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Abstract The viscosity solution of static Hamilton-Jacobi equations with a point-source
condition has an upwind singularity at the source, which makes all formally high-order
finite-difference scheme exhibit first-order convergence and relatively large errors. To obtain
designed high-order accuracy, one needs to treat this source singularity during computation.
In this paper, we apply the factorization idea to numerically compute viscosity solutions
of anisotropic eikonal equations with a point-source condition. The idea is to factor the
unknown traveltime function into two functions, either additively or multiplicatively. One
of these two functions is specified to capture the source singularity so that the other function
is differentiable in a neighborhood of the source. Then we design monotone fast sweeping
schemes to solve the resulting factored anisotropic eikonal equation. Numerical examples
show that the resulting monotone schemes indeed yield clean first-order convergence rather
than polluted first-order convergence and both factorizations are able to treat the source
singularity successfully.

1 Introduction

We consider the following anisotropic eikonal equation with a point-source condition,{
H(x,∇T (x)) = √∇T (x)M(x)∇T (x)t = 1, x ∈ �\{x0},
T (x0) = 0,

(1)

where � ⊂ R
N is a bounded open set, ∇T (x) = ∇T (x1, . . . , xN) = ( ∂T (x)

∂x1
, . . . , ∂T (x)

∂xN
), and

M(·) is a symmetric positive definite matrix modeling the anisotropy. Such nonlinear first-
order hyperbolic partial differential equations (PDE) arise in many applications such as clas-
sical mechanics, geosciences, geometrical optics, computer vision and optimal control. If

S. Luo · J. Qian (�)
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
e-mail: qian@math.msu.edu

S. Luo
e-mail: luos@math.msu.edu

Author's personal copy

mailto:qian@math.msu.edu
mailto:luos@math.msu.edu


J Sci Comput (2012) 52:360–382 361

M(x) = 1
S2(x)

I , then it reduces to the isotropic eikonal equation with a point-source condi-
tion, { |∇T (x)| = S(x), x ∈ �\{x0},

T (x0) = 0,
(2)

where S(x) is the slowness field.
Fast sweeping methods are a family of efficient methods for solving static Hamilton-

Jacobi equations [3, 6–8, 10, 18, 19, 21, 24–26], and some essential ideas of these methods
may trace back to [2, 20]. In [25] the fast sweeping method was systematically analyzed
for eikonal equations. Since then the fast sweeping methods have undergone an intensive
development for general static Hamilton-Jacobi equations in [3, 6–8, 10, 18, 19, 21, 26] and
have found many different applications; see [9, 13] for examples.

It is well-known that the viscosity solution of (1) has an upwind source singularity. For-
mally, all finite-difference solvers, even high-order ones, can only exhibit at most polluted
first-order convergence, since the initial error at the source can spread out to the whole space.
Especially, first-order schemes such as the fast sweeping method [11, 18, 19, 25] and other
methods [5, 22] can only have “polluted” accuracy of O(|h logh|) on an underlying mesh
with grid size h. To validate clean first-order convergence rates, most of the published works
[3, 6–8, 10, 15, 17–19, 21, 25, 26] have to rely on fixing a neighborhood of the source so that
one can carry out mesh refinement in other regions to quantify error behaviors; this approach
is ad hoc and is restricted in the sense that one has to assume that the related functions, such
as slowness field, are constant in that fixed neighborhood. Another approach to treat this
upwind singularity is adaptive gridding near the source as proposed and implemented in
[16]. So the question is that: can we have a first-order scheme with clean first-order conver-
gence without ad hoc special treatment near the source? This issue has been resolved for the
isotropic eikonal equation (2) by using a factorization approach [4, 14, 23]. The unknown
function is factored into two multiplicative factors. One of these two functions is specified to
capture the source singularity so that the other function is differentiable in a neighborhood
of the source. In [4] a fast sweeping scheme has been designed to compute the underlying
function which satisfies a factored eikonal equation, and both convergence order and error
behaviors have been improved. Since the underlying function is smooth in a neighborhood
of the source, high-order schemes can be designed with ease to compute this function with-
out ad hoc special treatment near the source; see [12] for such high-order sweeping schemes
based on the Lax-Friedrichs Hamiltonian.

In this paper, we extend this factorization idea to compute the viscosity solution of the
anisotropic eikonal equation (1). We present two approaches. One approach is to factor the
unknown function into two multiplicative factors as in [4]; the other is to factor the unknown
function into two additive factors. One of the two factors is specified analytically to capture
the source singularity, so that the other function is differentiable in a neighborhood of the
source. Then we design two first-order fast sweeping schemes to compute the underlying
functions. Numerical examples show that both first-order schemes yield desired first-order
convergence rate.

This paper is organized as follows. In Sect. 2, we derive factored anisotropic eikonal
equations for both multiplicative and additive factorizations. In Sect. 3, we present fast
sweeping methods for factored anisotropic eikonal equations. In Sect. 4, we present compu-
tational examples to illustrate our methods. Conclusions are given at the end.
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2 Factored Anisotropic Eikonal Equation

In this section, we derive factored anisotropic eikonal equations for both multiplicative and
additive factorizations. We present our derivations in 2-D only as the extension to higher
dimension is straightforward. The anisotropic eikonal equation with a point-source condition
in the 2-D case has the following form,⎧⎨

⎩
√

a(x)T 2
x − 2c(x)TxTy + b(x)T 2

y = 1, x ∈ �\{x0},
T (x0) = 0,

(3)

with M(x) = (
a(x) −c(x)

−c(x) b(x)

)
, x = (x, y), and x0 = (x0, y0).

2.1 Multiplicative Factors

We factorize the solution of the anisotropic eikonal equation (3) into multiplicative factors
[4]. We assume that T can be written in the form of two multiplicative functions,

T = T0τ,

with T0 a known function and τ the underlying function. Then we have

∇T = ∇T0τ + T0∇τ.

By substituting the above into the anisotropic eikonal equation (3), we have the factored
anisotropic equation,√√√√τ 2

(
aT0x

2 − 2cT0xT0y + bT0y
2
) + 2T0τ

(
aT0xτx − c(T0xτy + T0yτx)

+ bT0yτy

) + T 2
0

(
aτ 2

x − 2cτxτy + bτ 2
y

) = 1. (4)

By choosing an appropriate T0 to capture the source singularity, the function τ is smooth
near the source. Then τ can be computed accurately so that it can be used to recover accurate
T , which will gain some improvement of the accuracy on T compared to the solutions
obtained by solving (3) directly.

