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In the high frequency regime, the geometrical-optics approximation for the Helmholtz
equation with a point source results in an Eikonal equation for traveltime and a transport
equation for amplitude. Because the point-source traveltime field has an upwind singular-
ity at the source point, all formally high-order finite-difference Eikonal solvers exhibit first-
order convergence and relatively large errors. In this paper, we propose to first factor out
the singularities of traveltimes, takeoff angles, and amplitudes, and then we design high-
order Lax–Friedrichs sweeping schemes for point-source traveltimes, takeoff angles, and
amplitudes. Numerical examples are presented to demonstrate the performance of our
new method.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In the high frequency regime, the geometrical-optics approximation for the Helmholtz equation with a point source re-
sults in an Eikonal equation for traveltime and a transport equation for amplitude. Because the point-source traveltime field
has an upwind singularity at the source point, all formally high-order finite-difference Eikonal solvers exhibit first-order con-
vergence and relatively large errors. Moreover, the resultant inaccuracy in traveltime prevents reliable computations of take-
off angles and amplitudes. In this paper, we propose to first factor out the singularities of traveltimes, takeoff angles, and
amplitudes; based on this factorization, we design high-order Lax–Friedrichs sweeping schemes for point-source travel-
times, takeoff angles, and amplitudes.

Many finite-difference and finite-element methods have been introduced to solve the Eikonal equation with a point-source
condition. In the vast literature, we cite just a few of them to illustrate the point: [27,26,19,20,23,10,16,29,25,9,17,18,7,12].
The traveltime field is mostly smooth, suggesting that high-order finite-difference methods should be effective. The use of
upwind schemes in all of the cited methods confines the errors to singularities which develop away from the source point.
However, the source point itself is an upwind singularity. Thus most of the published high-order Eikonal solvers for point-
source conditions have to initialize the traveltime field analytically near the source by imposing a grid-independent region
of constant velocity near the source; see [22,28,21]. This approach has two essential drawbacks: (1) the velocity may not
be homogeneous near the source, and (2) the size of the region of analytic computations must be set by the user and bears
no direct relation to the grid parameters. In principle, highly accurate ray-tracing methods may be used to alleviate the first
difficulty, but the second remains: it introduces an arbitrary parameter into the use of Eikonal solvers. Although the fixed local
. All rights reserved.

ian@math.msu.edu (J. Qian).
161.

n, Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source
(2011), doi:10.1016/j.jcp.2011.02.043

http://dx.doi.org/10.1016/j.jcp.2011.02.043
mailto:luos@math.msu.edu
mailto:qian@math.msu.edu
http://dx.doi.org/10.1016/j.jcp.2011.02.043
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp
http://dx.doi.org/10.1016/j.jcp.2011.02.043


2 S. Luo, J. Qian / Journal of Computational Physics xxx (2011) xxx–xxx
grid refinement method proposed in [10] compensates for the loss of accuracy near the source point, it still has an adhoc
parameter to be chosen by the user. The adaptive grid refinement method proposed in [16] overcomes these drawbacks suc-
cessfully, but it incurs a heavy burden in numerical implementation.

To overcome the above difficulties efficiently without any adhoc parameters, we observe that near the source the singu-
larities in traveltime, takeoff angle, and amplitude in inhomogeneous media can be well-captured by those singularities in
homogeneous media. Furthermore, inspired by the first-order fast sweeping method for the factored Eikonal equation as in
[5], we propose to factor out the singularities explicitly in either multiplicative or additive manner; based on the resulting
factorization we design high-order Lax–Friedrichs sweeping schemes for solving factored Eikonal and transport equations.
With high-order accurate traveltimes and amplitudes at our disposal, we construct asymptotic wavefields and make com-
parison with direct solutions of the Helmholtz equation.

The outline of the paper is as follows. In Section 2, we summarize the fundamental equations that we are going to solve. In
Section 3, we present the factorizations on the traveltime, takeoff angle and out-of-plane curvature. In Section 4, we present
a third-order weighted essentially non-oscillatory (WENO) based Lax–Friedrichs scheme to solve the factored equations. In
Section 5, extensive numerical examples are presented to illustrate the performance of the new methods; we also use com-
puted traveltimes and amplitudes to construct the asymptotic Green function and compare the resulting Green function
with that obtained by a finite-difference direct solution of the Helmholtz equation. We conclude the paper with some
remarks.

