with the direct solutions by a Helm-
holtz solver. We choose ω ¼ 32π.

1) Constant velocity vðx; zÞ ≡ 5.0 km∕s, ðx0; z0Þ ¼ ð0.5; 0.5Þ km,
and domain ½0; 1� × ½0; 1� km. We apply our method on a 100 ×
100 mesh and solve the Helmholtz equation 11 with the Helm-
holtz solver (Erlangga et al., 2006) on a 1200 × 1200 mesh.
Figure 1 shows the traveltime and amplitude computed with
our method. Figure 2 shows the results for the 2D Green’s func-
tion on a 100 × 100 mesh. The results by our method are very
close to those obtained by the Helmholtz solver. The reason is
that the traveltime field is smooth everywhere away from the
source. Therefore, the constructed asymptotic Green’s function
approximates the true Green’s function faithfully.

2) Velocity vðx; zÞ ¼ 1þ 0.2 sinð0.5πzÞ sinð3πðxþ 0.05ÞÞ km∕s,
ðx0; z0Þ ¼ ð0.5; 0.1Þ km∕s, and domain ½0; 1� × ½0; 2� km. We
apply our method on a 200 × 100mesh and solve the Helmholtz
equation 11 with the Helmholtz solver (Erlangga et al., 2006) on

z 
(k

m
)

x (km)
0 0.5 1

0

0.2

0.4

0.6

0.8

1a) b)

0

0.05

0.1

x (km)

z 
(k

m
)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1

2

3

4

Figure 1. 2D example 1. Computed (a) traveltimes and (b)
amplitudes.
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a 1600 × 800 mesh. Figure 3 shows the velocity model and the
resulting traveltime and amplitude computed by our method.
Figure 4 shows the results for the 2D Green’s function on a
200 × 100 mesh; especially we plot two slices at z ¼ 0.3 km

(no kink and no caustic) and at z ¼ 1.5 km (kink and caustic).
The constructed Green’s function in the weak sense cannot
approximate the true Green’s function faithfully because the
traveltime field is not smooth. However, we notice that before
kinks occur in the single-valued traveltime field or caustics
occur in the multivalued traveltime field, the true traveltime
field is smooth and the asymptotic Green’s function in the
single-valued sense approximates the true Green’s function
faithfully. Only after kinks in the single-valued traveltime field

or caustics in the multivalued traveltime field appear, the two
traveltime fields yield totally different Green’s functions.
Figure 5 shows the rays computed with the single-valued
traveltime field by integrating the backward characteristic equa-
tion dx

dt ¼ −∇τ, and the rays computed by ray-tracing technique.
Clearly, one can observe the kinks and caustics.

Marmousi velocity model

We apply our algorithms to the smooth Marmousi velocity model
as in Figure 6a. The model is sampled on a 0.024 km by 0.024 km
grid, consisting of 384 samples in the x-direction and 122
samples in the z-direction; therefore the domain is ½0; 9.192� ×
½0; 2.904� km. The point source is chosen to be at ð6.0; 2.784Þ km.
Traveltimes and amplitudes by our method are shown in

Figures 6b and 6c, where the two functions are computed on the
original mesh of 384 × 122. Figure 7 compares the first-arrival
based asymptotic Green’s function and the Green’s function ob-
tained by a nine-point finite-difference direct Helmholtz solver
(Jo et al., 1996), where ω ¼ 32π. A perfectly matched layer

z 
(k

m
)

x (km)
0 0.5 1

0a) b)

d)c)

0.2

0.4

0.6

0.8

1 −0.1

−0.05

0

0.05

0.1

x (km)

z 
(k

m
)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

−0.1

−0.05

0

0.05

0.1

0 0.5 1
−0.1

−0.05

0

0.05

0.1

W
av

ef
ie

ld

x (km)
0 0.5 1

−0.1

−0.05

0

0.05

0.1

W
av

ef
ie

ld

z (km)