We choose T0 as the viscosity solution of the following anisotropic eikonal equation,⎧⎨
⎩

√
a0T0x

2 − 2c0T0xT0y + b0T0y
2 = 1, x ∈ �\{(x0, y0)},

T0(x0, y0) = 0,

(5)

with a0 = a(x0, y0), b0 = b(x0, y0) and c0 = c(x0, y0). Thus T0 is chosen to be

T0(x, y) =
√

b0(x − x0)2 + 2c0(x − x0)(y − y0) + a0(y − y0)2

a0b0 − c2
0

,

which captures the source singularity. Furthermore, we have

lim
(x,y)→(x0,y0)

T (x, y)

T0(x, y)
= 1 (6)

so that

lim
(x,y)→(x0,y0)

τ (x, y) = 1. (7)
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2.2 Additive Factors

We may also decompose T into two additive functions,

T = T0 + τ ;
then we have

∇T = ∇T0 + ∇τ.

By substituting it into the anisotropic eikonal equation (3), we have the factored anisotropic
eikonal equation,√√√√aτ 2

x − 2cτxτy + bτ 2
y + 2τx(aT0x − cT0y) + 2τy(bT0y − cT0x)

+ aT0x
2 − 2cT0xT0y + bT0y

2
= 1. (8)

We choose T0 as the viscosity solution of (5) so that it captures the source singularity. Then
the following holds:

lim
(x,y)→(x0,y0)

τ (x, y)

T0(x, y)
= 0. (9)

2.3 Factorization: Multiplicative Versus Additive

Among the two factorizations, which one is preferred? To gain some insights, we carry
out some preliminary analysis for the 1-D case. Without loss of generality, assume that the
source x0 = 0. Then{ |T ′(x)| = S(x), x ∈ �\{0},

T (0) = 0; and

{ |T ′
0(x)| = S0 = S(0), x ∈ �\{0},

T0(0) = 0,
(10)

where S(x) is smooth.
The solutions T and T0 have the following explicit forms,

T (x) =
{∫ x

0 S(t)dt, x ≥ 0,

− ∫ x

0 S(t)dt, x < 0; and T0(x) = S0|x|. (11)

In the case of multiplicative factorization, we have

τ(x) =
⎧⎨
⎩

∫ x
0 S(t)dt

S0x
, x 	= 0,

1, x = 0.
(12)

By L’Hôpital’s rule, it is easy to show that

τ ′(0) = lim
x→0

τ ′(x) = lim
x→0

S(x)x − ∫ x

0 S(t)dt

S0x2
= lim

x→0

S ′(x)x

2S0x
= S ′(0)

2S0
.

Similarly, one can prove that τ (n)(0) = S(n)(0)

(n+1)S0
for n ≥ 1. Therefore, if S(n)(0) exists, then

τ (n)(0) exists.
In the case of additive factorization, we have

τ(x) =
{∫ x

0 S(t)dt − S0x, x ≥ 0,

− ∫ x

0 S(t)dt + S0x, x < 0; (13)
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it follows that

τ ′(x) =
{

S(x) − S0, x > 0,

−S(x) + S0, x < 0.
(14)

Thus, τ ′(0) = 0. For n > 1, we have

τ (n)(x) =
{

S(n−1)(x), x > 0,

−S(n−1)(x), x < 0.
(15)

Therefore, for n > 1, only when − limx→0− S(n−1)(x) = limx→0+ S(n−1)(x), τ (n)(0) exists.
Consequently, the above analysis indicates that the multiplicative factorization yields an

underlying function τ which is as smooth as the right-hand side function S in the source
neighborhood, while the additive factorization only yields an underlying function τ which
will be smooth up to the first-order derivative without any condition and will be smooth up
to higher-order derivatives with some conditions. Therefore, the additive factorization has
some limitations in practice which may result in under-performance in comparison with the
multiplicative factorization.

Moreover, the limit relations (7) and (9) indicate that both factorizations only impose
some conditions on the underlying factors to control their local behaviors near the source
point. Therefore, if T0 is not a “good” approximation to T globally, then we may need more
iterations to “correct” the underlying factors numerically.

Nevertheless, since T0 captures the source singularity, both factorizations yield an under-
lying function τ which is differentiable near the source point, and this is our main motiva-
tion to carry out factorizations. As a result, we are able to design first-order fast sweeping
methods to numerically compute τ with clean first-order convergence as the solution of the
factored anisotropic eikonal equation (4) or (8), which are presented in the following section.

3 Numerical Schemes

We present our schemes on rectangular meshes only as the extension to triangular meshes
can be done similarly.

3.1 Two-Dimensional Cases

We first derive the fast sweeping method for the factored anisotropic equation (4) [4, 18,
19, 25]. On a local mesh with grid size h, Fig. 1 shows an interior grid point C with four
triangles that have C as a common vertex, and we discretize (4) on these four triangles. For
example, on the triangle 
CWS with W = (xW , yW ),S = (xS, yS) and C = (xC, yC), linear
Taylor expansions yield ⎧⎪⎪⎨

⎪⎪⎩
τ(C) − τ(W)

h
≈ τx(C),

τ (C) − τ(S)

h
≈ τy(C).

(16)

Inserting these expansions into the factored anisotropic eikonal equation (4), we get a dis-
cretized equation,
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Fig. 1 2-D rectangular mesh,
vertex C with four neighbors W ,
S, E and N

√√√√√√√√√√√√√

τ 2(C)
(
aT0x

2 − 2cT0xT0y + bT0y
2
) + 2T0τ(C)

(
aT0x

τ (C) − τ(W)

h

− c

(
T0x

τ (C) − τ(S)

h
+ T0y

τ (C) − τ(W)

h

)
+ bT0y

τ (C) − τ(S)

h

)

+ T 2
0

(
a

[
τ(C) − τ(W)

h

]2

− 2c
τ(C) − τ(W)

h

τ(C) − τ(S)

h
+ b

[
τ(C) − τ(S)

h

]2)
= 1.

(17)

Now given the values τ(W) and τ(S), we need to solve the equation (17) for τ(C). There
are three scenarios:

1. There is only one solution for τ(C) from (17); i.e., the triangle supports one consistent
candidate for τ(C).

2. There are two distinct solutions for τ(C) from (17); i.e., the triangle supports two con-
sistent candidates for τ(C).