2. Fundamental equations

For a source (x0,z0) in an isotropic solid, the least traveltime s(x,z) is the viscosity solution of an Eikonal equation [13,3],
Please
travel
jrsj ¼ sðx; zÞ ð1Þ
with the initial condition
lim
ðx;zÞ!ðx0 ;z0Þ

sðx; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q � 1
vðx; zÞ

0
B@

1
CA ¼ 0; ð2Þ
where v = 1/s is the velocity.
Based on the traveltime field, one can compute the amplitude field by solving the transport equation [2],
rs � rAþ 1
2

Ar2s ¼ 0: ð3Þ
Eq. (3) is a first-order advection equation for the amplitude A. In order to get a first-order accurate amplitude field, one needs
a third-order accurate traveltime field since the Laplacian of the traveltime field is involved; see a detailed argument in [16].

Denoting / as the takeoff angle of a ray from the source point (x0,z0) to a general point (x,z), it is constant along any ray
rs � r/ ¼ @s
@x

@/
@x
þ @s
@z

@/
@z
¼ 0: ð4Þ
Since the wavefront normal rs is tangential to the ray in an isotropic solid, the gradient r/ is tangential to the wavefront.
In 2D isotropic media with line sources, the amplitude satisfies the formula ([2,6])
A ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrs�r/j

p
2
ffiffiffiffiffiffiffi
2p
p : ð5Þ
For a typical seismic point source, one needs to compensate for the out-of-plane radiation in the 2D line source amplitude
formula (5). The 2D amplitude with a point source (2.5-D amplitude) can be computed by
A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vsyyjrs�r/j

p
4p

; ð6Þ
where the out-of-plane curvature syy satisfies an advection equation [24],
@s
@x

@syy

@x
þ @s
@z

@syy

@z
þ s2

yy ¼ 0: ð7Þ
If a first-order accurate amplitude field is required, then the gradientsrs andr/ involved in the amplitude formulas should
be at least first-order accurate. According to Eq. (4), at least second-order accurate derivatives of the traveltime s are re-
quired to get first-order accurate r/. Therefore, at least third-order accurate traveltime s is required to get a first-order
amplitude field.

The point-source traveltime s(x,z) has an upwind singularity at the source (x0,z0). Any first-order or high-order finite-dif-
ference Eikonal solver can formally have first-order convergence and relatively large errors, because the low accuracy near
the source can spread out to the whole space. Therefore, to obtain high accuracy in computing point-source traveltimes one
cite this article in press as: S. Luo, J. Qian, Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source
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has to treat this upwind singularity carefully. One possible approach is the adaptive method proposed in [16], in which the
mesh near the source is refined adaptively according to a user-specified threshold in accuracy; as a result, the accuracy loss
due to the singularity of the traveltime field near the point source is compensated by adaptive mesh refinement near the
source. Another approach to treat this singularity is to explicitly factor out the singularity in traveltime field due to the point
source as first proposed in [5], in which the traveltime is factorized into two multiplicative factors, one of which being able to
capture the source singularity explicitly. This factorization results in an underlying function that is smooth in a neighbor-
hood of the source and satisfies a factored Eikonal equation; consequently, a first-order fast sweeping scheme yields a fully
first-order accurate traveltime field as demonstrated in [5].

In this work, we utilize this factorization idea for the point-source traveltime s and extend it to the takeoff angle / and
out-of-plane curvature syy. We decompose / into two additive factors; one of the factors is the takeoff angle corresponding
to a constant velocity field, thus it is known analytically. We decompose syy into two multiplicative factors; one of the factors
is the out-of-plane curvature corresponding to a constant velocity field, thus it is known analytically too. The factorization of
/ or syy results in an underlying function that satisfies a factored advection equation. To solve the factored equations, we will
design a third-order Lax–Friedrichs sweeping scheme based on the third-order WENO finite-difference reconstruction.

