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ABSTRACT

We have developed a local level-set method for inverting
3D gravity-gradient data. To alleviate the inherent non-
uniqueness of the inverse gradiometry problem, we assumed
that a homogeneous density contrast distribution with the
value of the density contrast specified a priori was supported
on an unknown bounded domain D so that we may convert
the original inverse problem into a domain inverse problem.
Because the unknown domain D may take a variety of
shapes, we parametrized the domain D by a level-set func-
tion implicitly so that the domain inverse problem was re-
duced to a nonlinear optimization problem for the level-set
function. Because the convergence of the level-set algorithm
relied heavily on initializing the level-set function to enclose
the gravity center of a source body, we applied a weighted
L1-regularization method to locate such a gravity center so
that the level-set function can be properly initialized. To rap-
idly compute the gradient of the nonlinear functional arising
in the level-set formulation, we made use of the fact that the
Laplacian kernel in the gravity force relation decayed rap-
idly off the diagonal so that matrix-vector multiplications for
evaluating the gradient can be accelerated significantly. We
conducted extensive numerical experiments to test the per-
formance and effectiveness of the new method.

INTRODUCTION

Gravity gradiometry measures the gravity-gradient tensor, con-
sisting of the gradient of each component of the gravity field, at
or above the ground surface of the earth. Modern gradiometry in-
struments, such as the full tensor gravity (FTG) system and the air-
borne FALCON system, measure (directly or indirectly) the
differential curvature and the gradient of the vertical component
of the gradient of the potential field (Pilkington, 2012) because

the gravity-gradient tensor contains only five independent compo-
nents. Interpretation of gravity-gradient data is one of the most sig-
nificant tasks in geologic sciences because such interpretation can
help to analyze the composition of the earth and target subsurface
source bodies, such as mineral deposits and so on. Because recently
developed airborne systems can collect the gravity-related data in
much larger areas more quickly and cheaply than traditional
ground-based systems, and because the gravity-gradient data are
more sensitive to lateral variability of subsurface source bodies
and hence can perhaps provide better lateral resolution than gravity
data, gravity-gradient data have become more attractive in practical
surveys nowadays. However, because gravity-gradient data are
higher order derivatives of the potential, manual interpretation of
such data is extremely challenging whereas automatic interpretation
calls for developing efficient inversion methods.
Many techniques (Last and Kubik, 1983; Li and Oldenburg,

1998; Condi and Talwani, 1999; Portniaguine and Zhdanov,
1999; Jorgensen and Kisabeth, 2000; Li, 2001a, 2001b; Routh et al.,
2001; Zhdanov et al., 2004; Krahenbuhl and Li, 2006; Barnes et al.,
2008; Li, 2010; Martinez et al., 2010; Barnes and Barraud, 2012;
Martinez et al., 2013) have been developed for the inversion of
gravity data or gravity-gradient data during the past decades; a pri-
ori geologic information and constraints on density models are usu-
ally incorporated in the existing techniques to ensure that the
resulting solutions conform to realistic earth models (Last and Ku-
bik, 1983; Li and Oldenburg, 1998; Condi and Talwani, 1999; Port-
niaguine and Zhdanov, 1999). Meanwhile, fast imaging methods
(Fedi and Florio, 2006; Fedi, 2007; Zhdanov et al., 2011; Cella
and Fedi, 2012; Fedi and Pilkington, 2012) have also been devel-
oped to directly locate the gravity center of a source body. Because
most inversion techniques provide quantitative descriptions for sub-
surface structures, one has to extract the position of a source body
from resulting solutions afterward, and this is not an easy task.
Therefore, to avoid such indirect extracting procedure, we are mo-
tivated to develop a more direct method to delineate subsurface
source bodies.
We propose for inverting 3D gravity-gradient data, a local level-

set method, which automatically determines positions of source
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bodies. The method is analogous to a recently developed local level-
set method for the inversion of gravity data (Isakov et al., 2011,
2013). Mathematically, we formulate the inversion of gravity-gra-
dient data as the following inverse problem: We find the density
contrast ρ in a subsurface domainΩ, given the gravity-gradient data
on a measurement surface Γ ⊂ R3∕Ω. To alleviate the inherent
nonuniqueness of the inverse gradiometry problem, we assume that
a homogeneous density contrast ρ is supported on an unknown
bounded domain D of constant density contrast ρ0, that is,
ρ ¼ ρ0χD, so that we may convert the original inverse problem into
a domain inverse problem. Although subsurface source bodies can
have arbitrary density distributions, by the equivalent-source prin-
ciple, there exists an average density contrast ρ0 and an associated
domain D so that the density distribution ρ ¼ ρ0χD can reproduce
the given gradiometry data. However, one cannot find the value of
density contrast ρ0 and the domain D simultaneously because there
may exist infinitely many pairs fρ0; Dg that will reproduce the same
gradiometry data. Fortunately, because a priori information on sub-
surface structures can help to determine ρ0, we only need to find the
domain D.
Because the unknown domain D may have a variety of possible

shapes, we introduce a level-set function to parametrize the domain
D so that the domain inverse problem is reduced to a nonlinear op-
timization problem for the level-set function. Because the conver-
gence of the level-set algorithm relies heavily on initializing the
level-set function to enclose the gravity center of a source, we apply
a weighted L1-regularization method to locate such a gravity center
so that the level-set function can be properly initialized. To rapidly
compute the gradient of the nonlinear functional arising in the level-
set formulation, we make use of the fact that the Laplacian kernel in
the gravity force relation decays rapidly off the diagonal so that ma-
trix-vector multiplications for evaluating the gradient can be accel-
erated significantly.
The reason we choose the level-set method for the inverse gra-

diometry problem is the following: For the geometric domain
inverse problem under consideration, one needs to deal with closed
irregular surfaces that are the boundary of an underlying domain. To
describe such an irregular surface, one may introduce some surface
parametrization so that one can carry out manipulation on such a
surface to fit the given data. However, because such an irregular
surface may change shapes or connectivities during the nonlinear
data-fitting process, we need to design a reliable and robust param-
eterization that is capable of changing shapes or connectivities auto-
matically, and the level-set implicit parametrization (Osher and
Sethian, 1988) is exactly such a parametrization. We start with a
continuous function that is defined everywhere in the whole com-
putational domain, and we further require that this function be pos-
itive inside a targeted domain and negative outside, which implies
that the zero level-set, in which the function is zero, describes ex-
actly the boundary of the targeted domain, and this function is
called the level-set function. A level-set implicit parametrization
provides many advantages, such as having globally defined func-
tions to manipulate, and the changes of geometry shape and con-
nectivities can be automatically taken care of due to the underlying
physical mechanism.
We remark that in the literature, the level-set method (Osher and

Sethian, 1988) has been widely used as a suitable and powerful tool
for interfaces and shape-optimization problems mainly due to its
ability in automatic interface merging and topological changes.