3. There is no solution for τ(C) from (17); i.e. the triangle does not support any consistent
candidate for τ(C).

If Case 1 or 2 happens, we need to check whether a candidate value, denoted τh(C),
for τ(C) that is consistent with the PDE satisfies the following causality condition: the
characteristic for T passing through C, which is given by(

a(C)T h
x (C) − c(C)T h

y (C), b(C)T h
y (C) − c(C)T h

x (C)
)
,

with ∇T h(C) = ∇τh(C)T0(C)+ τh(C)∇T0(C), is in between the two sides
−−→
WC and

−→
SC of

the triangle as in Fig. 1.
If Case 3 happens, we will enforce the characteristic to be along the two sides

−−→
WC and−→

SC by using the characteristic equations,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(x, y)

dt
=

(
∂H
∂p

,
∂H
∂q

)
,

d(p, q)

dt
= −

(
∂H
∂x

,
∂H
∂y

)
,

dτ

dt
= (p, q) · d(x, y)

dt
= p

∂H
∂p

+ q
∂H
∂q

,

(18)

where H(x, y,p, q) is the Hamiltonian defined as the left-hand side of (4) with p = τx and
q = τy . In general, we will discretize the characteristic equations with linear approximations.
In the current case, we can find a candidate value of τh(C) as follows. For example, if
we enforce the characteristic to be along

−−→
WC, then dy

dt
= ∂H

∂q
= 0, yielding that b(T0τy +

T0yτ ) − c(T0τx + T0xτ ) = 0; thus we have (T0τy + T0yτ ) = c
b
(T0τx + T0xτ ). By plugging
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it into the factored eikonal equation (4), we have
√

ab−c2

b
(T0τx + T0xτ )2 = 1. Thus, by the

finite difference discretization, a candidate value is given by

τh(C) =
T0(C)τ(W) + |WC|

√
b(C)

a(C)b(C)−c2(C)

T0(C) + T0x(C)(xC − xW)
. (19)

For each triangle, there may be multiple solutions for τ(C) satisfying the causality con-
dition, and there may be even more on all four triangles. The fast sweeping method will
pick up the minimum one according to recovered candidate values for T based on T = τ T0.
Accordingly, we present the following local solver.

2-D Local Solver:

1. Initialization: τ(x0, y0) = 1.
2. Gauss-Seidel iteration: sweeping the domain with four alternating orderings repeatedly:

(1) i = 1 : I, j = 1 : J ;
(2) i = 1 : I, j = J : 1;
(3) i = I : 1, j = 1 : J ;
(4) i = I : 1, j = J : 1.

• At each gird point, discretize the factored eikonal equation on 4 triangles 
CEN ,

CNW , 
CWS and 
CSE, and solve the discretized equations on each triangle.
For example, on triangle 
CWS, solve equation (17) for two possible roots, denoted
as τC,1 and τC,2.
– If there are two real roots, τC,1 and τC,2, then

∗ if both τC,1, and τC,2 satisfy the causality condition, denote TWS = min{τC,1T0(C),

τC,2T0(C)};
∗ else if τC,1 satisfies the causality condition, denote TWS = τC,1T0(C);
∗ else if τC,2 satisfies the causality condition, denote TWS = τC,2T0(C);
∗ else if none of the two roots satisfies the causality condition, then use the method

of characteristics on edges
−−→
WC and

−→
SC to get two candidates values as in (19),

denoted as τWC and τSC respectively.
+ if τWCT0(C) ≥ T (W) and τSCT0(C) ≥ T (S), denote TWS = min{τWCT0(C),

τSCT0(C)};
+ else if τWCT0(C) ≥ T (W), denote TWS = τWCT0(C);
+ else if τSCT0(C) ≥ T (S), denote TWS = τSCT0(C);
+ else, denote TWS = ∞.

– else, use the method of characteristics on edges
−−→
WC and

−→
SC to get two candidates

values as in (19), denoted as τWC and τSC respectively.
∗ if τWCT0(C) ≥ T (W) and τSCT0(C) ≥ T (S), denote TWS = min{τWCT0(C),

τSCT0(C)};
∗ else if τWCT0(C) ≥ T (W), denote TWS = τWCT0(C);
∗ else if τSCT0(C) ≥ T (S), denote TWS = τSCT0(C);
∗ else, denote TWS = ∞.

• Once we compute four values from the four triangles as above, denoted as TEN ,
TNW , TWS , and TSE , we choose the minimum from these four values, T (C) =
min{TEN,TNW ,TWS,TSE}.

• τ(C) = T (C)

T0(C)
.

3. Convergence test: |τnew − τ old |∞ < tolerance.

Author's personal copy



J Sci Comput (2012) 52:360–382 367

Next we consider the factored anisotropic equation (8). On a local mesh as in Fig. 1, we
discretize the equation on the four triangles similarly as above. For example on 
CWS, we
have the discretized equation,√√√√√√√√√√

a

[
τ(C) − τ(W)

h

]2

− 2c
τ(C) − τ(W)

h

τ(C) − τ(S)

h
+ b

[
τ(C) − τ(S)

h

]2

+ 2
τ(C) − τ(W)

h
(aT0x − cT0y) + 2

τ(C) − τ(S)

h
(bT0y − cT0x)

+ aT0x
2 − 2cT0xT0y + bT0y

2

= 1. (20)

The local solver for the fast sweeping method is the same as above. The initialization is
given as τ(x0, y0) = 0. T is recovered by τ + T0. For the causality condition, in this case,
the gradient of T is given by,

∇T h(C) = ∇T0(C) + ∇τh(C).

When a characteristic is forced to propagate along edges, we use the method of characteris-
tics (18) under linear approximations as in the case of multiplicative factors. For example,
on edge

−−→
WC, a candidate value is given by,

τh(C) = τ(W) +
√

b(C)

a(C)b(C) − c2(C)
|WC| − T0x(C)(xC − xW).

Proposition 3.1 The discretization schemes (17) and (20) are consistent and monotone un-
der the causality condition.

Proof The consistency is obvious (e.g. [1, 11, 18, 19, 25]). We only sketch the proof for the
monotonicity of (17). The monotonicity of (20) can be proved similarly.