3. Factored Eikonal and transport equations

We first recall the factored Eikonal equation in [5]. Let us consider a factored decomposition
Please
travel
sðx; zÞ ¼ s0ðx; zÞuðx; zÞ;
sðx; zÞ ¼ s0ðx; zÞaðx; zÞ

�
ð8Þ
and assume that s0 satisfies
jrs0j ¼ s0 ð9Þ
with the initial condition
lim
ðx;zÞ!ðx0 ;z0Þ

s0ðx; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q � s0ðx; zÞ

0
B@

1
CA ¼ 0: ð10Þ
We choose s0 as some constant, thus
s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q
v0

;

is the traveltime corresponding to the constant velocity field v0 = 1/s0.
The function substitution transforms the Eikonal Eq. (1) into the factored Eikonal equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
0ðu2

x þ u2
z Þ þ 2s0uðs0xux þ s0zuzÞ þ u2s2

0

q
¼ s: ð11Þ
The factor s0 captures the source singularity such that the underlying function u is smooth in a neighborhood of the source.
For the constant velocity v0, the takeoff angle in the homogeneous medium, denoted as /0, is constant along any ray
rs0 � r/0 ¼ 0: ð12Þ
Thus substituting the following decomposition
/ðx; zÞ ¼ /0ðx; zÞ þ wðx; zÞ; ð13Þ
into Eq. (4) and using Eqs. (8) and (12), we get a factored advection equation
rw � ðrs0uþ s0ruÞ þ s0ru � r/0 ¼ 0: ð14Þ
Because /0 is known analytically and captures the local properties of /, the underlying additive factor w can be viewed as a
small perturbation to /0 locally at the source.

For the constant velocity v0, the out-of-plane curvature in the homogeneous medium, denoted as syy0, satisfies the follow-
ing advection equation
@s0

@x
@syy0

@x
þ @s0

@z
@syy0

@z
þ s2

yy0 ¼ 0: ð15Þ
Substituting the decomposition
syyðx; zÞ ¼ syy0ðx; zÞcðx; zÞ ð16Þ
cite this article in press as: S. Luo, J. Qian, Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source
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into (7) and using Eqs. (8) and (15), we get another factored advection equation
Please
travel
ðsyy0s0ruþ syy0urs0Þ � rc þ ðs0rsyy0 � ru� s2
yy0uÞc þ s2

yy0c2 ¼ 0: ð17Þ
Since syy0 is known analytically and captures the source singularity, the underlying factor c is smooth in a neighborhood of
the source.

With the decomposition (8) and (13), we have
rs ¼ s0ruþ urs0;

r/ ¼ r/0 þrw:

�
ð18Þ
In order to get rs, r/ and syy, we need to compute u, ru, w, rw and c. Thus we need to solve the factored Eikonal Eq. (11)
and the factored advection Eqs. (14) and (17). The traveltime s0, takeoff angle /0 and out-of-plane curvature syy0 correspond-
ing to the constant velocity field v0 capture the source singularity properly so that the underlying functions u, w and c are
smooth near the source. Consequently, we need not worry about the upwind singularity at the source when solving the fac-
tored Eikonal and advection equations, and it is relatively easy to design high-order schemes for solving (11), (14) and (17) so
that we can compute the underlying functions u, w and c with high accuracy. Once u, w and c are available, we can compute
the amplitude with formulas (5) or (6).

4. Third-order accurate Lax–Friedrichs scheme

We present Lax–Friedrichs schemes for the factored Eqs. (11), (14) and (17) on a rectangular mesh Xh with grid size h
which covers the domain X. Let us consider the following generic equation
Hðx; z;u;ux;uzÞ ¼ f ðx; zÞ; ð19Þ
where H is a given Hamiltonian.
At a grid point (i, j) = (xi,zj) with neighbors
Nfi; jg ¼ ðxi�1; zjÞ; ðxiþ1; zjÞ; ðxi; zj�1Þ; ðxi; zjþ1Þ
� �

;

we approximate H by the following Lax–Friedrichs numerical Hamiltonian [14,8]
HLFðxi; zj;ui;j;uNfi;jgÞ ¼ H xi; zj;ui;j;
uiþ1;j � ui�1;j

2h
;
ui;jþ1 � ui;j�1

2h

� �
� ax

uiþ1;j � 2ui;j þ ui�1;j

2h
� az

ui;jþ1 � 2ui;j þ ui;j�1

2h
; ð20Þ
where ax and az are chosen such that, for fixed (xi,zj),
@HLF

@ui;j
¼ @H
@ui;j

xi; zj;ui;j;
uiþ1;j � ui�1;j

2h
;
ui;jþ1 � ui;j�1

2h

� �
þ ax þ az

h
P 0;