In terms of nongeophysical inverse problems, the level-set method
is first used for inverse obstacle problems by Santosa (1996); since
then, it has been applied to a variety of inverse problems. Litman
et al. (1998) use it to reconstruct 2D binary obstacles, and Burger
(2001) proposes different choices of descent directions to evolve
level-sets for inverse obstacle problems; furthermore, the level-
set method was used for inverse scattering problems to reconstruct
geometry of extended targets by Hou et al. (2004) and Dorn and
Lesselier (2006), for electric resistance tomography in medical im-
aging by Ben Hadj Miled and Miller (2007), and for piecewise con-
stant surface reconstruction by Van den Doel et al. (2010); see
Burger and Osher (2005) for a survey of related applications. In
terms of geophysical inverse problems, the level-set method has
also found wide applications, and the following citations are by
no means complete. Isakov et al. (2011) first apply the level-set
method to gravity data; Papadopoulos et al. (2011) apply it to iden-
tify uncertainties in the shape of geophysical objects using temper-
ature measurements; Li and Leung (2013), Zheglova et al. (2013),
and Li et al. (2014) apply it to traveltime tomography problems in
different settings.
The rest of this paper is organized as follows: We start to present

the methodology by developing a level-set-based formulation for
the inverse gradiometry problem and then address several imple-
mentation issues. Numerical experiments are carried out to exhibit
performance and effectiveness of the local level-set method.

METHODOLOGY

Inverse gradiometry problem

We begin with the mathematical description of the inverse gra-
diometry problem. The gravity potential field u satisfies

uðr; ρÞ ¼ 4πγ

Z
Ω
Kðr; ~rÞρð~rÞd~r; r ∈ Γ; (1)

where Ω ∈ R3 is a subsurface domain, ρ is the density in Ω, K is
Green’s function of the 3D Laplace equation,

Kðr; ~rÞ ¼ 1

4πjr − ~rj ; r ≠ ~r; (2)

where γ is the universal gravitational constant, Γ ⊂ R3∕Ω is the
measurement surface, r ¼ ðx; y; zÞ and fx; y; zg is the standard
Cartesian coordinate system.
Gravity gradiometry measures the gradient of each component of

the gravity field on Γ, comprising the following gravity-gradient
tensor:

T ¼
" uxx uxy uxz
uyx uyy uyz
uzx uzy uzz

#
: (3)

Because u satisfies the Laplace equation outside Ω and the differ-
ential operators are commutative, the gravity tensor T is symmetric
with a zero trace and only five components in T are linearly inde-
pendent. Modern gradiometers measure some or all of the following
five components: the differential curvature components, namely, uxy
and uΔ ¼ ðuxx − uyyÞ∕2, and the gradient of the vertical gravity
field, namely, uzz, uxz, and uyz. In fact, we have
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usðr; ρÞ ¼ 4πγ

Z
Ω
Ksðr; ~rÞρð~rÞd~r; r ∈ Γ; (4)

for any s ∈ Mall ¼ fΔ; xy; zz; xz; yzg. Here, Ks denotes the second-
order partial derivative of Green’s function K with respect to the
component indexed by s; in particular,

KΔ ¼ 1

2
ð∂2xK − ∂2yKÞ: (5)

Normally, we always separate the residual gravity field from the
remaining background field so that we only need to analyze the
distribution of the density contrast over the remaining background;
without confusing, we will overload u and ρ as the residual gravity
potential on Γ and the density contrast in Ω, respectively, and we
will refer to the residual gravity field as the gravity field in the fol-
lowing. Thus, mathematically, we can formulate the inverse gradi-
ometry problem as follows: Find the density contrast ρ in a
subsurface domain Ω, given the gravity-gradient data on the meas-
urement surface Γ ⊂ R3∕Ω. To alleviate the inherent nonuniqueness
of the inverse gradiometry problem, we assume that the homo-
geneous density contrast ρ inΩ is supported on an unknown bounded
domain D ⊂ Ω, i.e., ρ ¼ ρ0χD, where ρ0 is a constant. As ρ0 and D
cannot be determined simultaneously, we assume that the density
contrast ρ0 is known in advance. Therefore, the inverse gradiometry
problem can be restated: Find the unknown domain D ⊂ Ω with a
given density contrast ρ0 that satisfies the following condition:

usðr; ρ0χDÞ ¼ gsðrÞ; for r ∈ Γ; (6)

for s belonging to an index set M ⊂ Mall, where fgsgs∈M are the set
of gradient data measured on the surface Γ ⊂ R3∕Ω.