Without loss of generality, we assume that the source (x0, y0) = (0,0); then

T0(x, y) =
√

b0x2 + 2c0xy + a0y2

a0b0 − c2
0

.

Denote the left hand side of (17) as HD(C, τ(C), τ (W), τ (S)). We want to show that

∂HD

∂τ(C)
≥ 0,

∂HD

∂τ(W)
≤ 0, and

∂HD

∂τ(S)
≤ 0.

Taking derivatives, we have

∂HD

∂τ(C)
=

(
T0x + T0

h

)(
aT h

x − cT h
y

) +
(

T0y + T0

h

)(
bT h

y − cT h
x

)|(xC ,yC).

By the causality condition, we have

aT h
x − cT h

y |(xC ,yC) ≥ 0 and
(
bT h

y − cT h
x

)|(xC ,yC) ≥ 0.

By the convexity of T0 or by simple calculations, one can easily show that

T0x + T0

h
|(xC ,yC) ≥ 0 and T0y + T0

h
|(xC ,yC) ≥ 0.

Therefore, ∂HD

∂τ(C)
≥ 0.
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Similarly, we have

∂HD

∂τ(W)
= −T0

h

(
aT h

x − cT h
y

)|(xC ,yC) ≤ 0,

∂HD

∂τ(S)
= −T0

h

(
bT h

y − cT h
x

)|(xC ,yC) ≤ 0.

Thus the monotonicity of (17) is proved. �

Remark 3.2 The consistency and monotonicity guarantee the convergence of the numerical
solutions of the fast sweeping method to the right viscosity solutions [1, 11, 18, 19, 25].

Remark 3.3 Note that for the causality condition, we approximate ∇T with ∇T h(C) =
T0(C)∇τh(C) + ∇T0(C)τh(C) and ∇T h(C) = ∇T0(C) + ∇τh(C) for multiplicative and
additive factorization, respectively, which is different from the approach used in [4], where

∇T h(C) = ( T h(C)−T h(W)

h
, T h(C)−T h(S)

h
) on 
CWS. The former approximation guarantees

that the numerical Hamiltonian is monotone, while the latter does not imply a monotone
numerical Hamiltonian.

3.2 Three-Dimensional Cases

For 3-D cases, we assume that the anisotropy is modeled by

M(x) =
⎛
⎝ a(x) −d(x) −e(x)

−d(x) b(x) −f (x)

−e(x) −f (x) c(x)

⎞
⎠ ,

with x = (x, y, z) and x0 = (x0, y0, z0).
The factored anisotropic eikonal equations with multiplicative and additive factors can

be derived similarly as in 2-D cases, which are given by√√√√√√√√√
τ 2

(
aT0x

2 + bT0y
2 + cT0z

2 − 2dT0xT0y − 2eT0xT0z − 2f T0yT0z

)
+ 2τT0

(
aT0xτx + bT0yτy + cT0zτz − d(τxT0y + T0xτy)

− e(τxT0z + T0xτz) − f (τyT0z + T0yτz)
)

+ T 2
0

(
aτ 2

x + bτ 2
y + cτ 2

z − 2dτxτy − 2eτxτz − 2f τyτz

) = 1, (21)

and√√√√√√√
aτ 2

x + bτ 2
y + cτ 2

z − 2dτxτy − 2eτxτz − 2f τyτz + 2
(
(aT0x − dT0y − eT0z)τx

+ (bT0y − dT0x − f T0z)τy + (cT0z − eT0x − f T0y)τz

)
+ aT0x

2 + bT0y
2 + cT0z

2 − 2dT0xT0y − 2eT0xT0z − 2f T0yT0z

= 1,

(22)

respectively.
The 3-D local solver for the fast sweeping method can be derived similarly as in 2-D

cases. On a local mesh with grid size h, Fig. 2 shows an interior point C with eight tetra-
hedrons that have C as a common vertex, and we discretize (21) and (22) on these eight
tetrahedrons.
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Fig. 2 3-D rectangular mesh,
vertex C with six neighbors W ,
S, E, N , U and D

For example, on the tetrahedron CWSD with W = (xW , yW , zW ), S = (xS, yS, zS),
D = (xD, yD, zD), and C = (xC, yC, zC), the discretizations of (21) and (22) are given by
substituting (τx, τy, τz) with the linear Taylor expansions,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τx ≈ τ(C) − τ(W)

h
,

τy ≈ τ(C) − τ(S)

h
,

τz ≈ τ(C) − τ(D)

h
.

(23)

Similar to the 2-D local solver, given τ(W), τ (S) and τ(D), we need to solve discretized
equations for τ(C). If there exist consistent candidates for τ(C), we need to check whether
they satisfy the causality condition: the characteristic for T passing through C is inside the
tetrahedron CWSD as in Fig. 2. For example, if a consistent candidate is given by τh(C),
then we require that the characteristic of T be inside the tetrahedron CWSD. Here the
characteristic of T is approximated by,(

aT h
x − dT h

y − eT h
z , bT h

y − dT h
x − f T h

z , cT h
z − eT h

x − f T h
y

)|C,

where ∇T h(C) = ∇τh(C)T0(C) + τh(C)∇T0(C) for multiplicative factors and ∇T h(C) =
∇τh(C) + ∇T0(C) for additive factors, respectively, and ∇τh(C) is approximated by (23).

We summarize the 3-D local solver as follows.

3-D Local Solver:

1. Initialization: τ(x0, y0, z0) = 1 for multiplicative factors and = 0 for additive factors.
2. Gauss-Seidel iteration: sweeping the domain with eight alternating orderings repeatedly:

(1) i = 1 : I , j = 1 : J , k = 1 : K ;
(2) i = 1 : I , j = J : 1, k = 1 : K;
(3) i = I : 1, j = 1 : J , k = 1 : K ;
(4) i = I : 1, j = J : 1, k = 1 : K;
(5) i = 1 : I , j = 1 : J , k = K : 1;
(6) i = 1 : I , j = J : 1, k = K : 1;
(7) i = I : 1, j = 1 : J , k = K : 1;
(8) i = I : 1, j = J : 1, k = K : 1.

• At each gird point C as in Fig. 2, discretize the factored eikonal equation on eight
tetrahedrons, and solve the discretized equations on each tetrahedron. For example, on
the tetrahedron CWSD, solve the discretized equation for two possible roots, denoted
τC,1 and τC,2.
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– if both two roots are consistent and satisfy the causality condition, we choose the
minimum one according to the recovered candidate values of T .