@HLF

@uiþ1;j
¼ 1

2h
H1 xi; zj;ui;j;

uiþ1;j � ui�1;j

2h
;
ui;jþ1 � ui;j�1

2h

� �
� ax

h
6 0;

@HLF

@ui�1;j
¼ � 1

2h
H1 xi; zj; ui;j;

uiþ1;j � ui�1;j

2h
;
ui;jþ1 � ui;j�1

2h

� �
� ax

h
6 0;

@HLF

@ui;jþ1
¼ 1

2h
H2 xi; zj;ui;j;

uiþ1;j � ui�1;j

2h
;
ui;jþ1 � ui;j�1

2h

� �
� az

h
6 0;

@HLF

@ui;j�1
¼ � 1

2h
H2 xi; zj; ui;j;

uiþ1;j � ui�1;j

2h
;
ui;jþ1 � ui;j�1

2h

� �
� az

h
6 0:

ð21Þ
H1 and H2 denote the derivatives of H with respect to the first and second gradient variable, respectively. For example, we can
choose
ax ¼ max
m6u6M;A6p6B;C6q6D

1
2

H1ðx; z; u;p; qÞj j þ @H
@u
ðx; z;u; p; qÞ

����
����

� 	
;

az ¼ max
m6u6M;A6p6B;C6q6D

1
2

H2ðx; z; u;p; qÞj j þ @H
@u
ðx; z;u; p; qÞ

����
����

� 	
:

ð22Þ
The numerical Hamiltonian HLF is monotone for m 6 ui,j 6M, A 6 p 6 B, and C 6 q 6 D with p = (ui+1,j � ui�1,j)/2h and
q = (ui,j+1 � ui,j�1)/2h. Then we have a first-order Lax–Friedrichs scheme
unew
i;j ¼

1
ax=hþ az=h


 �
fi;j � H xi; zj; uold

i;j ;
uiþ1;j � ui�1;j

2h
;
ui;jþ1 � ui;j�1

2h

� �
þ ax

uiþ1;j þ ui�1;j

2h
þ az

ui;jþ1 þ ui;j�1

2h

h i
: ð23Þ
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To design high-order sweeping schemes, we follow the strategy in [28] to replace ui�1,j, ui+1,j, ui,j�1 and ui,j+1 with
Please
travel
ui�1;j ¼ ui;j � hðuxÞ�i;j; uiþ1;j ¼ ui;j þ hðuxÞþi;j;
ui;j�1 ¼ ui;j � hðuzÞ�i;j; ui;jþ1 ¼ ui;j þ hðuzÞþi;j:

ð24Þ
ðuxÞ�i;j and ðuxÞþi;j are third-order upwind-biased WENO approximations of ux;

ðuzÞ�i;j and ðuzÞþi;j are third-order upwind-biased WENO approximations of uz.

That is,
ðuxÞ�i;j ¼ ð1�x�Þ
uiþ1;j � ui�1;j

2h

� �
þx�

3ui;j � 4ui�1;j þ ui�2;j

2h


 �
ð25Þ
with
x� ¼
1

1þ 2c2
�
; c� ¼

�þ ðui;j � 2ui�1;j þ ui�2;jÞ2

�þ ðuiþ1;j � 2ui;j þ ui�1;jÞ2
ð26Þ
and
ðuxÞþi;j ¼ ð1�xþÞ
uiþ1;j � ui�1;j

2h

� �
þxþ

�3ui;j þ 4uiþ1;j � uiþ2;j

2h


 �
ð27Þ
with
xþ ¼
1

1þ 2c2
þ
; cþ ¼

�þ ðui;j � 2uiþ1;j þ uiþ2;jÞ2

�þ ðuiþ1;j � 2ui;j þ ui�1;jÞ2
: ð28Þ
Similarly, we can define third-order WENO approximations for ðuzÞ�i;j and ðuzÞþi;j. � is a small positive number to avoid division
by zero.

