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Abstract. We propose an improved fast local level set method for the inverse
problem of gravimetry by developing two novel algorithms: one is of linear

complexity designed for computing the Frechet derivative of the nonlinear do-

main inverse problem, and the other is designed for carrying out numerical
continuation rapidly so as to obtain fictitious full measurement data from par-

tial measurement. Since the Laplacian kernel is symmetric and translationally
invariant, we design certain affine transformations to speed up the computa-

tional process in evaluating the Frechet derivative; since it decays rapidly away

from diagonal, we carry out low-rank matrix approximation to reduce storage
requirements. These properties are eventually translated into an algorithm of

linear complexity and linear storage requirement for computing the derivative.

Since the single layer density function, used in representing the potential, is
smooth and periodic on an artificial hypersurface enclosing the target domain,

the spectral expansion is allowed to approximate this density function, which

eventually leads to rapid algorithms for carrying out the numerical continua-
tion in both 2-D and 3-D cases. 2-D and 3-D numerical examples illustrate

that this improved level-set method is capable of computing high-resolution

inversions and handling 3-D large-scale inverse gravimetry problems.

1. Introduction. This paper introduces an efficient fast local level set method
for inverse problems of gravimetry. Let Ω be a domain in Rm with connected
complement Rm \ Ω and let U(·; µ) be the potential of a measure µ with respect
to the kernel for the Laplacian operator. The integral form of inverse problems of
gravimetry is posed as the following [9]: find a measure µ with support contained in
Ω from its exterior potential U(·; µ) in Rm \Ω. Often times to alleviate the severe
non-uniqueness in inverse gravimetry, one assumes that the measure is a volume
mass distribution, µ = fχ(D), where D is an open subset of Ω and f is a density
function. Accordingly, we obtain the inverse problem of finding D ⊂ Ω and f from
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the exterior potential induced by the volume mass distribution; furthermore, in
most practical situations f is a given constant so that we end up with the domain
problem of volume potential: find the characteristic domain D of the volume mass
distribution µ from its exterior potential U(·;µ) in Rm \Ω. In this work, we propose
an improved fast level set method for the domain problem of volume potential by
developing two novel algorithms: one is of linear complexity designed for computing
the Frechet derivative of the nonlinear domain inverse problem and the other is
designed for carrying out numerical continuation rapidly so as to obtain fictitious
full measurement data from partial measurement.

A fast local level set method for the domain problem of volume potential has
been proposed in [10], and the method has also been extended to a more general
class of inverse gravimetric problems [11]. The theoretical foundation for the ef-
fectiveness of the level set method in dealing with the domain problem of volume
potential is based on the following uniqueness result: if D is star-shaped with re-
spect to its center of gravity or is convex in a certain coordinate direction, then
the exterior potential uniquely determines D. Starting from this result, the work
in [10] utilized the level set function to represent the unknown domain D and fur-
ther designed a geometry-motivated efficient algorithm for computing the Frechet
derivative needed in the level set evolution; since the resulting algorithm for com-
puting the Frechet derivative is of computational complexity O(N2− 2

m ) and storage

requirement O(N2− 1
m ), where N is the total number of mesh points and m is the

dimensionality of the spatial domain Ω, the algorithm has linear complexity when
m = 2 and has super-linear complexity when m = 3. Because both complexity
and storage requirement are superlinear in the three-dimensional case, the resulting
algorithm is not so efficient in computing high resolution inversions and handling
three-dimensional large-scale inverse gravimetry problems. Consequently, in this
work we propose for computing the Frechet derivative a new algorithm which is of
linear complexity and linear storage requirement and works for both 2-D and 3-D
cases.

Underlying this new algorithm for the Frechet derivative is a mathematical insight
concerning the properties of the Laplacian kernel: it is symmetric and translation-
ally invariant and it decays rapidly away from the diagonal. The symmetry and
translational invariance allows us to design certain affine transformations to speed
up the computational process in evaluating the Frechet derivative; the decaying
property allows us to carry out low-rank matrix approximation to reduce storage
requirement. These properties are eventually translated into an algorithm of linear
complexity and linear storage requirement for computing the derivative.

One of the essential difficulties in geophysical inverse problems is limited aper-
ture or partial measurement. Specifically, in inverse gravimetric problems gravity
potential related quantities are only measured on a part of the whole boundary of
the computational domain. To deal with this difficult issue, numerical continuation
is frequently used to obtain fictitious measurements over a closed surface enclosing
the unknown domain; see [10, 6]. The underlying idea of numerical continuation is
the following: first represent the potential measurement due to the unknown domain
as an equivalent single-layer potential due to the unknown single-layer density on
a closed surface Γ enclosing the unknown domain; second, reconstruct the single-
layer density on Γ from the partial measurement by solving a Fredholm integral
equation of the first kind; third, simulate fictitious full measurement on an artificial
boundary due to the unknown domain. The numerical continuation approach used
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in [10] is not efficient as it requires a large number quadrature points to discretize
the single-layer density function on an artificial hypersurface. Observing that the
single-layer density function is smooth and defined on a closed hypersurface so that
it can be considered to be periodic, we propose to carry out a 2-D or 3-D spectral
expansion to discretize the single-layer density function, which eventually lead to a
rapid algorithm for numerical continuation.

1.1. Related work. Due to its severe ill-posedness [9], some regularization tech-
niques were developed to convert the inverse gravimetry problem into a conditionally
well-posed problem [1]. The level set method [14] is a very suitable and powerful
tool for interface or shape-optimization problems due to its great ability in interface
merging and topological changes. This method was first used for inverse obstacle
problems in [18], and has then been applied to analyze a variety of inverse prob-
lems; see [7, 12, 20, 8, 2, 3, 7], and the references therein. More recently, a level set
method was applied to identification of a characteristic function of a domain in the
source term of the Poisson equation from the Cauchy data on the whole boundary
of the reference domain Ω [19].

The rest of the paper is organized as follows. In section 2, we summarize the local
level set method for inverse gravimetry problems as developed in [10]. In section
3, we propose a linear complexity algorithm for computing the Frechet derivative.
In section 4, we propose an improved numerical continuation method for both 2-D
and 3-D cases. In section 5, we carry out a number of numerical experiments for
both 2-D and 3-D cases to show the performance and the effectiveness of proposed
new algorithms.

2. Level-set method for inverse gravimetry.

2.1. Inverse gravimetry. In a given domain Ω ⊂ Rm for m = 2, 3, the gravity
force generated by a mass distribution µ is defined by

(1) ∇ru(r; µ) =

∫
Ω

∇rK(r,p)dµ(p),

where r = [x, y, z]T if m = 3 or r = [x, y]T if m = 2, p ∈ Ω, K is the Green’s
function of the m-dimensional Laplace equation, i.e.,

K(r,p) =
1

4π|r − p|
when m = 3, and − 1

2π
log |r − p| when m = 2,

and, {x, y, z} is the standard Cartesian coordinate system in R3. We assume that
µ is a volume distribution, µ = χD where D is some bounded open set satisfying
D ⊂⊂ Ω; it is the most geophysically realistic assumption. The inverse problem of
gravimetry can be posed as follows: solve the equation

(2) ∇u(·; χD)|Γ0
= g,

for the unknown domain D, where the gravimetry data g ∈ L2(Γ0) is given on a
part of the boundary: Γ0 ⊂ ∂Ω.