– else if only one of the two roots is consistent and satisfies the causality condition,
we choose this one.

– else if neither one satisfies the causality condition, then we apply the 2-D local
solver on the three faces 
CWS,
CWD and 
CSD, and we choose the minimum
one according to the recovered candidate values of T .

• Choose the minimum one according to the recovered candidate values of T among all
eight tetrahedrons.

3. Convergence test: |τnew − τ old |∞ < tolerance.

Remark 3.4 In the 3-D solver, for example on the tetrahedron CWSD, when there exist no
roots that satisfy the causality condition, we need to apply the 2-D local solver on the three
faces 
CWS,
CWD and 
CSD. On each face, the 3-D anisotropic eikonal equation
reduces to the 2-D anisotropic eikonal equation√

ατ 2
μ − 2γ τμτν + βτ 2

ν = 1,

where,

• On 
CWS, (μ, ν) = (x, y), (α,β, γ ) = (a − e2/c, b − f 2/c, d + f e/c);
• On 
CWD, (μ, ν) = (x, z), (α,β, γ ) = (a − d2/b, c − f 2/b, e + f d/b);
• On 
CSD, (μ, ν) = (y, z), (α,β, γ ) = (b − d2/a, c − e2/a,f + ed/a).

Remark 3.5 In 3-D cases, without loss of generality, if (x0, y0, x0) = (0,0,0), then T0 is
given by

T0 =

√√√√√√
(b0c0 − f 2

0 )x2 + 2(c0d0 + e0f0)xy + 2(d0f0 + b0e0)xz

+ (a0c0 − e2
0)y

2 + 2(d0e0 + a0f0)yz + (a0b0 − d2
0 )z2

a0b0c0 − 2d0e0f0 − a0f
2
0 − c0d

2
0 − b0e

2
0

.

Remark 3.6 For the 3-D cases, the consistency and monotonicity of the numerical scheme
can be proved similarly as in 2-D cases. Thus, the convergence of the numerical solutions to
the correct viscosity solutions can also be proved [1, 11, 18, 19, 25].

4 Numerical Examples

In this section we test our numerical algorithms on a variety of examples. We compare
numerical solutions by three different formulations based on the multiplicatively factored
eikonal equation, the additively factored eikonal equation, and the original eikonal equation,
respectively. The numerical solution of the original eikonal equation is computed by the fast
sweeping method as in [18, 19, 25]. We use 	∞-norm to measure the error and choose
tolerance = 10−7.

4.1 2-D Examples

We first test both anisotropic and isotropic cases in 2-D. The first two isotropic cases have
also been tested in [4], and we choose them because they have exact solutions.
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Example 1 (Constant gradient of slowness squared) The slowness field is given by

S2(x) = S2
0 + 2g · (x − x0). (24)

We test one setup with parameters:

• source point: x0 = (x0, y0) = (0.25,0.25).

• computational domain: x = (x, y) ∈ [0, 0.5]2.

• S0 = 2.

• g = (g1, g2) = (0,−3).

• the exact solution T (x) = S̄2σ − |g|2 σ 3

6 with σ =
√

2(S̄2−
√

S̄4−|g|2|x−x0|2)

|g| , S̄ =√
S2

0 + g · (x − x0).
• T0(x) = S0|x − x0|.

Table 1 shows the comparison results in terms of mesh refinement for 	∞-errors and
number of iterations. As the mesh is refined, both schemes based on the factored eikonal
equations yield clean first-order convergence while the scheme based on the original eikonal
equation yields polluted first-order convergence. This clearly demonstrates that the proposed
strategies to remove the source singularity work well.

In addition, we compare the CPU time for the factored approaches and the original
method. The original method takes CPU time 116 seconds to reach maximum error of
0.0008043 after 5 iterations on a 3200 × 3200 mesh; the additive factorization takes CPU
time 2.72 seconds to reach maximum error of 0.0003064 after 9 iterations on a 400 × 400
mesh; and the multiplicative factorization takes CPU time 0.06 seconds to reach maximum
error of 0.0001409 after 13 iterations on a 50 × 50 mesh.

We also report the results based on the initialization near the source by the wrap-up
method; namely, the initial condition is assigned on a disk with radius R centered at the
source point, where T = T0 on the disk. Table 1 shows the results.

Example 2 (Constant gradient of velocity) The slowness distribution has the form,

1

S(x)
= 1

S0
+ g · (x − x0). (25)

We test one setup with parameters:

• source point: x0 = (x0, y0) = (0.25,0.25).
• computational domain: x = (x, y) ∈ [0, 0.5]2.
• S0 = 2.
• g = (g1, g2) = (0,−1).
• the exact solution T (x) = 1

|g| arccosh(1 + 1
2S(x)S0|g|2|x − x0|2), with arccosh being the

inverse hyperbolic cosine function, i.e. arccosh(z) = log(z + √
z2 − 1).

• T0(x) = S0|x − x0|.
Table 2 shows the comparison results in terms of mesh refinement for 	∞-errors and

number of iterations. As the mesh is refined, both schemes based on the factored eikonal
equations yield clean first-order convergence while the scheme based on the original eikonal
equation yields polluted first-order convergence.

In addition, we compare the CPU time for the factored approaches and the original
method. The original method takes CPU time 40.97 seconds to reach maximum error of
0.0016797 after 8 iterations on a 1600 × 1600 mesh; the additive factorization takes CPU
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Table 1 Example 1: numerical error

Factored eikonal equation: multiplicatively

Mesh Error of T on [0,0.5]2 # iterations Convergence order

50 × 50 0.0001409 13 –

100 × 100 0.0000705 13 0.9900

200 × 200 0.0000352 10 1.0020

400 × 400 0.0000176 10 1.0000

Factored eikonal equation: additively

Mesh Error of T on [0,0.5]2 # iterations Convergence order

50 × 50 0.0024091 13 –

100 × 100 0.0012141 10 0.9886

200 × 200 0.0006105 9 0.9918

400 × 400 0.0003064 9 0.9946

Original eikonal equation

Mesh Error of T on [0,0.5]2 # iterations Convergence order

50 × 50 0.0232938 5 –

100 × 100 0.0138471 5 0.7504

200 × 200 0.0080710 5 0.7788

400 × 400 0.0046246 5 0.8034

Original eikonal equation: wrap-up R = 0.02

Mesh Error of T on [0,0.5]2 # iterations Convergence order

50 × 50 0.0205600 5 –

100 × 100 0.0104242 5 0.9799

200 × 200 0.0051901 5 1.0061

400 × 400 0.0025231 5 1.0406

800 × 800 0.0013361 5 0.9171

1600 × 1600 0.0007852 5 0.7669

time 3.53 seconds to reach maximum error of 0.0013361 after 10 iterations on a 400 × 400
mesh; and the multiplicative factorization takes CPU time 0.25 seconds to reach maximum
error of 0.0015702 after 13 iterations on a 100 × 100 mesh.