Thus we have the following Lax–Friedrichs scheme based on the third-order WENO approximations,
unew
i;j ¼

1
ax=hþ az=h


 �
fi;j � H xi; zj;uold

i;j ;
ðuxÞ�i;j þ ðuxÞþi;j

2
;
ðuzÞ�i;j þ ðuzÞþi;j

2

 !
þ ax

2uold
i;j þ h ðuxÞþi;j � ðuxÞ�i;j

� �
2h

2
4

þ az

2uold
i;j þ h ðuzÞþi;j � ðuzÞ�i;j

� �
2h

3
5: ð29Þ
Here unew
i;j denotes the to-be-updated numerical solution for u at the grid point (i, j), and uold

i;j denotes the current old value for
u at the same point.

The third-order Lax–Friedrichs sweeping method for Eq. (19) is summarized as follows [8,28]:

1. Initialization: assign exact values or interpolate values at grid points within a square region centered at the source point
with size equal to 2h � 2h, such that the grid points are enough for the third-order WENO approximations. These values
are fixed during iterations.

2. Iterations: update unew
i;j in (29) by Gauss–Seidel iterations with four alternating directions:
ð1Þ i ¼ 1 : I; j ¼ 1 : J; ð2Þ i ¼ 1 : I; j ¼ J : 1;
ð3Þ i ¼ I : 1; j ¼ 1 : J; ð4Þ i ¼ I : 1; j ¼ J : 1:

3. Convergence: if
unew
i;j � uold

i;j

��� ���
1
6 d;
where d is a given convergence threshold value, the iterations converge and the algorithm stops.

We use this scheme to solve the factored equations (without confusion of notations):

� Eq. (11) with Hamiltonian and f as
Hðx; z;u;ux;uzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

0ðu2
x þ u2

z Þ þ 2s0uðs0xux þ s0zuzÞ þ u2s2
0

q
;

f ¼ s;
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� Eq. (14) with Hamiltonian and f as
Please
travel
Hðx; z;/;/x;/zÞ ¼ ðs0xuþ s0uxÞ/x þ ðs0zuþ s0uzÞ/z þ s0ðux/0x þ uz/0zÞ;
f ¼ 0;
� Eq. (17) with Hamiltonian and f as
Hðx; z; c; cx; czÞ ¼ ðs0syy0ux þ usyy0s0xÞcx þ ðs0syy0uz þ usyy0s0zÞcz þ s0ðsyy0xux þ syy0zuzÞ � s2
yy0u

h i
c þ s2

yy0c2;
f ¼ 0:
5. Numerical examples

In this section, we present several examples to demonstrate the performance of our method. In the following numerical

examples, we choose v0 = 1. Therefore, s0 = 1, s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q
, and /0 ¼ p

2 � arctan x�x0
z�z0

� �
if z P z0;/0 ¼ 3p

2 �

arctan x�x0
z�z0

� �
otherwise.

5.1. Traveltime and amplitude

To justify our numerical schemes, we first use an example to compare our results with those obtained by the adaptive
method in [16]. Then we apply our method to three other velocity models including the smooth Marmousi velocity model.

Example 1. we consider a velocity field given by
vðx; zÞ ¼
1:0; if z 6 0:18;
1:0þ 0:25ðz� 0:18Þ2 sinðxþ 1:1Þ; else:

�
ð30Þ
The domain is [�1,1] � [0,3]. The source is located at (0,0). The velocity field and the traveltime computed by our method
are shown in Fig. 1.

We compare the numerical results obtained by our method with those by the adaptive method in [16]. Since the adaptive
method in [16] is so far the only finite-difference method which yields reliable traveltimes and amplitudes in the viscosity
sense and is designed according to a different principle to treat the source singularity, we use the adaptive method as an
independent tool to calibrate our method. Fig. 2 shows the comparisons for sx, sz, /x, /z, syy and 2.5-D amplitude on a
101 � 151 mesh. From the figure we see that numerical results computed by our method match well with the results
obtained by the adaptive method in [16].
x

z

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

z

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

0.5

1

1.5

2

Fig. 1. Example 1. Left: velocity field; right: traveltime with our method.
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Table 1
Example 2. Maximum error and L1 error of the traveltime.

Error of traveltime (1.0e�7) on [0.01,0.49] � [�0.24,0.49]

Mesh 51 � 76 101 � 151 201 � 301 401 � 601
Maximum error 229.09 35.33 1.5155 0.007642
Convergence Order – 2.7 4.5 7.6
L1 error 1.163 0.0921 0.003124 0.00021
Convergence Order – 3.7 4.9 3.9
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Example 2. we consider a velocity field in [5] given by
Please
travel
vðx; zÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:0þ 2:0½gxðx� x0Þ þ gzðz� z0Þ�

p ð31Þ
with (gx,gz) = (0,�3) and the source point (x0,z0) = (0.25,0). In this case, the exact traveltime is known and is smooth. The
domain is [0,0.5] � [�0.25,0.5].