A level-set-based formulation

Because D may have a variety of possible shapes or connectiv-
ities, we propose to parametrize its boundary by a level-set function
ϕ�∶Ω → R, which is continuous and satisfies

ϕ�ðrÞ > 0; for r ∈ D;

ϕ�ðrÞ ¼ 0; for r ∈ ∂D;

ϕ�ðrÞ < 0; for r ∈ D̄c: (7)

Thus, we have for s ∈ M,

gsðrÞ ¼ usðr; ρ0χDÞ ¼ 4πγρ0

Z
D
Ksðr; ~rÞd~r

¼ 4πγρ0

Z
Ω
Ksðr; ~rÞHðϕ�ð~rÞÞd~r; (8)

where H is the Heaviside function defined by

HðxÞ ≔
�
1; x ≥ 0;
0; otherwise:

(9)

For any level-set function ϕ∶Ω → R, we define the forward oper-
ator A as

AðϕÞ ¼ ½AsðϕÞ�s∈M (10)

and

AsðϕÞðrÞ ¼ 4πγρ0

Z
Ω
Ksðr; ~rÞHðϕð~rÞÞd~r; (11)

where ½As�s∈M denotes a column vector of As for s ∈ M.
We solve the following minimizing problem to find ϕ�:

min JðϕÞ ¼ min kAðϕÞ − gk ¼ min
X
s∈M

kGsð·;ϕÞk2L2ðΓÞ;

(12)

where g ¼ ½gs�s∈M and the mismatch term

Gsðr;ϕÞ ¼ AsðϕÞðrÞ − gsðrÞ; (13)

for s ∈ M. According to equation 8, JðϕÞ attains the minimum
at ϕ ¼ ϕ�.
A necessary condition for ϕ being a minimizer is that the Fréchet

derivative of the objective functional J with respect to ϕ is 0. The
Fréchet derivative ∂J∕∂ϕ is well defined through

Jðϕþ hÞ − JðϕÞ ¼
�
∂J
∂ϕ

; h

�
þ oðkhkÞ (14)

for any h ∈ L2ðΩÞ, where h·; ·i is the standard inner product
in L2ðΩÞ.
Because

JðϕþhÞ−JðϕÞ¼
X
s∈M

Z
Γ
½Gsðr;ϕþhÞ2−Gsðr;ϕÞ2�dσðrÞ

¼4πγρ0
X
s∈M

Z
Γ

�
ð2Gsðr;ϕÞþoðkhkÞÞ

Z
Ω
Ksðr; ~rÞ½HðϕþhÞ

−HðϕÞ�d~r
�
dσðrÞ

¼4πγρ0
X
s∈M

Z
Γ

�
2Gsðr;ϕÞ

Z
Ω
Ksðr; ~rÞ½δðϕð~rÞÞhð~rÞ

þoðkhkÞ�d~r
�
dσðrÞþoðkhkÞ

¼
X
s∈M

Z
Ω

�
hð~rÞ8πγρ0

Z
Γ
Gsðr;ϕÞKsðr; ~rÞdσðrÞδðϕð~rÞÞ

�
d~r

þoðkhkÞ; (15)

we obtain

∂J
∂ϕ

ð~rÞ ¼ 8πγρ0
X
s∈M

Z
Γ
Gsðr;ϕÞKsðr; ~rÞdσðrÞδðϕð~rÞÞ: (16)

Therefore, the necessary condition is simplified to
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∂J
∂ϕ

¼ 8πγρ0
X
s∈M

Z
Γ
Gsðr;ϕÞTKsðr; ~rÞdσðrÞδðϕð~rÞÞ ¼ 0;

1

j∇ϕj
∂ϕ
∂ν

¼ 0 on ∂Ω; (17)

where ν denotes the unit normal vector to ∂Ω and we impose the
natural boundary condition on ϕ so that ϕ does not change rapidly
away from Ω. By the method of steepest descent, we end up with
the evolution equations

∂ϕ
∂t

¼ −
∂J
∂ϕ

;
1

j∇ϕj
∂ϕ
∂ν

¼ 0 on ∂Ω; (18)

where ϕ ¼ ϕðr; tÞ with t being the artificial evolution time. There-
fore, we take the exact solution to be ϕ� ¼ ϕðr;∞Þ and the boun-
dary ∂D to be the zero level set of ϕ�: ∂D ¼ fr∶ϕ�ðrÞ ¼ 0g.
We remark that our level-set-based formulation provides implicit

regularization in the evolution process. More specifically, to ensure
that the evolution equation guides the level-set function ϕ toward
the exact solution ϕ� stably, we need to reinitialize the level-set
function ϕ frequently, so that j∇ϕj ¼ 1 in Ω and the level-set func-
tion ϕ does not change rapidly near interfaces (Sussman et al.,
1994); this reinitialization procedure serves as an implicit regulari-
zation on the inverse gradiometry problem. Next, the evolution
equation requires that the level-set function ϕ be at least differen-
tiable once, which is considered to be another implicit regulariza-
tion. In addition, the coarseness of discretization of Ω can be
considered to be an implicit regularization as well because it
may affect the resolution of numerical inversions.
In the following, we take the computational domain Ω to be a

rectangular cuboid and the measurement surface Γ to be a planar
surface above the top face of Ω.

Numerical implementation

We apply the following level-set algorithm to find D: In the fol-
lowing, we give motivations and details on implementing each step
of the above algorithm.

Step 0: The index set M and the density contrast ρ0

In practice, any data type with the index set M being a subset of
Mall can be used in an inversion because all five independent com-
ponents fusgs∈Mall

can be measured by common gradiometers, such

as the FTG system and the Falcon system; the FTG instrument mea-
sures all five independent components directly, and the Falcon in-
strument measures only uxy and uΔ, from which the other three
components uxz; uyz, and uzz are derived to minimize the high noise
levels from vertical accelerations (Lee, 2001; Pilkington, 2012). For
example, Li (2001b) develops an inversion method for all five in-
dependent components whereas Li (2010) uses only uxy and uΔ.
However, many works have shown that not all of the five indepen-
dent components are needed in illuminating source bodies.
Condi and Talwani (1999) find that uxy and uΔ can produce as

accurate results as all of the five components together do. Zhdanov
et al. (2004) suggest that using uxy and uΔ together can produce better
results than uzz alone whereas Fullagar and Pears (2010) suggest that
using uzz alone is the best choice and that inversion of multiple com-
ponents adds little when uzz is available. Martinez et al. (2010, 2013)
compare uzz, a combination of uxz, uyz, and uzz, and a full-tensor-
element combination, and show that uzz is sufficient to produce geo-
logically reasonable and interpretable results and that including
additional components increases resolution. Pilkington (2012) inves-
tigates the information content provided by each of the tensor com-
ponents and combinations thereof by using ideas from optimal survey
design, and concludes that at smaller measurement-source distances,
uzz shows the best performance, whereas at larger measurement-
source distances uxy, uΔ, and uxy, combined with uΔ, are the best
performers. Because most publications suggest the use of compo-
nents from uzz, uxy, and uΔ, we consider mainly three cases in
the following numerical examples: (1)M ¼ fxy;Δg, (2)M ¼ fzzg,
(3) M ¼ fxy;Δ; zzg.
Although subsurface source bodies may have arbitrary density

contrast distributions, usually a range of density contrasts of subsur-
face source bodies can be determined from a priori information; We
suggest to assign ρ0 any value from that range in which the level-set
formulation requires that the density contrast of subsurface source
bodies be of the same value. This is reasonable when the minimum
and maximum of the range are not far away from each other. For
example, if the range of subsurface density contrast distribution is
from 0.8 g∕cm3 to 1 g∕cm3, any constant ρ0 in this range leads to at
most a 25% overestimate of volume of some source body or 20%
underestimate of that, which is acceptable in practice.