Figure 2. 2D example 1. Green’s function with ω ¼ 32π. (a) Real
part of the Green’s function by our method. (b) Real part of the
Green’s function by Helmholtz solver. (c) Real part of the Green’s
function at z ¼ 0.3 km. Circle is our method; line is the Helmholtz
solver. (d) Real part of the Green’s function at x ¼ 0.3 km. Circle is
our method; line is the Helmholtz solver.
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Figure 3. 2D example 2. (a) Velocity field, (b) computed travel-
times, and (c) computed amplitudes.
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Figure 4. 2D example 2. Green’s function with ω ¼ 32π. (a) Real
part of the Green’s function by our method. (b) Real part of the
Green’s function by Helmholtz solver. (c) Real part of the Green’s
function at z ¼ 0.3 km with circle: our method and line: Helmholtz
solver. (d) Real part of the Green’s function at z ¼ 1.5 km.
Circle is our method; and line is the Helmholtz solver.
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(PML) absorbing boundary condition (Berenger, 1994) is used in
the direct solver. The first-arrival based asymptotic Green’s function
is constructed directly on the same mesh of 384 × 122 as used to
compute traveltimes and amplitudes. To resolve highly oscillatory
wavefields arising from complex velocity structure by the direct
solver, the original Marmousi velocity model has been interpolated
linearly onto a very fine mesh of 3831 × 1211, and the direct
Helmholtz solver is applied to the resulting refined Marmousi

model. To see differences between the two Green’s functions more
clearly, we plot two slices at z ¼ 2.496 km and z ¼ 1.992 km in
Figure 7c and 7d. Because the Marmousi model is highly hetero-
geneous with both lateral and in-depth variations, caustics quickly
develop away from the source as shown in Figure 7a and 7b.
Although the comparisons in Figure 7c and 7d show that the
two Green’s functions might not match with each other globally,
they do match with each other locally in a neighborhood of the
source as shown in Figure 7e and 7f. In the neighborhood of the
source, the traveltime field is single-valued so that the first-
arrival based asymptotic Green’s function approximates the true
Green’s function faithfully.
Because traveltime and amplitude functions are independent of

frequency ω, we can use a very coarse mesh to compute these two
functions. As long as no aliasing occurs in the constructed Green’s
function, we can use the computed traveltime and amplitude func-
tions to construct Green’s functions in a broad band of frequencies.
This is in sharp contrast to a direct Helmholtz solver, which is fre-
quency dependent and might require very fine mesh arising from
high frequencies as shown in the results for the Marmousi model.

3D examples

We use two 3D velocity models to demonstrate the performance
of our method. With computed traveltimes and amplitudes at our
disposal, we approximate 3D Green’s functions for the Helmholtz
equation with high frequencies,

∇2G3ðx; y; z;ωÞ þ
ω2

v2ðx; y; zÞG3ðx; y; z;ωÞ

¼ −δðx − x0Þδðy − y0Þδðz − z0Þ; (13)

where G3ðx; y; z;ωÞ is the Green’s function de-
pendent on the frequency ω.
We approximate the 3D Green’s function in

the WKBJ form (See Page 38 in Babich and
Buldyrev [2009] or Appendix C in Leung
et al. [2007]),

G3ðx; y; z;ωÞ ≈ Aðx; y; zÞeiωτðx;y;zÞ: (14)

3D example 1: constant velocity. The velocity
v ≡ 5 km∕s. The domain ½−1; 1� × ½−1; 1�×
½−1; 2� km. We use an 81 × 81 × 121 mesh.
The source point is at ðx0; y0; z0Þ ¼
ð0; 0; 0Þ km. We choose ω ¼ 64π. Figure 8
shows the computed traveltime, amplitude and
constructed Green’s functions. In Figure 9, we
compare our computed amplitude with the exact
amplitude