Table 1 shows the maximum error and L1 error (with magnitude 10�7) on [0.01,0.49] � [�0.24,0.49]. Fig. 3 shows the
velocity field and the traveltime computed by our method. Fig. 4 shows the results for sx, sz, /x, /z, syy and 2.5-D amplitude
on a 201 � 301 mesh. For illustration purpose, we only show the contours for z > 0.025.
cite this article in press as: S. Luo, J. Qian, Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source
times and amplitudes, J. Comput. Phys. (2011), doi:10.1016/j.jcp.2011.02.043
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Fig. 6. Example 3. Top: sx, /x and syy; bottom: sz, /z and 2.5-D amplitude.
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Example 3 (Sinusoidal model). the velocity field is given by
Please
travel
vðx; zÞ ¼ 1þ 0:2 sinð0:5pzÞ sinð3pðxþ 0:55ÞÞ: ð32Þ
The domain is [�1,1] � [0,2] and the source point is (0,0). Fig. 5 shows the velocity field and the traveltime computed by our
method. Fig. 6 shows the results for sx, sz, /x, /z, syy and 2.5-D amplitude on a 201 � 201 mesh.

As is known, in this case the traveltime field is not smooth everywhere away from the source. In fact, the physical
traveltime field is multivalued as shown in [15]. However, the high-order Lax–Friedrichs sweeping scheme is based on the
monotone scheme which only yields the viscosity-solution based single-valued solution. Consequently, we see kinks in the
computed traveltime field as shown in Fig. 5; when numerically differentiated these kinks will produce discontinuities as
shown in Fig. 6. Nevertheless, those discontinuities are confined near the kinks because the underlying numerical schemes
are essentially upwinding.
Example 4 (Marmousi velocity model). we consider the smooth Marmousi velocity model as in Fig. 7. Note that the velocity
is rescaled by a factor 10�4. The mesh is 127 � 122.

The traveltime computed with our method is shown in Fig. 7. Fig. 8 shows the results for sx, sz, /x, /z, syy and 2.5-D
amplitude. In this case, we also see kinks in computed traveltime field and discontinuities in other computed quantities.
cite this article in press as: S. Luo, J. Qian, Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source
times and amplitudes, J. Comput. Phys. (2011), doi:10.1016/j.jcp.2011.02.043
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5.2. Wavefield construction

Now that traveltime and amplitude functions are available, we may construct the asymptotic Green function for the
Helmholtz equation in the high frequency regime. However, because computed traveltimes and amplitudes are based on
Please cite this article in press as: S. Luo, J. Qian, Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source
traveltimes and amplitudes, J. Comput. Phys. (2011), doi:10.1016/j.jcp.2011.02.043
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x = 32p. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

S. Luo, J. Qian / Journal of Computational Physics xxx (2011) xxx–xxx 11
the concept of viscosity solutions, the constructed Green function is an approximation to the true Green function in the weak
sense in that the constructed Green function approximates the true Green function faithfully only when the traveltime field
is smooth (with no kinks), and the constructed Green function approximates the true Green function unfaithfully when the
traveltime field is not smooth with kinks. To demonstrate this feature clearly, we will show a couple of examples.

Example 5 (Green functions). we use our results to approximate the Green function for the Helmholtz equation in the high
frequency regime,
Please
travel
r2Gðx; z;xÞ þ x2

v2ðx; zÞGðx; z;xÞ ¼ �dðx� x0Þdðz� z0Þ; ð33Þ
where G(x,z,x) is the Green function, and x is a given frequency.
We approximate the two-dimensional Green function in the WKBJ form (Appendix C in [11]),
G2ðx; z;xÞ �
1ffiffiffiffiffi
x
p Aðx; zÞeiðxsðx;zÞþp

4Þ; ð34Þ
where A is given by Eq. (5).
Two velocity models are used to test our results, and we compare the constructed Green functions with those obtained by

the direct finite-difference solver of the Helmholtz equation in [4]. We choose x = 32p.