Step 1: Initialization of level-set function

Because there exist infinitely many pairs fρ0; Dg of density mod-
els that can produce the same measurement data, it is impossible to
determine ρ0 and D simultaneously. However, we expect that there

may exist some intrinsic property of the domain
D that is independent of ρ0, and we expect that
this intrinsic property may be beneficial to initial-
ize the level-set function in Algorithm 1.
Motivated by this, we illustrate the relation be-

tween ρ0 and D by studying a simple example,
the point-source model as shown in Figure 1a.
Let the computational domain Ω be the cuboid
½0; 1� × ½1; 2� km × ½−0.4; 0� km and the measure-
ment surface Γ be ½0; 1� × ½1; 2� × fz ¼ 0.1 kmg.
Assume that the density contrast distribution
is a point source of mass 1E∕γ at rs¼ð0.5;1.5;
−0.15ÞT km; i.e., ρðrÞ¼1E×δðr−rsÞ∕γ, where
the unit E ¼ 10−9 s−2. We collect the differential
curvature data gxy and gΔ and the vertical gradient

Algorithm 1.

0) Choose an index set M ∈ Mall and a density contrast ρ0 according to a priori
information.

1) Initialize the level-set function ϕ according to the index set M obtained in step 0.

2) Compute the mismatchGsðrÞ along the boundary Γ according to equation 13 for each
s ∈ M.

3) Compute the Fréchet derivative in equation 16.

4) Evolve the level-set function according to the gradient flow (equation 18).

5) Reinitialize the level-set function to maintain the signed distance property.

6) Repeat steps 2–5 until it converges.
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data gzz at 33 × 17 ¼ 561 mesh points that are uniformly distributed
on Γ ¼ ½0; 1� × ½1; 2� × fz ¼ 0.1 kmg in x- and y-directions. Patterns
of data fgsgs∈fxy;Δ;zzg are shown in Figure 1b–1d.
Next, we try to determine the unknown domain D from two

groups of data set fgxy; gΔg and fgzzg for different values of ρ0
by the level-set method, and we try to find the desired property from
resulting solutions.
In the implementation, we uniformly discretize the computational do-

mainΩ ¼ ½0; 1� × ½1; 2� × ½−0.4; 0� km into 41 × 41 × 17 ¼ 28;577
mesh points with grid size 0.25 km in each direction. Suppose

ρ0 ¼
1E∕γ

ð4∕3πðR∕kmÞ3Þ ; (19)

where we consider three different cases: R ¼ 0.13, 0.1 , and 0.08 km.
We determine the unknown domain D for the three cases using Algo-
rithm 1, in which we initialize the level-set function to be

ϕ0 ¼ 0.1 − kr − Ck; (20)

a sphere centered at C ¼ ð0.5; 1.5;−0.2Þ km. In fact, by Newton’s
shell theorem, the unknown domain D is exactly the sphere

Figure 2. Point-source model: (a, d, and g) Shapes of exact solutions with R ¼ 0.13 km in panel (a), R ¼ 0.1 km in panel (d), and
R ¼ 0.08 km in panel (g). (b, e, and h) Shapes of numerical solutions for data gxy and gΔ, and (c, f, and i) for data gzz. The density contrast
ρ0 ¼ 1E∕γ∕ð4∕3πðR∕kmÞ3Þ with R ¼ 0.13 km in panels (b and c), R ¼ 0.1 km in panels (e and f), and R ¼ 0.08 km in panels (h and i).

a) b)

c)
d)

Figure 1. Point-source model: (a) source point
rs ¼ ½0.5; 1.5;−0.15� km marked by * underneath
the measurement surface Γ ¼ ½0; 1� × ½1; 2�×
fz ¼ 0.1 kmg, patterns of data: (b) gxy, (c) gΔ,
and (d) gzz on Γ (unit: 1E ¼ 10−9 s−2).
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centered at rs with radius R when the density contrast ρ0 ¼
1E∕γ∕ð4∕3πðR∕kmÞ3Þ, as plotted in Figure 2a, 2d, and 2g because
this spherical source body and the point source have the same gravity
center rs and the same mass. For comparison, numerical solutions for
inverting differential curvature data set fgxy; gΔg for different values of
R are plotted in Figure 2a, 2c, and 2e, whereas those for vertical gradient
data fgzzg are plotted in Figure 2b, 2d, and 2f.
We make the following observations in Figure 2: Each numerical

solution matches with the relevant exact solution very well for each
case, and for either data set, the three numerical solutions with dif-
ferent density contrasts ρ0 have the same gravity center rs and seem
to shrink to the gravity center rs as ρ0 increases. In other words, we
numerically verify Newton’s shell theorem by the local level-set
method and find the following intrinsic property: Numerical solu-
tions for different values of ρ0 have the same gravity center. We
believe that this property remains valid in general, and we may
use this property to initialize the level-set algorithm. Specifically,
if we can find the gravity center of each source body, then we con-
sider a level-set function representing a few well-separated balls
centered at those gravity centers to be a good initial level-set func-
tion because at least, this initial density model has the same gravity
centers with the true model. Therefore, we are motivated to find the
gravity centers to initialize the level-set algorithm.