The following continuation lemma and uniqueness theorem demonstrate a suffi-
cient condition for the uniqueness of the unknown domain D [9].

Lemma 2.1. [9] Let Ω be a convex domain with analytic (regular) boundary, and
Γ0 be a nonempty hyper surface contained in ∂Ω. If measure µj (j = 1, 2) are
non-negative and |∇U1| = |∇U2| on Γ0, then U1 = U2 on Rm \ Ω. Here Uj =
U(·; µj), j = 1, 2.
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Theorem 2.2. [9] Suppose that either 1) D1 and D2 are star-shaped with respect to
their centers of gravity or 2) D1 and D2 are convex in z. If U(·; χD1) = U(·; χD2)
on Rm \ Ω, then D1 = D2.

In light of the above theorems, we first use numerical continuation, if needed,
to continue the partial measurement towards the unknown domain D so as to con-
struct a set of gravimetry data on the whole boundary of a certain artificial domain
enclosing D, and then the uniqueness Theorem 2.2 applies.

2.2. The level set method. In this method, we use a level set function φ∗ defined
in Rm to represent the unknown domain D, which is Lipschitz continuous satisfying

φ∗(p) > 0, for p ∈ D,
φ∗(p) = 0, for p ∈ ∂D,
φ∗(p) < 0, for p ∈ D̄c.

(3)

Then we define the following operator according to the gravity force relation (1):

A(φ∗)(·) = ∇u(·; χD)|Γ0
,(4)

∇u(r; χD) =

∫
D

∇rK(r,p)dp =

∫
Ω

∇rK(r,p)H(φ∗(p))dp,(5)

where H is the Heaviside function.
Due to its severe instability, the domain inverse problem for solving the unknown

domain D can be formulated based on the Tikhonov regularization theory, as solving
the following minimizing problem:

(6) minF (φ) = min ||A(φ)− g||2L2(Γ0),

for the level set function φ.
A necessary condition for φ being a minimizer is that the Frechet derivative of

functional F with respect to φ is 0, i.e.,

0 =
∂F

∂φ
(p) =

∫
Γ0

2G(r;φ)T∇rK(r,p)drδ(φ(p)),(7)

0 =
1

|∇φ|
∂φ

∂ν
, on ∂Ω,(8)

where ν is the unit normal vector to ∂Ω, the mismatch term G is defined by

(9) G(r;φ) =

∫
Ω

∇rK(r, q)H(φ(q))dq − g(r),

and the natural boundary condition for φ is imposed. Thus applying the method
of steepest descent, we end up with the following evolution equation

∂φ

∂t
= −∂F

∂φ
,

0 =
1

|∇φ|
∂φ

∂ν
, on ∂Ω,

(10)

where φ = φ(r, t) with t being the artificial evolution time. Finally, we take φ∗ =
φ(r,∞) so that ∂D is defined by the zero level set of φ∗: ∂D = {p : φ∗(p) = 0}.
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To avoid numerical instabilities, the Heaviside function in the integrand (5) is
approximated by the following ε-Heaviside function Hε(φ), i.e.,

(11) Hε(φ) =


0, φ < −ε,
1
2 + φ

2ε + 1
2π sin

(
πφ
ε

)
, −ε ≤ φ ≤ ε,

1, φ > ε.

The delta function δ(φ) in (7) can be approximated by δε(φ) = χTε |∇φ| with support
Tε = {p ∈ Ω : |φ(p)| ≤ ε} ⊂⊂ Ω for some ε > 0; see [20]. The introduction of ε-
Heaviside function is numerically essential due to the following reason: when the
whole computational domain is discretized, we only have a finite number of values
of φ at the grid points so that it is numerically more stable to consider a ε-layer
{p : |φ(p)| < ε} around the zero level set of φ than to strictly consider the zero
level set itself since Tε may be empty when ε = 0. In our numerical experiments,
we take ε = 1.0× 10−7. Without loss of generality, in the rest of the paper, we let
Ω be the m-dimensional unit cube for m = 2, 3.

The numerical algorithm [10] for realizing the above level-set based formulation
is summarized as follows:

Algorithm 2.1. Isakov-Leung-Qian Algorithm [10]:

1. Initialize the level set function φ.
2. Compute the mismatch G along the boundary Γ0 according to (9).
3. Compute the level set derivative of the energy according to (7).
4. Evolve the level set function according to the gradient flow (10).
5. Reinitialize the level set function to maintain the signed distance property.
6. Repeat 2-5 until it converges.

In Algorithm 2.1, regularization is implicitly involved. When numerically solving
the Hamilton-Jacobian equation (10) for φ, an artificial viscosity term α∆φ is added
to the right side, which can be considered as adding a regularization term

(12)
α

2

∫
Ω

|∇φ(p)|2dp,

to the objective functional in Eq. (6). This regularization term helps smooth shapes
of the resulting target. Another regularization is related to the reinitialization step
in the step 5 of Algorithm 2.1. The reinitialization of the level set function in a
level-set method is an usual technique since it ensures that the level set function
φ does not change rapidly nearby its zero level set. During each iteration, the
most time and storage consuming steps are step 2 and 3, aiming at computing
the Frechet derivative in Eq. (7). Directly applying trapezoidal rules to discretize
involved integrals in Eqs. (7) and (9) requires a complexity of O(N2−1/m) where
N = nm is the total number of mesh points and n is the number of mesh points
in each direction for m = 2, 3. A geometry-motivated algorithm was developed
to reduce the complexity to O(N2−2/m) in [10]; however, it achieves superlinear
complexity of O(N4/3) for the 3-D case. Motivated by this, we develop a linear
complexity algorithm to compute Frechet derivative Eq. (7) in the following. For
the other steps, please see [10] for details; related techniques have been widely used
in the level set community in various applications [14, 15, 16, 17, 4].

3. Fast algorithm for computing Frechet derivative. We focus on the 3-D
case only in this section. Firstly, we develop a linear complexity algorithm for
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computing the Frechet derivative based on the properties of the kernel ∇K. To
further accelerate the computational process and to reduce the cost of storage, we
develop a compression algorithm. One will find that the new algorithm can be
naturally extended to the 2-D case.

3.1. Linear complexity algorithm. Suppose the gravity field g is measured on
the whole boundary of Ω. Since Ω is assumed to be a unit cube, Γ0 = ∂Ω is
the union of six faces of the unit cube: bottom, top, front, back, left and right
faces, as shown in Fig. 1. Each face is further split into eight triangles. Since rigid
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Figure 1. Six faces of the unit cube: (a): Bottom (z = 0): I1 to
I8; (b): Top (z = 1): I9 to I16; (c): Front (x = 1): I17 to I24; (d):
Back (x = 0): I25 to I32; (e): Left (y = 0): I33 to I40; (f): Right
(y = 1): I41 to I48.

transformations can be used to transform one triangle to another between any two
of the 48 triangles, there exists an orthogonal transformation fi and a translation
operator ci such that gi(I1) := ci ◦ fi(I1) = Ii for 1 ≤ i ≤ 48. For example,

g4(r) =

 0
0
0

+

 0 1 0
1 0 0
0 0 1

 r, g41(r) =

 0
1
0

+

 0 1 0
0 0 -1
1 0 0

 r, r ∈ I1.