1. v(x,z) � 5.0, (x0,z0) = (0.5,0.5), domain [0,1] � [0,1]. Fig. 9 shows the results for the two-dimensional Green function on a
1200 � 1200 mesh. The results by our method are very close to those obtained by the Helmholtz solver.

2. v(x,z) = 1 + 0.2sin (0.5pz) sin (3p(x + 0.05)), (x0,z0) = (0.5,0.1), domain [0,1] � [0,2]. Fig. 10 shows the results for the real
part of the two-dimensional Green function on a 800 � 1600 mesh. Fig. 11 shows two slices at z = 0.3 (no kinks, no caus-
tics) and z = 1.5 (kinks, caustics).

We remark that numerical errors of a direct solver for the Helmholtz equation depend on the frequency x as analyzed in
the form of pollution errors in [1]. Thus, the direct finite-difference solver for the Helmholtz equation as designed in [4]
unavoidably shows polluted errors in the form of large dispersion errors and nonphysical small oscillations as x becomes
large, which are evident in the direct solution shown here. Nevertheless, for x not so large, the direct solution still provides
reasonable results for our comparison purpose.
cite this article in press as: S. Luo, J. Qian, Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source
times and amplitudes, J. Comput. Phys. (2011), doi:10.1016/j.jcp.2011.02.043
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Case 1 Because the traveltime field is smooth everywhere away from the source, the constructed asymptotic Green func-
tion approximates the true Green function faithfully.

Case 2 Because the traveltime field is not smooth, the constructed Green function in the weak sense cannot approximate
the true Green function faithfully as shown in Fig. 10. In fact, the traveltime field in the viscosity-solution sense is
single-valued, and the resulting ray structure is shown in the bottom-left subfigure. On the other hand, to recon-
struct the true Green function, we need the multivalued traveltime field, and the resulting ray structure is shown
in the bottom-right subfigure. Consequently, there is an essential difference between single-valued and multi-
valued traveltime fields.
Please cite this article in press as: S. Luo, J. Qian, Factored singularities and high-order Lax–Friedrichs sweeping schemes for point-source
traveltimes and amplitudes, J. Comput. Phys. (2011), doi:10.1016/j.jcp.2011.02.043
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We also mention that before kinks appear in the single-valued traveltime field or caustics appear in the multivalued trav-
eltime field, the true traveltime field is smooth and the asymptotic Green function in the single-valued and multi-valued
sense approximates the true Green function faithfully. Only after kinks appear in the single-valued traveltime field or caus-
tics appear in the multivalued traveltime field, the two traveltime fields yield totally different Green functions, as shown
clearly in Fig. 11.

Example 6 (Green functions for different frequencies). we notice that by the geometrical-optics ansatz the traveltime and
amplitude functions are independent of the frequency x. Thus, computed traveltime and amplitude functions on a certain
mesh actually provide ingredients for constructing Green functions in a certain range of frequencies rather than at a single
frequency.

As an example, we construct Green functions for x = 16p, x = 64p, x = 128p, and x = 180p in the case of the sinusoidal
model given in Example 5. We remark that when x = 180p, the finite-difference direct solver, such as the direct Helmholtz
solver in [4], requires too many grid points, which is no longer efficient. However, our method does not suffer from such a
grid dependence. Fig. 12 shows the constructed Green functions with x = 16p, x = 64p, x = 128p, and x = 180p based on
traveltimes and amplitudes computed by our method on a 800 � 1600 mesh.

6. Conclusions

We present a factorization technique based on the factored Eikonal equation to compute the takeoff angle and the out-of-
plane curvature, thus the amplitude. We decompose the takeoff angle and the out-of plane curvature into two additive and
multiplicative factors, respectively. One of them is known analytically corresponding to a constant velocity field, and it cap-
tures the local properties of the takeoff angle or the out-of-plane curvature well in the neighborhood of the source. Then a
third-order WENO based Lax–Friedrichs sweeping method is applied to solve the factored equations numerically. The advan-
tage of decomposing the takeoff angle into two additive factors is that since the known factor captures the local properties
such as the angular directions of the takeoff angle at the source, the other factor can be initialized easily at the source. The
advantage of decomposing the out-of-plane curvature into two multiplicative factors is that since the known factor captures
the source singularity, the other factor is smooth at the source. Numerical examples are presented to demonstrate the per-
formance of our new method.
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