To this end, we can use existing noniterative fast imaging meth-
ods, such as the depth from the extreme points method (Fedi, 2007),
the migration method (Zhdanov et al., 2011), and so on. However,
Cella and Fedi (2012) and Fedi and Pilkington (2012) find that
a physically dependent depth-weighting function should be chosen
in those depth-weighting-based imaging methods; otherwise, these
methods may locate sources at incorrect depths. Nevertheless, our
level-set-based inversion does not depend on depth-weighting func-
tions so that it is still reasonable to use imaging methods with physi-
cally independent weighting functions for locating sources and
gravity centers in terms of initializing the level-set algorithm. Thus,
we apply the migration method (Zhdanov et al., 2011) to recover
rough source locations. We will see from numerical results that an
initial level-set function, with inaccurate depths or even inconsistent
number of source bodies, can still be evolved to a reasonable sol-
ution matching with true models.
In some cases when subsurface source bodies are not well sep-

arated, the aforementioned fast imaging methods may lose effec-
tiveness (Cella and Fedi, 2012; Fedi and Pilkington, 2012). In
this situation, we choose to use the following iterative L1-regulari-
zation method so that subsurface source bodies may be resolved
more easily.
In the context of the inverse gradiometry problem, because the

density contrast distribution ρ is assumed to have a compact support
in Ω, we look for a density contrast distribution ρ with compact
support in Ω so that extrema among the nonzeros may exhibit po-
sitions of the gravity centers. Because the L1-norm-based regulari-
zation promotes compact support (Brezis, 1974; Ozolins et al.,
2013), we propose to solve for the desired density distribution
the following nonlinear optimization problem:

min
ρ

~FðρÞ ≔ min
ρ

�X
s∈M

k4πγ
Z
Ω
Ksð·; ~rÞρð~rÞd~r − gsð·Þk

2

L2ðΓÞ

þ λkWρkL1ðΩÞ

�
; (21)

Table 1. Running time for computing Fréchet derivatives,
with the index set M � fxy;Δg, in one iteration by two
approaches in all numerical examples.

Direct matrix-vector
multiplication (s)

Low-rank-matrix
decomposition algorithm (s)

Two cubes 0.95 0.05

Three cuboids 2.36 0.12

Two dikes 11.06 0.32

Five cuboids 9.53 0.38

a) b)

c) d)

Figure 3. Two cubes: (a) true positions of the
source bodies. Observed data: (b) gxy, (c) gΔ,
and (d) gzz on the ground surface Γ ¼
½−250; 250� × ½−300; 300� × fz ¼ 0 mg polluted
with 3% Gaussian noise (unit: E).
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where λ > 0 is the penalty parameter. Here, the depth-weighting
function W is chosen according to Li and Oldenburg (1998) and
Li (2001b) as

Wð~rÞ ¼ dð~r;ΓÞ−β∕2 (22)

for β ¼ 2 with dð~r;ΓÞ being the depth of ~r below the planar sur-
face Γ.
Assuming that Ω is discretized by N points and that there are M

observation points on Γ, we apply trapezoidal quadrature rules to
discretize the relevant integrals in the above optimization problem,
and we end up with the following finite-dimensional optimization
problem in matrix form:

min
ρ

~FðρÞ ≔ min
ρ
fjjKρ − bjj22 þ λjjWρjj1g; (23)

where ρ ∈ RN×1 represents the unknown density ρ at the N mesh
points in Ω, b ∈ RM×1 represents measurement data gs at the M
observation points for all s ∈ M, matrix K ∈ RM×N and the diago-
nal matrix W ∈ RN×N are related to the kernel and weighting func-
tions Ks and W, respectively, and k · kl represents the l-norm for
l ¼ 1; 2. We apply the l1_ls package (Koh et al., 2007) to solve this
nonlinear minimization problem (equation 23). In our implementa-
tion, the L1-regularization solution of problem 23 is computed on
very coarse meshes because rough locations of gravity centers are
adequate for our level-set algorithm.

Steps 2 and 3: Computing the mismatch functional and the
Fréchet derivative

To compute the mismatch functional, one may adopt the wavelet
compression (Li and Oldenburg, 2003) and the finite-difference for-
ward solver (Farquharson andMosher, 2009). Because the kernel ma-
trix Ksðr; ~rÞ in equation 4 decays rapidly as the distance jr − ~rj

a) b)

c) d)

Figure 4. Two cubes: Cross sections of migration
density at x ¼ 0 m by migrating single-index
data: (a) gxy, (b) gΔ, (c) gzz, and combined data
(d) gxy, gΔ, and gzz.

a) b)

c) d)

Figure 5. Two cubes: Cross sections of L1-regu-
larization solutions at x ¼ 0 m for single-index
data: (a) gxy, (b) gΔ, (c) gzz, and combined data
(d) gxy, gΔ, and gzz. Dashed lines indicate the true
positions of source bodies.
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D
ow

nl
oa

de
d 

01
/1

7/
15

 to
 3

5.
10

.9
2.

12
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



increases, the low-rank-matrix decomposition algorithm proposed by
W. Lu (personal communication, 2014) can be used to speed up ma-
trix-vector multiplications arising in computing the mismatch and the
Fréchet derivative. To avoid numerical instabilities (Zhao et al.,
1996), the delta function δðϕÞ in equation 17 is approximated by
δϵðϕÞ ¼ χTϵ

j∇ϕj, with support Tϵ ¼ fp ∈ Ω∶jϕðpÞj ≤ ϵg ⊂⊂ Ω
for some ϵ > 0.
To illustrate the performance of this low-rank-matrix decompo-

sition algorithm, as listed in Table 1, we record running times for
computing the Fréchet derivative, with the index set M ¼ fxy;Δg,

in one iteration by two different approaches, direct computation and
the low-rank-matrix decomposition algorithm, for the numerical ex-
amples studied in this work with the same setups. We can clearly see
that the improvement is dramatic.

Steps 4 and 5: Computing gradient descent flows

Standard techniques apply; see, Isakov et al. (2011) for details.
Related techniques have been widely used in the level-set commu-
nity in various applications (Osher and Sethian, 1988; Qian and

a)

b)

c)

d)

e)

f)

Figure 6. Two cubes with ρ0 ¼ 1 × 103 kg∕m3. Shapes of numerical solutions at the 6000th iteration with a two-sphere initial guess for the
index set (a) M ¼ fxy;Δg, (c)M ¼ fzzg, and (e) M ¼ fxy;Δ; zzg. (a, c, and e) Cross sections of solutions at x ¼ 0 m are plotted with solid
lines in panels (b, d, and f), respectively. Dashed rectangles indicate the true positions of source bodies.