Since gi may not be unique, we choose gi such that it can be extended to a one-to-
one mapping from Ω onto Ω. Therefore, the following choice of g4,

g4(r) =

 -1/2
1/2
0

+

 1 0 0
0 1 0
0 0 1

 r,
will be excluded. Without confusing, we will overload the notation to denote the
extension of map gi by gi.
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Since the Frechet derivative in Eq. (7) vanishes outside Tε, we only need to
compute the Frechet derivative at point p ∈ Tε. The surface integral over Γ0 = ∂Ω
in Eq. (7) satisfies∫

∂Ω

G(r;φ)T∇rK(r,p)dr =

48∑
i=1

∫
Ii

G(r;φ)T∇rK(r,p)dr

=

48∑
i=1

∫
Ii

∫
Ω

∇rK(r, q)TH(φ(q))dq∇rK(r,p)dr

−
48∑
i=1

∫
Ii

g(r)T∇rK(r,p)dr

=:Y1(p)− Y2(p),

(13)

for p ∈ Tε. To simplify Y1 and Y2, we need the following relation,

∇qK(q,p)|q=gi(r)

=− gi(r)− p
4π|gi(r)− p|3

= − fi(r)− c−1
i (p)

4π|fi(r)− c−1
i (p)|3

=− fi(r − g−1
i (p))

4π|fi(r − g−1
i (p))|3

(since fi ◦ g−1
i = c−1

i )

=fi

(
− r − g−1

i (p)

4π|r − g−1
i (p)|3

)
(since fi is orthogonal and linear)

=fi
(
∇rK(r, g−1

i (p)
)
.

(14)

By (14) and by change of variables, for p ∈ Tε, we have

Y1(p) =

48∑
i=1

∫
I1

∫
Ω

fi(∇rK(r, g−1
i (q)))TH(φ(q))dq

fi(∇rK(r, g−1
i (p)))|det(Jrgi(r))|dr

=

48∑
i=1

∫
I1

∫
Ω

∇rK(r, g−1
i (q))TH(φ(q))dq∇rK(r, g−1

i (p))dr

(since the Jacobian det(Jrgi(r)) = ±1 and fi is orthogonal)

=

∫
I1

{
48∑
i=1

∫
Ω

∇rK(r, q)TH ◦ φ ◦ gi(q)dq∇rK(r, g−1
i (p))

}
dr,

(15)

and,

Y2(p) =

48∑
i=1

∫
I1

g ◦ gi(r)T fi(∇rK(r, g−1
i (p)))|det(Jrgi(r))|dr

=

∫
I1

{
48∑
i=1

[f−1
i ◦ g ◦ gi(r)]T∇rK(r, g−1

i (p))

}
dr.

(16)

Here, Jr denotes the Jacobian matrix with respect to r.
In fact, the above two integrands as functions of r are smooth in I1. The reason

is as follows: denoting the unknown domain represented by φ by D̃, it is reasonable
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to assume that D̃ is not far away from the correct solution D so that D̃ ⊂⊂ Ω;
consequently, for any q /∈ g−1

i (D̃) (or gi(q) /∈ D̃), we have

H ◦ φ ◦ gi(q) = 0

so that the integrand of the integral over Ω inside the brackets of Eq. (15), as a

function of q, has a compact support inside g−1
i (D̃) ⊂⊂ Ω; and for any p ∈ Tε,

recalling that Tε ⊂⊂ Ω, we have

g−1
i (p) ∈ g−1

i (Tε) ⊂⊂ Ω

so that g−1
i (p) 6= r for any r ∈ I1. Therefore, Gauss-Legendre quadrature rules can

be applied to approximate the above two surface integrals over triangle I1, that is,

Y1(p) ≈
N0∑
k=1

wk

48∑
i=1

∫
Ω

∇rK(rk, q)TH ◦ φ ◦ gi(q)dq∇rK(rk, g
−1
i (p)),(17)

Y2(p) ≈
N0∑
k=1

wk

48∑
i=1

f−1
i ◦ g ◦ gi(rk)T∇rK(rk, g

−1
i (p)),(18)

where ∇rK(rk, ·) = ∇rK(r, ·)|r=rk , and {rk}N0

k=1 and wk are the associated nodes
and weights of the N0-point Gaussian quadrature rule in domain I1.

In Eq. (17), we apply the trapezoidal rule to approximate the volume integral
over Ω, yielding

(19) Y1(p) ≈
N0∑
k=1

wk

48∑
i=1

h3
N∑
l=1

∇rK(rk, ql)
TH ◦ φ ◦ gi(ql)∇rK(rk, g

−1
i (p)),

where Ω is uniformly discretized by N = n× n× n mesh points

{ql}Nl=1 = {[ih, jh, kh]T |0 ≤ i, j, k ≤ n− 1},

and h = 1/(n − 1) is the grid size in each direction. Although ∇rK(rk, ql) may
be unbounded which only happens when ql is located on the boundary ∂Ω, this
situation does not affect the computation since the term H ◦ φ ◦ gi vanishes on the
boundary ∂Ω. To stay on the safe side, we approximate

∇rK(r, q) = − 1

4π

r − q
|r − q|3

≈ − 1

4π

r − q
|r − q|3 + ε0

,

for extremely small ε0 > 0 (e.g., ε0 = 10−20).
To evolve φ at the mesh points {ql}Nl=1 in Ω, we need its Frechet derivative at

those points. Since the Frechet derivative vanishes outside Tε, we only need to
compute the derivative at mesh points lying in Tε. Assuming that there are M
mesh points in Tε, denoted by {pj}Mj=1, there exists an lj ∈ [1, N ] so that pj = qlj
for 1 ≤ j ≤M . We evaluate Y1 and Y2 at p = pj ,

Y1(pj) ≈
N0∑
k=1

wk

48∑
i=1

h3
N∑
l=1

∇rK(rk, ql)
TH ◦ φ ◦ gi(ql)∇rK(rk, g

−1
i (pj)),(20)

Y2(pj) ≈
N0∑
k=1

wk

48∑
i=1

f−1
i ◦ g ◦ gi(rk)T∇rK(rk, g

−1
i (pj)),(21)
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for j = 1, · · · ,M . Both equations can be written in a matrix form, i.e.,

(22) Y1 ≈ h3
48∑
i=1

∑
α∈{x,y,z}

Di,T
α WDαb

i, and Y2 ≈ h3
48∑
i=1

∑
α∈{x,y,z}

Di,T
α Waiα,

where

aiα =
[(
f−1
i ◦ g ◦ gi(rk)

)
α

]
= [(aiα)k]N0×1,

bi = [H ◦ φ ◦ gi(ql)] = [(bi)l]N×1,

W = diag{w1, · · · , wN0
},

Dα = [∂αK(rk, ql)] = [(Dα)kl]N0×N ,

Di
α =

[
∂αK(rk, g

−1
i (pj)

]
= [(Di

α)kj ]N0×M .