We also report the results with the wrap-up method in Table 2. Initialization in the wrap-
up method is done similarly as in Example 1.

Example 3 In this example, we test an anisotropic case with the following setup:

1. source point: x0 = (x0, y0) = (0.5,0.5).
2. computational domain: x = (x, y) ∈ [0, 1]2.
3. a(x, y) = 1.0

e
−2

√
2(x−x0)2+2(x−x0)(y−y0)+(y−y0)2

.

4. b(x, y) = 2.0

e
−2

√
2(x−x0)2+2(x−x0)(y−y0)+(y−y0)2

.
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Table 2 Example 2: numerical error

Factored eikonal equation: multiplicatively

Mesh Error of T on [0,0.5]2 # iterations Convergence order

50 × 50 0.0031484 13 –

100 × 100 0.0015702 13 1.0037

200 × 200 0.0007841 13 1.0018

400 × 400 0.0003918 13 1.0009

Factored eikonal equation: additively

Mesh Error of T on [0,0.5]2 # iterations Convergence order

50 × 50 0.0106532 12 –

100 × 100 0.0053306 12 0.9989

200 × 200 0.0026689 12 0.9981

400 × 400 0.0013361 12 0.9982

Original eikonal equation

Mesh Error of T on [0,0.5]2 # iterations Convergence order

50 × 50 0.0306498 8 –

100 × 100 0.0174656 8 0.8114

200 × 200 0.0098650 8 0.8241

400 × 400 0.0055181 8 0.8381

Original eikonal equation: wrap-up R = 0.02

Mesh Error of T on [0, 0.5]2 # iterations Convergence order

50 × 50 0.0278171 8 –

100 × 100 0.0138165 8 1.0096

200 × 200 0.0067192 8 1.0400

400 × 400 0.0031448 8 1.0953

800 × 800 0.0016133 8 0.9630

1600 × 1600 0.0011280 8 0.5162

5. c(x, y) = 1.0

e
−2

√
2(x−x0)2+2(x−x0)(y−y0)+(y−y0)2

.

6. the exact solution T (x, y) = 1 − e−
√

2(x−x0)2+2(x−x0)(y−y0)+(y−y0)2
.

7. T0(x, y) = √
2(x − x0)2 + 2(x − x0)(y − y0) + (y − y0)2.

Table 3 shows the comparison results in terms of mesh refinement for 	∞-errors and
number of iterations. As the mesh is refined, both schemes based on the factored eikonal
equations yield clean first-order convergence while the scheme based on the original eikonal
equation yields polluted first-order convergence, and this implies that the proposed strategies
to remove the source singularity work well.

In addition, we compare the CPU time for the factored approaches and the original
method. The original method takes CPU time 12.3 seconds to reach maximum error of
0.0048191 after 5 iterations on a 1280 × 1280 mesh; the additive factorization takes CPU
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Table 3 Example 3: numerical error

Factored anisotropic eikonal equation: multiplicatively

Mesh Error of T on [0,1]2 # iterations Convergence order

40 × 40 0.0043553 14 –

80 × 80 0.0023646 14 0.8812

160 × 160 0.0012554 12 0.9134

320 × 320 0.0006547 9 0.9392

Factored anisotropic eikonal equation: additively

Mesh Error of T on [0,1]2 # iterations Convergence order

40 × 40 0.0158459 17 –

80 × 80 0.0079552 16 0.9941

160 × 160 0.0038892 16 1.0324

320 × 320 0.0019980 13 0.9609

Original anisotropic eikonal equation

Mesh Error of T on [0,1]2 # iterations Convergence order

40 × 40 0.0530904 5 –

80 × 80 0.0352187 5 0.5921

160 × 160 0.0224187 5 0.6516

320 × 320 0.0137871 5 0.7014

Original anisotropic eikonal equation: wrap-up R = 0.02

Mesh Error of T on [0,1]2 # iterations Convergence order

40 × 40 0.0530904 5 –

80 × 80 0.0325042 5 0.7078

160 × 160 0.0193081 5 0.7514

320 × 320 0.0109105 5 0.8235

640 × 640 0.0058674 5 0.8949

1280 × 1280 0.0031004 5 0.9203

Fig. 3 (Color online)
Example 3. Plots of T . Left:
factored equation with
multiplicative factors. Right:
factored equation with additive
factors. Zoom-in to the corner.
Red: exact solution; Blue-dashed:
original equation;
Black-dashed-dot: factored
equation

time 3.97 seconds to reach maximum error of 0.0019980 after 13 iterations on a 320 × 320
mesh; and the multiplicative factorization takes CPU time 0.67 seconds to reach maximum
error of 0.0012554 after 12 iterations on a 160 × 160 mesh. Figure 3 shows the plots of
numerical solutions on a 160 × 160 mesh.

Author's personal copy



J Sci Comput (2012) 52:360–382 375

We also report the results with the wrap-up method in Table 3.

Example 4 In this example, we test an anisotropic case that has been tested in [18] with the
following setup:

1. source point: x0 = (x0, y0) = (0.5,0.5).
2. computational domain: x = (x, y) ∈ [0, 1]2.
3. a(x, y) = 150.25(1 + λ sin2(πxy)).
4. b(x, y) = 50.75(1 + δ cos2(πxy)).
5. c(x, y) = 86.16953(1 − ε sin2(πxy)).
6. λ = 1, δ = 1, ε = 0.125.
7. the exact solution: we compute the numerical solution with the factored equation (8) on

a 5120 × 5120 mesh, and use it as an approximation of the exact solution.