Figure 7. Two cubes with ρ0 ¼ 1 × 103 kg∕m3

and the index set M ¼ fxy;Δg. Shapes of the
level-set function at the (a) 0th (the initial guess
being a sphere of radius 50 m centered at
½0;−200;−150� m), (b) 2000th, (c) 4000th, and
(d) 6000th iterations.
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Symes, 2002a, 2002b; Qian et al., 2003; Leung et al., 2004; 2007;
Qian and Leung, 2004, 2006; Cecil et al., 2006). To avoid numerical
instabilities as addressed by Isakov et al. (2011), the Heaviside
function is approximated by the ϵ-Heaviside function as

HϵðϕÞ¼
8<
:
0; ϕ<−ϵ;
1
2
þ ϕ

2ϵþ 1
2π sin

�
πϕ
ϵ

�
; −ϵ≤ϕ≤ϵ;

1; ϕ>ϵ:

(24)

NUMERICAL RESULTS

We study several synthetic examples in terms of three different
index sets: M ¼ fxy;Δg, M ¼ fzzg, and M ¼ fxy;Δ; zzg.

Two cubes

We first study a two-cube model as shown in Figure 3a, which
was previously studied by Zhdanov et al. (2004). The target domain
D consists of two identical cubes; they have sides of length 150 m,

a)

b)

c)

d)

e)

f)

Figure 8. Two cubes with ρ0 ¼ 1 × 103 kg∕m3. Shapes of numerical solutions with a one-sphere initial guess at the 6000th iteration for
(a) M ¼ fxy;Δg, (c) M ¼ fzzg, and (e) M ¼ fxy;Δ; zzg. Cross sections of solutions in panels (a, c, and e) at x ¼ 0 m are plotted with
solid lines in panels (b, d, and f), respectively. Dashed rectangles indicate the true positions of source bodies.

a) b)

c) d)

Figure 9. Three cuboids: (a) true positions of the
source bodies with ρ0 ¼ 1 × 103 kg∕m3. Ob-
served data polluted with 3% Gaussian noise (unit:
E) in panel (b) gxy, (c) gΔ, and (d) gzz on the ground
surface Γ ¼ ½0; 1� × ½0; 1� × fz ¼ 0 kmg.

Level-set inversion of gradient data G43
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Figure 10. Three cuboids with ρ0 ¼ 1 ×
103 kg∕m3 and M ¼ fxy;Δg. Shapes of the
level-set function at the (a) 0th (the initial guess
being a sphere of radius 0.09 km centered at
½0.3; 0.3;−0.1� km), (b) 2000th, (c) 4000th, and
(d) 6000th iterations.

a) b) c)

d) e) f)

g) h) i)

Figure 11. Three cuboids with ρ0 ¼ 1 × 103 kg∕m3. Shapes of numerical solutions at the 6000th iteration for (a) M ¼ fxy;Δ; zzg,
(d)M ¼ fzzg, and (g)M ¼ fxy;Δ; zzg. Cross sections of solutions in panels (a, d, and g) at y ¼ 10∕32 km plotted with solid lines in panels (b,
e, and h), respectively. Cross sections of solutions in panels (a, d, and g) at y ¼ 19∕32 km plotted with solid lines in panels (c, f, and i),
respectively. Dashed rectangles indicate the true positions of the source bodies.
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are 150 m under the surface, and are 150 m apart; the density con-
trast in both cubes over the background is 1 × 103 kg∕m3.
To be consistent with Zhdanov et al. (2004), we take the subsur-

face domain Ω¼½−275;275�× ½−325;325� × ½−500;0�m and as-
sume that there are 21 × 25 ¼ 525 observation points on the
ground surface Γ¼½−250;250� × ½−300;300� ×fz¼0mg, which
are uniformly distributed with grid size 25 m in the x- and y-direc-
tions. To collect data gxy, gΔ, and gzz, we compute uxy, uΔ, and uzz
by equation 8, and we use the trapezoidal rule to approximate
the volume integral over the domain D, which is assumed to be
uniformly discretized with grid size 25 m in all three directions.
We further add 3% Gaussian noise to the resulting uxy, uΔ,
and uzz, and we obtain the data set fgxy; gΔ; gzzg as shown in Fig-
ure 3b–3d.
To initialize the level-set algorithm, we use the migration method

and the weighted L1-regularization method to locate gravity centers

of source bodies. In the implementation, we uniformly discretize Ω
into 12 × 14 × 11 mesh points with grid size 50 m in all directions.
We migrate four different data sets: fgxyg, fgΔg, fgzzg, and
fgxy; gΔ; gzzg to find corresponding migration densities; meanwhile,
we compute the weighted L1-regularized solution for the same four
data sets by solving problem 23. From the eight numerical solu-
tions, we capture extrema at x ¼ 0 m for both methods, as shown
in Figures 4 and 5, in which dashed lines show the true positions of
the source bodies.
Among the four migration densities shown in Figure 4, the

migration density ρ�Δ in Figure 4b resolves the two source bodies.
In contrast, all four L1-regularization solutions in Figure 5 resolve
the two source bodies. From extrema shown in Figures 4b and 5,
we initialize the level-set function to be two well-separated spheres
of the same radius 50 m, centered at ð0;−200;−150Þ m and
ð0; 50;−150Þ m, respectively.

a) b)

c) d)

Figure 12. Two dikes: (a) true positions of the
source bodies, where ρ0 ¼ 0.8 g∕cm3 in the short
dike whereas ρ0 ¼ 1.0 g∕cm3 in the long dike. Ob-
served data (b) gxy, (c) gΔ, and (d) gzz on the ground
surface Γ ¼ ½0; 2� × ½0; 2� × fz ¼ 0 kmg; all
are polluted by 5% Gaussian noise.

a) b)

c) d)

Figure 13. Two dikes: (a) Cross sections of the
migration density at x ¼ 1 km by migrating sin-
gle-index data gxy, (b) gΔ, and (c) gzz, and (d) com-
bined data gxy, gΔ, and gzz.