Here, (·)α denotes its α-component, α = x, y, z, Y1 = [Y1(pj)]M×1, and Y2 =
[Y2(pj)]M×1. Since the mesh points {ql}Nl=1 remain invariant under any transfor-
mation gi, we assert that Di

α consists of certain columns of Dα.
Clearly, both the computational complexity and storage requirement for evalu-

ating Y1 and Y2 in Eq.(22) are O(N0(N + M)) = O(N0N). Since N0 is fixed, the
new method achieves linear complexity.

3.2. A low-rank-matrix based compression algorithm. If N0 is comparable
to N , the N0 × N matrix Dα and its N0 ×M submatrix Di

α for α = x, y, z, can
still occupy high volume of storage and slow down the computational procedure
when Ω is heavily refined. The kernel function ∇rK(r, q) is inversely proportional
to the square of distance |r − q| for r ∈ I1 and q ∈ Ω. Therefore, elements in Dα

decay rapidly as q goes away from r. We expect that if each Dα is partitioned into
submatrices so that entries indexed by q and r in each submatrix are of almost the
same magnitude in terms of 1

|r−q| , then a low-rank structure can be revealed for

each submatrix.
Take Dx as an example. As the z-component of r ∈ I1 is zero, the larger z-

component of q, say (q)z, is, the smaller the related element in Dx becomes. This
suggests an initial partition of Dx into n submatrices {Dk

x}n−1
k=0 so that entries of

each N0 × n2 matrix Dk
x corresponding to (q)z = kh decay as k increases. The

cross section of Ω at z = kh consists of eight triangles as shown in Fig. 2, where T lk

T
k
2

T
k
1

T
k
2

T
k
3

T
k
4

T
k
4

T
k
4

T
k
3

Figure 2. Four domains {T lk}4l=1 at z = kh.
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is defined by

E1
k = {(x, y, kh)|((x, y, 0) ∈ I1},

E2
k = {(x, y, kh)|(x, y, 0) ∈ I2 ∪ I8},

E3
k = {(x, y, kh)|(x, y, 0) ∈ I3 ∪ I7},

E4
k = {(x, y, kh)|(x, y, 0) ∈ I4 ∪ I5 ∪ I6},

T lk = Elk \ E
l−1
k , l = 1, 2, 3, 4,

for k = 0, · · · , n − 1 with E0
k = ∅. Triangles with different colors have different

levels of distance from I1. Since T 1
k is the closest to I1, followed by T 2

k , T
3
k and

T 4
k , we further partition Dk

x into four submatrices {Dk,l
x }4l=1 so that entries in Dk,l

x

correspond to q ∈ T lk. Although we can further proceed with the partition ofDk,l
x so

that the resulting blocks yield uniform rank distribution, our numerical experiments
show that the above two-step partition provides enough savings in time and storage;
therefore no further partitions are executed in this paper.

To summarize, we partition Dx into 4n submatrices {Dk,l
x |0 ≤ k ≤ n − 1, 1 ≤

l ≤ 4}, where Dk,l
x is of size N0 × Nk,l with Nk,l = O(n2). Entries in each

Dk,l
x decay rapidly as k or l increases and so does the numerical rank of Dk,l

x .
Consequently, it becomes feasible to use a truncated singular value decomposition
(SVD) to decompose Dk,l

x into a sum of low-rank matrices such that only the
information of those low-rank matrices is needed and the related matrix-vector
multiplications can be carried out rapidly.

We start from the N0 ×N0,1 matrix D0,1
x . Firstly, we compute its SVD,

D0,1
x = U0,1S0,1(V 0,1)T ,

where both U0,1 and V 0,1 are unitary matrices of size N0 × N0 and N0,1 × N0,
respectively, and the diagonal matrix S = diag{σ1, · · · , σN0} with singular values
in descending order. Then we set a threshold εSV D for the decomposition, set those
singular values less than εSV D to be zero, and obtain

D0,1
x ≈ U0,1

+ S0,1
+ (V 0,1

+ )T ,

where S0,1
+ = diag{σ1, · · · , στ0,1} with the number of τ0,1 singular values greater

than εSV D, and U0,1
+ and V 0,1

+ are the first τ0,1 columns of U0,1 and V 0,1, respec-

tively. If τ0,1 is much smaller than min{N0, N
0,1}, we choose to store U0,1

+ ,S0,1
+

and V 0,1
+ instead and we perform the matrix-vector multiplication of D0,1

x and any

column vector c ∈ RN0,1×1 by

(23) D0,1
x c ≈ U0,1

+ (S0,1
+ ((V 0,1

+ )T c)).

Consequently, both the computational complexity and storage requirement are re-
duced from O(N0N

0,1) to O(τ0,1(N0 + N0,1)). Cases for the other matrices Dk,l
x

can be analyzed similarly.
Now, for any bi as introduced in Eq. (22), we have

(24) Dxb
i =

n−1∑
k=0

4∑
l=1

Dk,l
x b

i
k,l ≈

n−1∑
k=0

4∑
l=1

Uk,l
+ (Sk,l+ ((V k,l

+ )T bik,l)),

where bi is partitioned into 4n sub-vectors bik,l with its size being consistent with

Dk,l
x , and the three matrices Uk,l

+ ,Sk,l+ and V k,l
+ are assumed to be the truncated
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SVD of Dk,l
x using the fixed threshold εSV D. Denote by τk,l , the number of dom-

inant singular values of Dk,l
x greater than εSV D. We can deduce from Eq. (24)

that both the computational complexity and storage requirement are reduced from
O(N0N) to

(25) O

(
n−1∑
k=0

4∑
l=1

τk,l(N0 +N/(4n))

)
≤ O(τmax(4nN0 +N)),

where τmax = maxk,l τk,l. Although it is expensive to compute truncated SVDs of
Dk,l
x , this computational procedure is executed only once as a preprocessing step

and we store those matrices [Uk,l
+ ,Sk,l+ ,V k,l

+ ]; the total complexity is

O

(
n−1∑
k=0

4∑
l=1

O(N2
0N

k,l)

)
= O(N2

0N).

We can reload them whenever they are needed. Cases for the other two matrices
Dy and Dz can be analyzed similarly.

For the other three matrices Di
α, α = x, y, z of size N0×M , we need to compute,

for any column vector d ∈ RN0×1, the product of (Di
α)T and d. Since a direct com-

putation requires O(N0M) floating operations, we may apply the same strategy to
process Di

α as used for Dα. However, because of the same underlying structure, we
claim that we can directly extract relevant information for Di

α from those obtained
for Dα. To illustrate this, we take Di

x as an example, which is a submatrix of
Dx. Applying the same two-step partition as before, we obtain submatrices of Di

x:
{(Di

x)k,l|0 ≤ k ≤ n − 1, 1 ≤ l ≤ 4}, where (Di
x)k,l consists of column vectors of

Dk,l
x with the column index vector denoted by Ik,l. To obtain a formula similar to

Eq. (24), we need the truncated SVD of (Di
x)k,l.