8. T0(x, y) =
√

50.75(1+0.5δ)(x−x0)2+86.16963(2−ε)(x−x0)(y−y0)+150.25(1+0.5λ)(y−y0)2

150.25(1+0.5λ)50.75(1+0.5δ)−(86.16953(1−0.5ε))2 .

Table 4 shows the comparison results in terms of mesh refinement for 	∞-errors and
number of iterations. As the mesh is refined, both schemes based on the factored eikonal
equations yield well-behaved first-order convergence while the scheme based on original
eikonal equation yields polluted first-order convergence.

In addition, we compare the CPU time for the factored approaches and the original
method. The original method takes CPU time 5.76 seconds to reach maximum error of
0.000630 after 8 iterations on a 640 × 640 mesh; the additive factorization takes CPU time
0.04 seconds to reach maximum error of 0.000459 after 13 iterations on a 40 × 40 mesh;
and the multiplicative factorization takes CPU time 0.05 seconds to reach maximum error
of 0.000376 after 17 iterations on a 40 × 40 mesh. Figure 4 shows the plots of numerical
solutions on a 160 × 160 mesh.

We also report the results with the wrap-up method in Table 4.

4.2 3-D Examples

We test both anisotropic and isotropic cases in 3-D.

Example 5 (Constant gradient of slowness squared) In this example, we test a 3-D isotropic
case (Appendix in [4]) as in Example 1 with the slowness field

S2(x) = S2
0 + 2g · (x − x0). (26)

We test one setup with parameters:

• source point: x0 = (x0, y0, z0) = (0.25,0.25,0.25).

• computational domain: x = (x, y, z) ∈ [0, 0.5]3.

• S0 = 2.

• g = (g1, g2, g3) = (0,−3,0).

• the exact solution T (x) and T0(x) are similar as in Example 1.

Table 5 shows the comparison results in terms of mesh refinement for 	∞-errors and
number of iterations. As the mesh is refined, both schemes based on the factored eikonal
equations yield clean first-order convergence while the scheme based on the original eikonal
equation yields polluted first-order convergence. This clearly demonstrates that the proposed
strategies to remove the source singularity work well. Figures 5 and 6 show the plots of
slices of the numerical solutions at z = z0, y = y0, and x = x0 for multiplicative factors and
additive factors, respectively, on an 80 × 80 mesh.
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Table 4 Example 4: numerical error

Factored anisotropic eikonal equation: multiplicatively

Mesh Error of T on [0.3,0.7]2 # iterations Convergence order

40 × 40 0.000376 17 –
80 × 80 0.000215 17 0.8064

160 × 160 0.000120 14 0.8413
320 × 320 0.000065 13 0.8845
640 × 640 0.000033 13 0.9780

Factored anisotropic eikonal equation: additively

Mesh Error of T on [0.3,0.7]2 # iterations Convergence order

40 × 40 0.000459 13 –
80 × 80 0.000237 13 0.9536

160 × 160 0.000124 10 0.9345
320 × 320 0.000063 10 0.9769
640 × 640 0.000031 8 1.0231

Original anisotropic eikonal equation

Mesh Error of T on [0.3,0.7]2 # iterations Convergence order

40 × 40 0.004564 8 –
80 × 80 0.002843 8 0.6773

160 × 160 0.001754 8 0.6968
320 × 320 0.001063 8 0.7225
640 × 640 0.000630 8 0.7547

Original anisotropic eikonal equation: wrap-up R = 0.02

Mesh Error of T on [0.3,0.7]2 # iterations Convergence order

40 × 40 0.004564 8 –
80 × 80 0.002563 8 0.8325

160 × 160 0.001432 8 0.8398
320 × 320 0.000783 8 0.8709
640 × 640 0.000409 8 0.9369

Fig. 4 (Color online)
Example 4. Plots of T . Left:
factored equation with
multiplicative factors. Right:
factored equation with additive
factors. Zoom-in to the corner.
Red: exact solution; Blue-dashed:
original equation;
Black-dashed-dot: factored
equation

Example 6 (Constant gradient of velocity) In this example, we test a 3-D isotropic case
(Appendix in [4]) as in Example 2 with the slowness field, the form,

Author's personal copy



J Sci Comput (2012) 52:360–382 377

Table 5 Example 5: numerical error

Factored eikonal equation: multiplicatively

Mesh Error of T on [0,0.5]3 # iterations Convergence order

40 × 40 × 40 0.0002560 17 –

80 × 80 × 80 0.0001280 17 1.0000

160 × 160 × 160 0.0000640 17 1.0000

Factored eikonal equation: additively

Mesh Error of T on [0,0.5]3 # iterations Convergence order

40 × 40 × 40 0.0034139 18 –

80 × 80 × 80 0.0017216 17 0.9877

160 × 160 × 160 0.0008666 17 0.9903

Original eikonal equation

Mesh Error of T on [0,0.5]3 # iterations Convergence order

40 × 40 × 40 0.0462817 9 –

80 × 80 × 80 0.0275778 9 0.7469

160 × 160 × 160 0.0161005 9 0.7764

Fig. 5 (Color online) Example 5. Plots of T with multiplicative factors. From left to right: slices
at z = z0, y = y0 and x = x0 respectively. Zoom-in to the corner. Red: exact solution; Blue-
dashed: original equation; Black-dashed-dot: factored equation

Fig. 6 (Color online) Example 5. Plots of T with additive factors. From left to right: slices at z = z0, y = y0
and x = x0 respectively. Zoom-in to the corner. Red: exact solution; Blue-dashed: original equation; Black–
dashed-dot: factored equation

1

S(x)
= 1

S0
+ g · (x − x0). (27)

We test one setup with parameters:
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Table 6 Example 6: numerical error

Factored eikonal equation: multiplicatively

Mesh Error of T on [0,0.5]3 # iterations Convergence order

40 × 40 × 40 0.0046817 22 –

80 × 80 × 80 0.0023305 24 1.0064

160 × 160 × 160 0.0011628 24 1.0030

Factored eikonal equation: additively

Mesh Error of T on [0,0.5]3 # iterations Convergence order

40 × 40 × 40 0.0138180 22 –

80 × 80 × 80 0.0069401 24 0.9935

160 × 160 × 160 0.0034843 24 0.9941

Original eikonal equation

Mesh Error of T on [0,0.5]3 # iterations Convergence order

40 × 40 × 40 0.0539078 16 –

80 × 80 × 80 0.0312133 16 0.7883

160 × 160 × 160 0.0178780 16 0.8040

Fig. 7 (Color online) Example 6. Plots of T with multiplicative factors. From left to right: slices
at z = z0, y = y0 and x = x0 respectively. Zoom-in to the corner. Red: exact solution; Blue-
dashed: original equation; Black-dashed-dot: factored equation

• source point: x0 = (x0, y0, z0) = (0.25,0.25,0.25).
• computational domain x = (x, y, z) ∈ [0, 0.5]3.
• S0 = 2.
• g = (g1, g2, g3) = (0,−1,0).
• the exact solution T (x) and T0(x) are similar as in Example 2.