Level-set inversion of gradient data G45

D
ow

nl
oa

de
d 

01
/1

7/
15

 to
 3

5.
10

.9
2.

12
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



a) b)

c) d)

Figure 14. Two dikes: (a) Cross sections of L1-
regularized solutions at x ¼ 1 km for single-index
data gxy, (b) gΔ, (c) gzz, and (d) combined data gxy,
gΔ, and gzz. The dashed lines indicate the true po-
sitions of the source bodies.

a) b) c)

d) e) f)

g) h) i)

Figure 15. Two dikes: Shapes of numerical solutions at the 2000th iteration with the index set M ¼ fxy;Δg and a two-sphere initial
guess; (a) ρ0 ¼ 0.8 g∕cm3, (b) ρ0 ¼ 0.9 g∕cm3, (c) ρ0 ¼ 1.0 g∕cm3, (d-f) cross sections of the numerical solutions in (a-c) at x ¼ 1 km,
and (g-i) cross sections of the numerical solutions in (a-c) at z ¼ −0.25 km. The dashed lines indicate the true positions of the target.
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To apply the level-set algorithm, we take ρ0 to be the exact
value, i.e., ρ0 ¼ 1 × 103 kg∕m3, and rediscretize the computational
domain Ω into 23 × 27 × 21 uniform mesh points with the same
grid size 25 m in all directions.
For all three index sets: M ¼ fxy;Δg, M ¼ fzzg, and

M ¼ fxy;Δ; zzg, we compute related numerical solutions based
on the above setup. To compare the performance of the three index
sets in Figure 6, we plot shapes of the three numerical solutions at
the 6000th iteration and cross sections of those solutions at
x ¼ 0 m, in which the dashed lines show the true positions of
the source bodies. We can see that for all three index sets, the
level-set algorithm produces numerical solutions that match with
true source bodies reasonably well and locate source bodies at true
depths.
To test robustness of the level-set algorithm, we initialize the

level-set function to be a single sphere of radius 50 m centered
at ð0;−200;−150Þ m and then compute numerical solutions for
all three index sets: M ¼ fxy;Δg, M ¼ fzzg, and M ¼
fxy;Δ; zzg.

For M ¼ fxy;Δg, we plot numerical solutions at different iter-
ations as shown in Figure 7. We can see that the level-set algorithm
succeeds in splitting the single source body into two and numerical
solutions become steady after 4000 iterations. For the other two in-
dex sets M ¼ fzzg and M ¼ fxy;Δ; zzg, we compute numerical
solutions by using the same initial level-set function. In comparison
with the true model, we show, for all three index sets, numerical sol-
utions and their cross sections at x ¼ 0 m at the 6000th iteration in
Figure 8. We can see that for all three index sets, the level-set algo-
rithm even with an unreasonable initial guess still produces numerical
solutions that match with true source bodies reasonably well and lo-
cate source bodies at true depths.

Three cuboids

We next study a model with three source bodies, consisting of
two short cuboids and one long cuboid, as shown in Figure 9a. The
density contrast in all source bodies is 1 × 103 kg∕m3. We take the
computational domain Ω ¼ ½0; 1� × ½0; 1� × ½−0.5; 0� km and as-

a) b) c)

d) e) f)

g) h) i)

Figure 16. Two dikes: Shapes of numerical solutions at the 2000th iteration with the index set M ¼ fzzg and a two-sphere
initial guess; (a) ρ0 ¼ 0.8 g∕cm3, (b) ρ0 ¼ 0.9 g∕cm3, (c) ρ0 ¼ 1.0 g∕cm3, (d-f) cross sections of the numerical solutions in (a-c) at
x ¼ 1 km, and (g-i) cross sections of the numerical solutions in (a-c) at z ¼ −0.25 km. The dashed lines indicate the true positions of
the target.
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sume that there are 33 × 33 ¼ 1089 observation points, uniformly
distributed on the surface Γ ¼ ½0; 1� × ½0; 1� × fz ¼ 0 kmg with
grid size 1∕32 km in the x- and y-directions. To collect data gxy,
gΔ, and gzz, we compute us by equation 23 for s ¼ xy;Δ; zz and
use the trapezoidal rule to approximate the volume integral over
the domain D, which is uniformly discretized with grid size
1∕32 km in all three directions. We further add 3% Gaussian noise
to the resulting uxy, uΔ, and uzz and obtain the data set fgxy; gΔ; gzzg
as shown in Figure 9b–9d.
To initialize the level-set algorithm, we use the migration method and

the weighted L1-regularization method to locate gravity centers of
source bodies. In the implementation, we uniformly discretize the com-
putational domain Ω into 21 × 21 × 11 mesh points with grid size
0.05 km in all directions. We migrate four different data sets: fgxyg,
fgΔg, fgzzg, and fgxy; gΔ; gzzg to find corresponding migration den-
sities; meanwhile, we compute the weighted L1-regularized solution
for the same four data sets by solving problem 23. From the eight
numerical solutions, we capture only one extremum around the point

ð0.3; 0.3;−0.1Þ km, and therefore, we initialize the level-set function to
be a single sphere of radius 0.09 km centered at ð0.3; 0.3;−0.1Þ km, as
shown in Figure 10a.
To apply the level-set algorithm, we take ρ0 to be the exact value,

i.e., ρ0 ¼ 1 × 103 kg∕m3, and we rediscretize the computational
domain Ω into 33 × 33 × 17 uniform mesh points with the same
grid size 1∕32 km in all directions.
For M ¼ fxy;Δg, by the level-set algorithm, we obtain numeri-

cal solutions at different iterations as shown in Figure 10. We can
see that the level-set algorithm succeeds in resolving all source
bodies completely after 4000 iterations, and numerical solutions
converge to a steady state.
For the other two index setsM ¼ fzzg andM ¼ fxy;Δ; zzg, we

compute related numerical solutions with the same setup. To com-
pare the performance of the three index sets, in Figure 11, we plot
shapes of the three numerical solutions at the 6000th iteration and
cross sections of those solutions at y ¼ 10∕32 and 19∕32 km, in
which the dashed lines show true positions of source bodies. We can

a) b) c)

d) e) f)

g) h) i)

Figure 17. Two dikes: Shapes of numerical solutions at the 2000th iteration with the index set M ¼ fxy;Δ; zzg and a two-sphere initial
guess; (a) ρ0 ¼ 0.8 g∕cm3, (b) ρ0 ¼ 0.9 g∕cm3, (c) ρ0 ¼ 1.0 g∕cm3, (d-f) cross sections of the numerical solutions in (a-c) at x ¼ 1 km,
and (g-i) cross sections of the numerical solutions in (a-c) at z ¼ −0.25 km. The dashed lines indicate the true positions of the
target.
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see that for all three index sets, the level-set algorithm produces
numerical solutions that match with the true source bodies reason-
ably well and locate the source bodies at true depths.