We start from (Di
x)0,1. Since matrix multiplication rules show that its SVD is

(Di
x)0,1 = U0,1S0,1(V 0,1

I0,1
)T ,

where V 0,1
I0,1

consists of row vectors of V 0,1 with the row index vector I0,1, its

truncated SVD using the threshold εSV D is

(Di
x)0,1 ≈ U0,1

+ S0,1
+ (V 0,1

I0,1
)T+,

where (V 0,1
I0,1

)+ is the first τ0,1 columns of V 0,1
I0,1

. Cases for other matrices (Di
x)k,l

can be analyzed similarly to get their corresponding approximate SVDs: Uk,l
+ , Sk,l+

and (V k,l
Ik,l

)+, where (V k,l
Ikl

)+ is the matrix composed by certain row vectors of V k,l
+

with the row index vector Ikl. Finally, by carrying out the following multiplications,

(26) vk,l =
(
(Di

x)k,l
)T
d ≈ V k,l

+

(
Sk,l+

(
(Uk,l

Ikl
)T+d

))
,

for 0 ≤ k ≤ n − 1, 1 ≤ l ≤ 4, we obtain Di
x
T
d by combining those column vectors

{vk,l} together in certain order. Clearly, the computational complexity and storage
requirements are reduced from O(N0M) to

O

(
n−1∑
k=0

4∑
l=1

τk,l(N0 + |Ikl|)

)
≤ O(τmax(4nN0 +M)),

where |Ikl| denotes the length of vector Ikl. We emphasize that we only need to
store the index vectors Ikl instead of Di

x. Cases for the other matrices Di
y and Di

z

can be analyzed similarly.
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To sum up, once relevant truncated SVDs are computed in the preprocessing
step with a linear complexity O(N2

0N), we conclude that by Eqs. (24) and (26), the
computational complexity of evaluating Y1 and Y2 in Eq. (22) is no more than

O(τmax(8nN0 +M +N)) = O(nN0 +N +M).

The details of complexity and storage requirement for computing the Frechet de-
rivative in (7) by different algorithms are listed in Table 1.

Algorithm in [10] New algorithm (excluding the preprocessing step)

Complexity O(N4/3 +N2/3M) O(nN0 +N +M)

Storage O(N5/3) O(nN0 +N +M)
Table 1. Complexity and storage for different algorithms for 3-D case.

To illustrate the performance of the new algorithm explicitly, for the specific
example studied in section 5.2.1, we check the running times (excluding the prepro-
cessing step) in computing Frechet derivatives in only one iteration of Algorithm 2.1
for different values of N . The relation is shown in Fig. 3, where both axes are scaled
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Figure 3. Performances for computing Frechet derivatives by the
linear algorithm as proposed here and the superlinear algorithm in
[10] in the 3-D case.

logarithmically, and both the algorithm in [10] and the new algorithm are tested.
To produce Fig. 3, we take N0 = 36 and εSV D = 1.0×10−7; n varies from 21 to 129
with a step size 4 for the ‘+’ line, and varies from 21 to 65 with the same step size 4
for the ‘o’ line. We can see from Fig. 3 that: the new algorithm is much faster and
achieves linear complexity; the running time of the linear algorithm for the finest
mesh with N = 1293 is almost the same as that of the superlinear algorithm for the
coarsest mesh with N = 213.

3.3. Implementation. We discuss some implementation details by focusing mainly
on the following two aspects.
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3.3.1. Gaussian quadrature rule for the triangle I1. Since the domain I1 is a triangle,
there is no standard Gaussian quadrature rule available; therefore, we derive such
a quadrature rule from the standard Gaussian quadrature on a rectangle.

For any two dimensional analytic function f(r) defined on the bottom face [0, 1]×
[0, 1]× {z = 0}, its double integral can be approximated by

(27)

∫ 1

0

dx

∫ 1

0

f(x, y, 0)dy ≈
m̃∑
k=1

m̃∑
l=1

f(xk, xl, 0)w̃kw̃l,

where {xk}m̃k=1 and {w̃k}m̃k=1 are the associated nodes and weights of the standard
m̃-points Gauss-Legendre quadrature rules over the interval [0, 1] in ascending order.
It is well-known that the Gauss-Legendre rule achieves exponential convergence for
analytical functions. To make sure that the triangle-based quadrature yields the
same level of accuracy as the rectangle-based quadrature, the nodes {ri}N0

i=1 and

weights {wi}N0
i=1 as used in Eqs. (17) and (18), have to be chosen in the following

way, ∫ 1

0

dx

∫ 1

0

f(x, y, 0)dy =

8∑
j=1

∫
Ij

f(r)dxdy

=

8∑
j=1

∫
Ij

f(r)dxdy =

8∑
j=1

∫
I1

f(gj(r))dxdy ≈
8∑
j=1

N0∑
i=1

f(gj(ri))wi,

where the approximation must agree with the result in Eq. (27). Consequently, ri
and wi satisfy

(28)

m̃∑
k=1

m̃∑
l=1

f(xk, xl, 0)w̃kw̃l =

8∑
j=1

N0∑
i=1

f(gj(ri))wi,

and a special solution to (28) for ri and wi is given as follows.
For simplicity, we assume that m̃ is odd so that x(m̃+1)/2 = 0.5. The nodes

{ri}N0
i=1 can be directly selected from the set A := {[xk, xl, 0]T |1 ≤ k, l ≤ m̃} by

choosing those lying in I1 as the desired nodes. We have

{ri}N0
i=1 = A1 := {[xk, xl, 0]T |1 ≤ k ≤ (m̃+ 1)/2, 1 ≤ l ≤ k},

where the elements of A1 are arranged in such an order that ri = [xk, xl, 0]T for
some i = i(k, l), yielding N0 = |A1| = (m̃ + 1)(m̃ + 3)/8. To find wi(k,l) for any

point ri(k,l) = [xk, xl, 0]T ∈ A1, we equate the coefficients of f(xk, xl, 0) in both
sides of Eq.(28), yielding

{wi}N0
i=1 =W1 := {w̃kw̃l/pkl|1 ≤ k ≤ (m̃+ 1)/2, 1 ≤ l ≤ k},

Here, pkl is the number of pairs (j, ri) that satisfy gj(ri) = ri(k,l) for 1 ≤ j ≤ 8 and
ri ∈ A. By the definitions of gj , it is easy to find that pkl is equal to the number of
triangles among the eight sharing the same ri(k,l). Thus,

pkl =


2 1 ≤ k = l < (m̃+ 1)/2,
2 k = (m̃+ 1)/2, 1 ≤ l < (m̃+ 1)/2,
8 k = (m̃+ 1)/2, l = (m̃+ 1)/2,
1 otherwise.