Aðx; y; zÞ ¼ 1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2

p ;

at ðy ¼ 0; z ¼ 0.3Þ km and ðy ¼ 0; z ¼ 1.5Þ km,
and we also compare the constructed Green’s
functions with the exact asymptotic form ob-
tained in Leung et al. (2007) at ðy ¼ 0; z ¼
0.3Þ km and ðy ¼ 0; z ¼ 1.5Þ km. The compari-
son indicates that the computed amplitudes and
constructed Green’s functions are accurate.

x (km)

z 
(k

m
)

0 2 4 6 8

0a)

b)

c)

1

2
2

4

6

x (km)

z 
(k

m
)

0 2 4 6 8

0

1

2
0.5
1
1.5
2
2.5

x (km)

z 
(k

m
)

0 2 4 6 8

0

1

2

0

1

2

Figure 6. 2D example 3: Marmousi model. (a) Velocity field, (b)
computed traveltimes, and (c) computed amplitudes.

x (km)

z 
(k

m
)

0 2 4 6 8

0a) b)

c) d)

e) f)

1

2
−0.1

0

0.1

x (km)

z 
(k

m
)

0 2 4 6 8

0

1

2

−0.1

0

0.1

0 5

−0.05

0

0.05

x (km)

W
av

ef
ie

ld

0 5
−0.04

−0.02

0

0.02

x (km)

W
av

ef
ie

ld

4 5 6

−0.05

0

0.05

x (km)

W
av

ef
ie

ld

4 5 6
−0.04

−0.02

0

0.02

0.04

x (km)

W
av

ef
ie

ld

Figure 7. 2D example 3: Marmousi model. Green’s function with ω ¼ 32π. (a) Green’s
function constructed by our method. (b) Green’s function computed by Helmholtz sol-
ver. (c) Real part of the Green’s function at z ¼ 2.496 km with circle: our method and
line: Helmholtz solver. (d) Real part of the Green’s function at z ¼ 1.992 kmwith circle:
our method and line: Helmholtz solver; (e) part of (c) with 3.5 < x < 6.7 km; and (f) part
of (d) with 3.5 < x < 6.7 km.
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3D example 2: Vinje’s Gaussian model. The model is given on
the domain is ½0; 1� × ½0; 1� × ½0; 1� km by,

vðx; y; zÞ ¼ 4 − 1.75e−
ðð2x−1Þ2þð2y−1Þ2þð2z−1.75Þ2Þ

0.52 km∕s: (15)

In computation, the velocity field v is rescaled by a factor
2∕ðmax0≤x;y;z≤1 vþmin0≤x;y;z≤1 vÞ. We use a 159 × 159 × 159

mesh. The source point is at ðx0; y0; z0Þ ¼ ð0.5; 0.5; 0.5Þ km.
Figure 10 shows the computed traveltimes and amplitudes at
z ¼ 29∕158 km and z ¼ 109∕158 km.
We choose ω ¼ 40π to construct the asymptotic Green’s func-

tion. Figure 11 shows the comparisons between the constructed
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WKBJ Green’s function and that obtained by the Helmholtz
solver in Engquist and Ying (2011) at z ¼ 29∕158 km and z ¼
109∕158 km. In Figure 12, we compare slices of the Green
function at ðy ¼ 79∕158; z ¼ 29∕158Þ km and ðy ¼ 79∕158;
z ¼ 109∕158Þ km, and this comparison indicates that the con-
structed asymptotic Green’s function is accurate.

CONCLUSIONS

Based on the factored eikonal equation, we apply the factoriza-
tion technique to compute the amplitude as well. To do that, we
decompose the amplitude into two multiplicative factors, one of
which is known analytically corresponding to a constant velocity
field, capturing the source singularity of the amplitude. Then we
apply the third-order WENO-based Lax-Friedrichs sweeping meth-
od to solve the factored equations for the underlying functions
numerically. The advantage of decomposing the amplitude into
two multiplicative factors is that because the known factor captures
the source singularity, the other factor is smooth near the source.
With computed traveltimes and amplitudes at our disposal, we
construct asymptotic Green’s functions in both 2D and 3D cases.
Numerical examples are presented to demonstrate the performance
of our method.
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APPENDIX A