Table 6 shows the comparison results in terms of mesh refinement for 	∞-errors and
number of iterations. As the mesh is refined, both schemes based on the factored eikonal
equations yield clean first-order convergence while the scheme based on the original eikonal
equation yields polluted first-order convergence. This clearly demonstrates that the proposed
strategies to remove the source singularity work well. Figures 7 and 8 show the plots of
slices of the numerical solutions at z = z0, y = y0, and x = x0 for multiplicative factors and
additive factors, respectively, on an 80 × 80 mesh.
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Fig. 8 (Color online) Example 6. Plots of T with additive factors. From left to right: slices at z = z0, y = y0
and x = x0 respectively. Zoom-in to the corner. Red: exact solution; Blue-dashed: original equation; Black–
dashed-dot: factored equation

Example 7 In this example, we test a 3-D anisotropic case with the following setup:

1. source point: x0 = (x0, y0, z0) = (0.5,0.5,0.5).
2. computational domain: x = (x, y, z) ∈ [0, 1]3.
3. a(x, y, z) = 1.0

e−2W(x,y,z) .

4. b(x, y, z) = 3.0
e−2W(x,y,z) .

5. c(x, y, z) = 2.0
e−2W(x,y,z) .

6. d(x, y, z) = 0.5
e−2W(x,y,z) .

7. e(x, y, z) = 0.3
e−2W(x,y,z) .

8. f (x, y, z) = 0.1
e−2W(x,y,z) .

9. the exact solution: T (x, y, z) = 1 − e−W(x,y,z).

10. W(x,y, z) =

√√√√ 5.99(x−x0)2+2.06(x−x0)(y−y0)+1.9(x−x0)(z−z0)

+1.91(y−y0)2+0.5(y−y0)(z−z0)+2.75(z−z0)2

√
5.19

.
11. T0(x, y, z) = W(x,y, z).

Table 7 shows the comparison results in terms of mesh refinement for 	∞-errors and
number of iterations. As the mesh is refined, both schemes based on the factored eikonal
equations yield clean first-order convergence while the scheme based on the original eikonal
equation yields polluted first-order convergence. This clearly demonstrates that the proposed
strategies work well to remove the source singularity. Figures 9 and 10 show the plots of
slices of the numerical solutions on an 80 × 80 mesh at z = z0, y = y0, and x = x0 for
multiplicative factors and additive factors, respectively.

Remark 4.1 Note that for the factored equations, the fast sweeping scheme with the causal-
ity condition and the approximation of ∇T given above may need more iterations compared
to that for the original equation. However, the number of iterations does not increase when
the mesh is refined. If we approximate ∇T with linear Taylor expansions in the causality
condition as in [4] (or Remark 3.3), the improvement of accuracy can also be obtained with-
out increasing the number of iterations as in [4]; that is, the number of iterations is equal
to that of the fast sweeping method for the original equation when the scheme converges
according to a certain tolerance; however, the resulting scheme is not monotone.

For the factored approaches, it is clear that the factored equations are more complicated
than the original anisotropic eikonal equations in terms of the number of basic operations at
each grid point, which results in more CPU time for the factored approaches than that of the
original fast sweeping method if the computation is performed on the same mesh. However,
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Table 7 Example 7: numerical error

Factored anisotropic eikonal equation: multiplicatively

Mesh Error of T on [0,1]3 # iterations Convergence order

40 × 40 × 40 0.0031412 19 –

80 × 80 × 80 0.0016459 18 0.9324

160 × 160 × 160 0.0008482 17 0.9564

Factored anisotropic eikonal equation: additively

Mesh Error of T on [0,1]3 # iterations Convergence order

40 × 40 × 40 0.0106848 24 –

80 × 80 × 80 0.0053540 21 0.9969

160 × 160 × 160 0.0026813 18 0.9977

Original anisotropic eikonal equation

Mesh Error of T on [0,1]3 # iterations Convergence order

40 × 40 × 40 0.0351380 9 –

80 × 80 × 80 0.0224838 9 0.6441

160 × 160 × 160 0.0138448 9 0.6995

Fig. 9 (Color online) Example 7. Plots of T with multiplicative factors. From left to right: slices
at z = z0, y = y0 and x = x0 respectively. Zoom-in to the corner. Red: exact solution; Blue-
dashed: original equation; Black-dashed-dot: factored equation

Fig. 10 (Color online) Example 7. Plots of T with additive factors. From left to right: slices at z = z0,
y = y0 and x = x0 respectively. Zoom-in to the corner. Red: exact solution; Blue-dashed: original equation;
Black-dashed-dot: factored equation

in order to obtain the same accuracy, the factored approaches in general take less CPU time
than the original fast sweeping method.
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Remark 4.2 For the wrap-up method, the size of the disk near the source, the parameter R,
is ad hoc. Although there are cases in which the wrap-up method can obtain good results
when R is chosen appropriately, how to find this parameter R is itself a difficult problem
when the medium is inhomogeneous; see [16] for analysis in a slightly different problem to
estimate such a parameter. For the factorization approaches proposed here, we do not need
to worry about such ad hoc parameters.

5 Conclusion

We extend the factorization idea to the anisotropic eikonal equation with a point-source con-
dition. Besides factoring the unknown function into two multiplicative factors, one can also
factor the unknown function into two additive factors. One of the two factors is specified an-
alytically to capture the source singularity, which makes the other factor differentiable near
the source. Fast sweeping schemes are designed to numerically solve the factored equations,
and the schemes are monotone. Numerical examples show that monotone schemes indeed
yield clean first-order convergence rather than polluted first-order convergence; moreover,
in comparison to the case without treating source singularity, numerical errors with such
factorization-based singularity treatment are in most cases decreased significantly.
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