Inverse Problems and Imaging Volume 9, No. 2 (2015), 479–509



492 Wangtao Lu, Shingyu Leung and Jianliang Qian

3.3.2. How small can the number of nodes N0 be? In section 3.2, we use Gauss-
Legendre rules, instead of trapezoidal rules, to approximate surface integrals in (15)
and (16) over I1. The Gauss-Legendre rule requires the measurement of g(gj(ri))
for 1 ≤ i ≤ N0 and 1 ≤ j ≤ 48. The measured points {gj(ri)|1 ≤ j ≤ 8, ri ∈ A1}
actually constitute the 2-D Legendre mesh points in all six faces. The trapezoidal
rule requires the measurement of g(r) at certain uniform mesh points in {ql}Nl=1

lying on all six faces. Since the Gauss-Legendre quadrature rule enjoys exponential
accuracy when approximating a surface integral with analytic integrand, we check
a specific example to show the relation between the accuracy and the number of
nodes N0.

Let the unknown domain D be a sphere centered at c0 = (1/2, 1/2, 1/2)T with
radius r0 = 0.4. We have

g(r) =

∫
D

∇rK(r,p)dp =

∫ r0

0

dr

∫ π

0

dθ

∫ 2π

0

dφ∇rK(r,p)|p=p(r,θ,φ),

where p(r, θ, φ) = c0 + (r sin θ cosφ, r sin θ sinφ, r cosφ). A multi-Gaussian quad-
rature rule can be applied to compute g(r) for any r ∈ ∂Ω due to the smooth
integrand. Now we compute g(r) at two different sets of points on the bottom face
z = 0: one set consists of uniform points Un = {(ih, jh, 0)T |0 ≤ i, j ≤ n − 1}, and
the other consists of Legendre points Lm̃ = {[xk, xl, 0]T |1 ≤ k, l ≤ m̃}. To verify
whether Lm̃ suffices for constructing the gravimetry data, we check whether g(r)
for r ∈ Un can be recovered from {g(r0)|r0 ∈ Lm̃} with sufficient accuracy.

We employ the 2-D Lagrange interpolation formula to approximate g(r) by

gm̃(r) =
∑

r0∈Lm̃

Iq0(r)g(r0),

where r = [x, y, 0]T , 0 ≤ x, y ≤ 1, and Ir0
(r) is the Lagrange cardinal basis polyno-

mial of x and y satisfying Ir0
(r) = 0 for all r ∈ Lm̃ except when r = r0 in which

case Ir0(r0) = 1. We define the relative error

Em̃,n =
maxr∈Un |gm̃(r)− g(r)|

maxr∈Un |g(r)|
,

and take n to be 129. The relation between Em̃,n and the number of one-dimensional
Legendre nodes m̃ is shown in Fig. 4, where the vertical axis represents the relative
error Em̃,n in logarithmic scale and the horizontal axis represents m̃ varying from
3 to 31 with the step size 2. We can see that the error decays exponentially. In
particular, when m̃ = 15, the relative error E15,129 ∼ 10−5 which may be considered
to be accurate enough since the practical data may be polluted with higher level of
noise. Numerical examples studied in this paper will show that taking m̃ = 15 and
N0 = (m̃+ 1)(m̃+ 3)/8 = 36 can give satisfactory results.

4. Numerical continuation. In the previous section, we concluded that if the
gravity field g is fully measured at the 2-D Legendre mesh points in each of the
six faces of Ω, a linear complexity algorithm can be developed. The Legendre
measurement data set requires much less information than the uniform measurement
data set does. However, in practical surveys, measurement data are always collected
at uniform mesh points lying on only one of the six faces of the unit cube Ω. It was
illustrated in [10] that a partial measurement data set may not be able to illuminate
the targeted object completely. Therefore, a proper numerical continuation method
to reconstruct a full measurement data from a given partial measurement data
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Figure 4. The relation between Em̃,129 (the vertical axis) and m̃
(the horizontal axis).

was used in [10]. Underlying this method is the fact that the gravity field can be
represented by a single-layer potential due to some unknown single-layer density
function on a closed surface Γ enclosing the target domain D. Since the density
function is smooth and periodic on Γ, it is feasible to apply the spectral expansion
to approximate the density function. Motivated by this, following [10], we develop
an improved numerical continuation method for both 2-D and 3-D cases. Before
detailing the method, we give a brief sketch of the basic idea.

4.1. Brief sketch of numerical continuation. As shown in Fig. 5, suppose we

D

Γ

γ

Γ
1

Γ
0

Figure 5. Illustration of numerical continuation.

are given measurement data g on a portion of Γ0 = ∂Ω, denoted by γ, that is,

(29) ∇ru(r;χD) =

∫
D

∇rK(r, q)dq = g(r), r ∈ γ.

Clearly, u satisfies the Laplace equation outside the to-be-determined domain D.
Thus, we represent u by a single layer potential for the Laplace operator defined on
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some surface Γ enclosing D, i.e.,

u(r) =

∫
Γ

K(r, q)ψ(q)ds(q),(30)

where f is the potential density function to be determined on Γ. For example, we
can choose Γ to be a circle for the 2-D case or a sphere for the 3-D case. Combining
Eqs. (29) and (30), we have

(31)

∫
Γ

∇rK(r, q)ψ(q)ds(q) = g(r),

where r ∈ γ.
As is well-known, Eq.(31) is an ill-posed Fredholm integral equation of the first

kind. To find ψ, we apply a proper quadrature rule to discretize the above integral
over Γ, collocate r at the given measurement points on γ, and end up with the
following linear system

Lψ = g,(32)

where ψ denotes the column vector for the values of ψ(q) at the discretization points
on Γ. Since L is not necessarily square and may be rank deficient, it is suitable to
use its pseudo inverse to find ψ. Thus, we compute the truncated SVD of L using
threshold ε̃SV D, that is,

(33) L ≈ Ũ S̃Ṽ T ,

where S̃ is the diagonal matrix with the dominant singular values greater than
ε̃SV D, and Ũ and Ṽ are two unitary matrices. We thus obtain ψ = L+g where
L+ = Ṽ S̃−1ŨT .

Once ψ is found, we can compute ∇ru(r;χD) on some surface Γ1 outside Γ by
(31) and by the same quadrature rule to discretize the above integral over Γ for
r belonging to the desired set of measurement points; for instance, we may take
Γ1 = ∂Ω. Numerical results shown in [10] exhibit good performance of this method,
where the trapezoidal rule is used to approximate the involved integral over Γ. The
drawback of employing the trapezoidal rule is that a large number, denoted by Ñ ,
of points are used in discretizing Γ to achieve the desired accuracy, giving rise to a
matrix L with Ñ columns. Empirically, we take Ñ = O(nm−1) so it is expensive to
compute truncated SVD of L for large n. Therefore, we are motivated to develop
faster and more accurate quadrature rules in the following for both 2-D and 3-D
cases.