THIRD-ORDERWENO LAX-FRIEDRICHS SCHEME

We detail the Lax-Friedrichs scheme for the factored equations 7
and 9 on a rectangular mesh Ωh with grid size h covering the do-
main Ω (Kao et al., 2004; Zhang et al., 2006; Luo and Qian, 2011).
Let us consider equations in the following generic form,

Hðx; y; z; u; ux; uy; uzÞ ¼ fðx; y; zÞ: (A-1)

At grid point ði; k; jÞ ¼ ðxi; yk; zjÞ with neighbors,

Nfi; k; jg ¼ fðxi−1; yk; zjÞ; ðxiþ1; yk; zjÞ; ðxi; yk; zj−1Þ;
ðxi; yk; zjþ1Þ; ðxi; ykþ1; zjÞ; ðxi; yk−1; zjÞg;

we consider a Lax-Friedrichs Hamiltonian (Osher and Shu, 1991;
Kao et al., 2004; Luo and Qian, 2011),

HLFðxi; yk; zj; ui;k;j; uNfi;k;jgÞ

¼ H
�
xi; yk; zj; ui;k;j;

uiþ1;k;j − ui−1;k;j
2h

;
ui;kþ1;j − ui;k−1;j

2h
;
ui;k;jþ1 − ui;k;j−1

2h

�

− αx
uiþ1;k;j − 2ui;k;j þ ui−1;k;j

2h
− αy

ui;kþ1;j − 2ui;k;j þ ui;k−1;j
2h

− αz
ui;k;jþ1 − 2ui;k;j þ ui;k;j−1

2h
; (A-2)

where αx, αy and αz are chosen such that for fixed ðxi; yk; zjÞ,

∂HLF

∂ui;k;j
≥ 0;

∂HLF

∂uNfi;k;jg
≤ 0: (A-3)

For example, we can choose,

αx ¼ max
m≤u≤M;A≤p≤B;C≤q≤D;E≤r≤F

�
1

2
jH1ðx; y; z; u; p; q; rÞjþ

���� ∂H∂u ðx; y; z; u; p; q; rÞ
����
�
;

αy ¼ max
m≤u≤M;A≤p≤B;C≤q≤D;E≤r≤F

�
1

2
jH2ðx; y; z; u; p; q; rÞjþ

���� ∂H∂u ðx; y; z; u; p; q; rÞ
����
�
;

αz ¼ max
m≤u≤M;A≤p≤B;C≤q≤D;E≤r≤F

�
1

2
jH3ðx; y; z; u; p; q; rÞjþ

���� ∂H∂u ðx; y; z; u; p; q; rÞ
����
�
;

(A-4)

where H1, H2, and H3 denote the derivatives of H with respect
to the first, second, and third gradient component, respectively.
The fluxHLF is monotone form ≤ ui;k;j ≤ M;A ≤ p ≤ B, C ≤ q ≤
D and E ≤ r ≤ F with p ¼ ðuiþ1;k;j − ui−1;k;jÞ∕2h, q ¼ ðui;kþ1;j −
ui;k−1;jÞ∕2h and r ¼ ðui;k;jþ1 − ui;k;j−1Þ∕2h. Then we have a first-
order Lax-Friedrichs scheme,

unewi;k;j ¼
�

1

αx∕hþ αy∕hþ αz∕h

�

×
�
fi;k;j −H

�
xi; yk; zj; uoldi;k;j;

uiþ1;k;j − ui−1;k;j
2h

;
ui;kþ1;j − ui;k−1;j

2h
;
ui;k;jþ1 − ui;k;j−1

2h

�

þ αx
uiþ1;k;j þ ui−1;k;j

2h
þ αy

ui;kþ1;j þ ui;k−1;j
2h

þ αz
ui;k;jþ1 þ ui;k;j−1

2h

�
:

(A-5)