Two dikes

We next study a more complicated model as shown in Figure 12a,
where the target domain D consists of two well-separated dikes,
and the density contrast of the short dike is 0.8 g∕cm3 whereas that
of the long dike is 1 g∕cm3. This example was previously studied
in the inversion of gravimetry data by Li and Oldenburg (1998), and
we use this example to check applicability of the level-set algorithm
to source bodies with different density contrasts.
To be consistent with Li and Oldenburg (1998), we take the sub-

surface domain Ω ¼ ½0; 2� × ½0; 2� × ½−1; 0� km and assume that
there are 21 × 41 ¼ 861 observation points on the surface
Γ ¼ ½0; 2� × ½0; 2� × fz ¼ 0 kmg, which are uniformly distrib-
uted with grid sizes of 0.1 and 0.05 km in the x- and y-directions,
respectively. To collect the data set fgxy; gΔ; gzzg, we compute uxy,
uΔ, and uzz by equation 8 and use the trapezoidal rule to discretize

the volume integral over the domain D, which is uniformly discre-
tized with grid size 1∕32 km in all directions. We then add 5%
Gaussian noise to the resulting uxy, uΔ, and uzz, and we obtain
the data set fgxy; gΔ; gzzg as shown in Figure 12b–12d.
To initialize the level-set algorithm, we use the migration method

and the weighted L1-regularization method to locate gravity centers
of source bodies. In the implementation, we uniformly discretize
the computational domain Ω into 21 × 21 × 11 mesh points with
a grid size of 0.1 km in all directions. We migrate four different
data sets: fgxyg, fgΔg, fgzzg, and fgxy; gΔ; gzzg to find correspond-
ing migration densities; meanwhile, we compute the weighted
L1-regularized solution for the same four different data sets by solv-
ing problem 23. From the eight numerical solutions, we capture ex-
trema at x ¼ 1 km for both methods, as shown in Figures 13 and 14,
in which the dashed lines show the true positions of the source
bodies.
Among the four migration densities shown in Figure 13, the mi-

gration density ρ�Δ in Figure 13b resolves the two source bodies. In
contrast, all four L1-regularization solutions in Figure 14 resolve the
two source bodies. From the extrema shown in Figures 13b and 14,

a) b) c)

d) e) f)

g) h) i)

Figure 18. Two dikes: Shapes of numerical solutions at the 2000th iteration for ρ ¼ 1.0 g∕cm3 with a one-sphere initial guess for different
index sets; (a) M ¼ fxy;Δg, (b) M ¼ fzzg, (c) M ¼ fxy;Δ; zzg, (d-f) cross sections of the numerical solutions in (a-c) at x ¼ 1 km, and (g-
i) cross sections of the numerical solutions in (a-c) at z ¼ −0.25 km. Dashed lines indicate the true positions of the target.
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we initialize the level-set function to be two well-separated spheres
of the same radius 0.1 km, centered at ð1.0; 0.7;−0.3Þ and
ð1.0; 1.4;−0.3Þ km, respectively.
To apply the level-set algorithm, because the range of subsurface

density contrasts is from 0.8 g∕cm3 to 1.0 g∕cm3, we consider
three different values of ρ0 taking ρ0 ¼ 0.8 g∕cm3, ρ0 ¼
0.9 g∕cm3, and ρ0 ¼ 1.0 g∕cm3. We rediscretize the computational
domain Ω into 65 × 65 × 33 uniform mesh points with the same
grid size 1∕32 km in all directions.
For the three index sets M ¼ fxy;Δg, M ¼ fzzg, and

M ¼ fxy;Δ; zzg, by the level-set algorithm we obtain numerical
solutions at the 2000th iteration and their cross sections at
x ¼ 1 km and z ¼ −0.25 km as shown in Figures 15–17, respec-
tively. We can see that for all three different values of ρ0, numerical
solutions match with true models reasonably well and locate source
bodies at their true depths.
To test the robustness of the level-set algorithm, we initialize the

level-set function to be a single sphere of radius 0.1 km centered at
ð1.0; 0.7;−0.3Þ km and then we compute numerical solutions for all
three index sets M ¼ fxy;Δg, M ¼ fzzg, and M ¼ fxy;Δ; zzg
with ρ0 ¼ 1.0 g∕cm3. Numerical solutions at 2000th iteration
and their cross sections at x ¼ 1 km and z ¼ −0.25 km are shown
in Figure 18, in which dashed lines indicate the true positions of the
source bodies. We can see that although the level-set algorithm fails
in resolving source bodies, cross sections shown in Figures 18d–18i
indicate that numerical solutions locate the true positions of source
bodies.

CONCLUSION

We propose a local level-set method for the inversion of gravity-
gradient data. Assuming that a homogeneous density contrast distri-
bution with the value of the density contrast specified a priori is sup-
ported on an unknown bounded domain D, we were able to convert
the original inverse problem into a domain inverse problem so that the
level-set method can be applied to parametrize the unknown domain.
We apply the migration method and a weighted L1-regularization
method to locate gravity centers of source bodies, which may provide
robust initialization for the level-set algorithm. We also develop a
low-rank-matrix decomposition algorithm to rapidly compute the
mismatch and the Fréchet derivative. Extensive numerical experi-
ments illustrate the effectiveness of the local level-set method.
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