4.2. Two-dimensional case. For the 2-D case, suppose Γ is a circle centered at
c = (1/2, 1/2) with radius r, represented by

x = 1/2 + r cos θ,

y = 1/2 + r sin θ,
(34)

with 0 < r < 1/2 and 0 ≤ θ ≤ 2π. Thus, we can transform Eq.(31) into

(35)

∫ 2π

0

K̃(x, y, θ)ψ(θ)dθ = −2π

r
g(x, y),

where, for simplicity, we denote

ψ(θ) = ψ(1/2 + r cos θ, 1/2 + r sin θ),

K̃(x, y, θ) =
(x− 1/2− r cos θ, y − 1/2− r sin θ)

(x− 1/2− r cos θ)2 + (y − 1/2− r sin θ)2
.
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As is well-known, since the integrand in (35) is analytic and 2π-periodic, the
trapezoidal quadrature formula converges exponentially to the exact value as the
number of discretization points increases. Observing that the measurement bound-
ary γ and the artificial boundary Γ may not be well separated leading to a highly
oscillatory function K̃ with respect to θ, trapezoidal rules with only a few dis-
cretization points may not give a very accurate approximation to the integral in
(35), whereas more discretization points may result in a larger matrix L. To resolve
the problem, we use the spectral expansion as in [13].

We assume that ψ(θ) is smooth enough and 2π-periodic, since we may locate
Γ to be away from the to-be-determined domain D. We approximate ψ by its
trigonometric interpolation polynomial,

(36) ψ(θ) ≈
Ñ/2−1∑
l=−Ñ/2

ψ̂le
ilθ,

where Ñ is a given even integer, and the Fourier coefficients ψ̂l are approximated
by

ψ̂l =
1

2π

∫ 2π

0

ψ(θ)e−ilθdθ

≈ 1

Ñ

Ñ−1∑
k=0

ψ(θk)e−ilθk , l = −Ñ/2, · · · , Ñ/2− 1,

(37)

where θk = 2kπ/Ñ, k = 0, · · · , Ñ − 1. Therefore, Eq.(35) becomes

(38)

Ñ−1∑
k=0


Ñ/2−1∑
l=−Ñ/2

K̃l(x, y)e−ilθk

ψ(θk) = −2Ñπ

r
g(x, y),

where the Fourier coefficient K̃l for each l is defined by

K̃l(x, y) =

∫ 2π

0

K̃(x, z, θ)eilθdθ.

We still employ the trapezoidal rule to approximate K̃l for each l,

K̃l(x, y) ≈ 2π

M̃

M̃−1∑
k=0

K̃(x, y, θ̃k)eilθ̃k ,

where M̃ is the number of discretization points and θ̃k = 2πk/M̃, k = 0, · · · , M̃−1.

However, because of the possibly high oscillation of the function K̃, M̃ has to be
chosen to be larger than Ñ . The FFT (fast Fourier transform) can be employed to
speed up the evaluation of those coefficients.

Now, we collocate (x, y) at the given measured points on γ so that we obtain
a linear system as (32), where matrix L has much fewer columns. Therefore, by
computing the pseudoinverse of L, we can find ψ so as to reconstruct a fictitious
full measurement data on Γ1 as desired.

4.3. Three-dimensional case. For the 3-D case, suppose now Γ is a sphere cen-
tered at c = (1/2, 1/2, 1/2) with radius r, i.e., Γ = c + rS2, where S2 is the unit
sphere {r ∈ R3||r| = 1} and 0 < r < 1/2. To approximate the smooth density func-
tion ψ defined on Γ, we need spherical harmonics {Y ml }, which are special solutions
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of the 3-D Laplace equation. Before detailing the quadrature rules, we introduce
some properties of the spherical harmonics [5].

For a 3-D Helmholtz equation

(39) ∆u+ k2u = 0,

with wavenumber k, its Green’s function is

Φk(r, q) =
eik|r−q|

4π|r − q|
, r 6= q.

Let jl and yl be the spherical Bessel function and spherical Neumann function of
order l, respectively, defined by

(40) jl(t) =

∞∑
p=0

(−1)ptl+2p

2pp!1 · 3 · · · (2l + 2p+ 1)
,

and

(41) yl(t) = − (2l)!

2ll!

∞∑
p=0

(−1)pt2p−l−1

2pp!(−2l + 1)(−2l + 3) · · · (−2l + 2p− 1)
,

and let h
(1)
l be the first kind spherical Hankel function of order l defined by h

(1)
l =

jl + iyl. We denote the normalized vector of r by r̂, i.e., r̂ = r/|r|. We have the
following lemmas [5].

Lemma 4.1. Eq.(2.30) in [5]: Let Y ml , m = −l, · · · , l be any system of 2l + 1
orthogonal spherical harmonics of order l defined on S2. Then, for all r̂, q̂ ∈ S2 we
have

(42)

l∑
m=−l

Y ml (r̂)Y −ml (q̂) =
2l + 1

4π
Pl(r̂ · q̂),

where Pl is the Legendre polynomial of order l defined on [−1, 1].

This is the so-called additional theorem.

Lemma 4.2. Eq.(2.44) in [5]: For any r satisfying |r| > r, we have

(43)
1

ikr2

∫
|q|=r

Φk(r, q)Y ml (q̂)ds(q) = jl(kr)h
(1)
l (k|r|)Y ml (r̂).

Considering (40) and (41), passing k → 0 in Eq.(43) in Lemma 4.2 gives∫
|q|=r

K(r, q)Y ml (q̂)ds(q) =
1

2l + 1

rl+2

|r|l+1
Y ml (r̂), |r| > r.(44)

Taking the gradient with respect to r, we have∫
|q|=r

∇rK(r, q)Y ml (q̂)ds(q) =
rl+2

2l + 1

(
∇rY

m
l (r̂)

|r|l+1
− (l + 1)

Y ml (r̂)

|r|l+2
r̂

)
.(45)

We are ready to discretize Eq. (31) now. By change of variables, Eq. (31) becomes∫
|q|=r

∇rK(r, c+ q)ψ(c+ rq̂)ds(q) =

∫
|q|=r

∇r̄K(r̄, q)ψ(q̂)ds(q) = g(r),(46)

for r ∈ γ, where for convenience, ψ(q̂) = ψ(c+ rq̂) and r̄ = r − c.
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Since ψ is smooth on S2, we define a projection operator QÑ that maps ψ onto

a linear space HÑ−1 of all spherical harmonics of order less than Ñ ,

QÑψ(q̂) :=
π

Ñ

Ñ∑
j=1

2Ñ−1∑
k=0

αjψ(qjk)

Ñ−1∑
l=0

l∑
m=−l

Y −ml (qjk)Y ml (q̂),

where Ñ is a given integer,

qjk = (sin θj cosφk, sin θj sinφk, cos θj),

θj = cos−1(tj), j = 1, · · · , Ñ ,

φk = 2kπ/Ñ, k = 0, · · · , 2Ñ − 1,

{tj}Ñj=1 and {αj}Ñj=1 are the associated nodes and weights of the standard Ñ -
points Gauss-Legendre quadrature rules. As shown in [5] and the references therein,
QÑψ(q̂) can approximate ψ with exponentially convergent rate.