As in Zhang et al. (2006) and Luo and Qian (2011), we replace
ui−1;k;j, uiþ1;k;j, ui;kþ1;j, ui;k−1;j, ui;k;j−1 and ui;k;jþ1 with,

ui−1;k;j ¼ ui;k;j − hðuxÞ−i;k;j; uiþ1;k;j ¼ ui;k;j þ hðuxÞþi;k;j;
ui;k−1;j ¼ ui;k;j − hðuyÞ−i;k;j; ui;kþ1;j ¼ ui;k;j þ hðuyÞþi;k;j;
ui;k;j−1 ¼ ui;k;j − hðuzÞ−i;k;j; ui;k;jþ1 ¼ ui;k;j þ hðuzÞþi;k;j:

(A-6)

ðuxÞ−i;k;j and ðuxÞþi;k;j are third-order WENO approximations of ux,
ðuyÞ−i;k;j, and ðuyÞþi;k;j are third-order WENO approximations of uy,
and ðuzÞ−i;k;j and ðuzÞþi;k;j are third-order WENO approximations of
uz (see Osher and Shu, 1991; Liu et al., 1994; Jiang and Shu, 1996;
and Jiang and Peng, 2000). For example,

ðuxÞ−i;k;j ¼ ð1 − ω−Þ
�
uiþ1;k;j − ui−1;k;j

2h

�

þ ω−

�
3ui;k;j − 4ui−1;k;j þ ui−2;k;j

2h

�
(A-7)
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Figure 12. 3D example 2. Line comparison of Green’s functions
with ω ¼ 40π; (a) at ðy ¼ 79∕158; z ¼ 29∕158Þ km; (b) at
ðy ¼ 79∕158; z ¼ 109∕158Þ km. Circle: our method; line: Helm-
holtz solver.
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ω− ¼ 1

1þ 2γ2−
; γ− ¼ ϵþ ðui;k;j − 2ui−1;k;j þ ui−2;k;jÞ2

ϵþ ðuiþ1;k;j − 2ui;k;j þ ui−1;k;jÞ2
;

(A-8)

and

ðuxÞþi;k;j ¼ ð1 − ωþÞ
�
uiþ1;k;j − ui−1;k;j

2h

�

þ ωþ

�
−3ui;k;j þ 4uiþ1;k;j − uiþ2;k;j

2h

�
(A-9)

with

ωþ ¼ 1

1þ 2γ2þ
; γþ ¼ ϵþ ðui;k;j − 2uiþ1;k;j þ uiþ2;k;jÞ2

ϵþ ðuiþ1;k;j − 2ui;k;j þ ui−1;k;jÞ2
:

(A-10)

Similarly, we can define third-order WENO approximations for
ðuyÞ−i;k;j, ðuyÞþi;k;j, ðuzÞ−i;k;j and ðuzÞþi;k;j. The term ϵ is a small positive
number to avoid division by zero.
Then, we have a Lax-Friedrichs scheme based on the third-order

WENO approximations (Zhang et al., 2006; Luo and Qian, 2011),

unewi;k;j ¼�
1

αx∕hþ αy∕hþ αz∕h

�
×

�
fi;k;j −H

�
xi; yk; zj; uoldi;k;j ;

ðuxÞ−i;k;j þ ðuxÞþi;k;j
2

;
ðuyÞ−i;k;j þ ðuyÞþi;k;j

2
;
ðuzÞ−i;k;j þ ðuzÞþi;k;j

2

�

þ αx
2uoldi;k;j þ hððuxÞþi;k;j − ðuxÞ−i;k;jÞ

2h
þ αy

2uoldi;k;j þ hððuyÞþi;k;j − ðuyÞ−i;k;jÞ
2h

þ αz
2uoldi;k;j þ hððuzÞþi;k;j − ðuzÞ−i;k;jÞ

2h

�
: (A-11)

Here unewi;k;j denotes the to-be-updated numerical solution for u at the
grid point ði; k; jÞ and uoldi;k;j denotes the current old value for u at the
same point.
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