Thus, by Eqs. (42) and (45), the left hand side of Eq. (46) can be approximated
by ∫

|q|=r
∇r̄K(r̄, q)QÑψ(q̂)ds(q)

=
π

Ñ

Ñ∑
j=1

2Ñ−1∑
k=0

αjψ(qjk)

Ñ−1∑
l=0

l∑
m=−l

Y −ml (qjk)

∫
|q|=r

∇r̄K(r̄, q)Y ml (q̂)ds(q)

=
π

Ñ

Ñ∑
j=1

2Ñ−1∑
k=0

αjψ(qjk)

Ñ−1∑
l=0

l∑
m=−l

Y −ml (qjk)

rl+2

2l + 1

(
∇r̄Y

m
l (ˆ̄r)

|r̄|l+1
− (l + 1)

Y ml (ˆ̄r)

|r̄|l+2
ˆ̄r

)

=
π

Ñ

Ñ∑
j=1

2Ñ−1∑
k=0

αjψ(qjk)

Ñ−1∑
l=0

rl+2

(2l + 1)|r̄|l+1(
∇r̄

l∑
m=−l

Y ml (ˆ̄r)Y −ml (qjk)− (l + 1)ˆ̄r

|r̄|

l∑
m=−l

Y ml (ˆ̄r)Y −ml (qjk)

)

=
π

Ñ

Ñ∑
j=1

2Ñ−1∑
k=0

αjψ(qjk)

Ñ−1∑
l=0

rl+2

(2l + 1)|r̄|l+1

2l + 1

4π

(
∇r̄Pl(θ

jk
r )− (l + 1)ˆ̄r

|r̄|
Pl(θ

jk
r )

)

=

Ñ∑
j=1

2Ñ−1∑
k=0

cjk(r)ψ(qjk) ≈ g(r), r ∈ γ,

(47)

where θjkr = ˆ̄r · qjk, the coefficients cjk are

cjk(r) =
αj

4Ñ

Ñ−1∑
l=0

[
P ′l (θ

jk
r )(qjk − θjkr ˆ̄r)− (l + 1)Pl(θ

jk
r )ˆ̄r

]( r

|r̄|

)l+2

,

and P ′l is the derivative of Pl.
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We now collocate r in Eq. (47) at the given measurement points on γ and assem-
ble the linear system as Eq. (32). Then we compute the pseudoinverse of L with the
threshold ε̃SV D to find ψ. Once ψ is found, we can compute the gravity field g(r)
on the artificial hypersurface Γ1 for r belonging to the desired set of measurement
points to reconstruct the fictitious full measurement data.

In comparison to the original technique in [10], the new continuation technique
has the following advantages. In practice, partial measurement data are generally
polluted with certain level of noise, and it is well-known that such a numerical
continuation is extremely unstable with respect to the noise level. However, in
the new continuation process, since trigonometric functions in 2-D or spherical
harmonics in 3-D are used as the set of basis functions to approximate the single-
layer density function ψ in Eq. (31), exponential convergence is expected due to
the periodicity and analyticity of ψ on Γ. Therefore, the number of basis functions
used in discretizing Eq. (31) can be chosen to be far fewer than the number of
available measurement data points so that the problem of computing ψ is reduced
to solving an overdetermined system, which is expected to be more stable than an
underdetermined system. By keeping much fewer number of basis functions, we only
use those low-mode basis functions which are much less oscillatory than high-mode
basis functions so that we implicitly regularize the numerical continuation process.
Consequently, when we extract fictitious full measurement data from the numerical
solution of ψ, we can expect that loss of data information is minimized.

5. Numerical examples. We study a number of synthetic numerical examples
for both 2-D and 3-D cases to demonstrate the performance of the improved local
level set method.

5.1. Two-dimensional cases. Partial measurement at uniform mesh points is
given on a part of the boundary ∂Ω. Once the fictitious full measurement data is
constructed by the improved numerical continuation method, we follow [10] to carry
out the inversion process.

Throughout the 2-D examples, the initial level set function is chosen to be a
circle as

(48) φ(r) = r − ||r − c||2,

which is centered at point c = (0.5, 0.5)T with radius r = 0.45. Two different sets
of partial measurements are considered:
1) the measurement is made on γ = {(x, y)T : x ∈ [0.25, 0.75], y = 1};
2) the measurement is made on γ = {(x, y)T : x ∈ [0, 1], y = 1}.

The computational domain Ω is uniformly discretized by N = n × n points for
n = 129 with grid size 1/(n−1) = 1/128 in each direction. We choose those uniform
mesh points lying on γ to be the measured points. To apply the improved numerical
continuation method, we take the hypersurface Γ to be a circle centered at point
c with radius 0.375 and the artificial boundary surface Γ1 to be the boundary ∂Ω.
We discretize Γ uniformly by a fixed number Ñ = 30 of points.

5.1.1. An elliptic target. Let the target domain D be the ellipse a−2
1 (x − xc)

2 +
a−2

2 (y − yc)2 < 1 where a1 = 0.3, a2 = 0.15 and xc = yc = 0.5. As shown in [9],
page 99, we have the exact formula for computing the gravity field g:

(49) g(r) = u(r;χD) = −a1a2

e2
0

(x− x̃,−y + ỹ) ,
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where e0 =
√
a2

1 − a2
2, x̃ and ỹ are (signed) solutions to

(x−xc)2−(y−yc)2−e2
0 = (x̃−xc)2−(ỹ−yc)2, (x−xc)(y−yc) = (x̃−xc)(ỹ−yc),

with sign(x̃− xc) = sign(x− xc) and sign(ỹ − xc) = sign(y − yc).
Firstly, we assume that the gravity field g is measured through Eq. (49) at the two

aforementioned measurement sets γ with 0% noise (clean measurement). Numerical
results are shown in Fig. 6, where the elliptic target is plotted in red centered at
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Figure 6. (Elliptic target) Numerical results based on apply-
ing the improved numerical continuation method to the partial
measurement data with 0% noise made on (a): {(x, y)T : x ∈
[0.25, 0.75], y = 1}; (b): {(x, y)T : x ∈ [0, 1], y = 1} (Red: exact
solution. Blue: Numerical solution).

(x, y) = (0.5, 0.5)T and numerical solutions are plotted in blue. To produce Fig. 6,
we take the threshold ε̃SV D to be 10−7σmax to compute the pseudoinverse of matrix
L in Eq. (32), where σmax is the largest singular value of S̃; we perform 400 iterations
in Algorithm 2.1 to generate a steady state solution. We can see from Fig. 6 that
numerical inversions match with the exact solution very well.

Secondly, to check the stability of the improved numerical continuation method,
we consider a data set polluted with noise. We assume that the gravity field g is
measured through Eq. (49) at the measurement set γ = {(x, y)T : x ∈ [0, 1], y = 1}
and is further polluted with 10% Gaussian noise. Numerical result is shown in
Fig. 7, where the elliptic target is plotted in red centered at (x, y) = (0.5, 0.5) and
the numerical solution is plotted in blue. To produce Fig. 7, we set the threshold
ε̃SV D to be 3×10−2σmax in constructing the pseudoinverse of matrix L in Eq. (32);
we perform 400 iterations to generate a steady state solution. We can see from
Fig. 7 that the numerical inversion matches with the exact solution reasonably well.

5.1.2. A disjointed target. We next study a disjointed target. The target domain
D consists of two disks D1 and D2 with the same radius r = 0.1 and centered at
c1 = (0.25, 0.5)T and c2 = (0.75, 0.5)T , respectively, as shown in Fig. 8(a). In fact,
since the exact gravity field for either u(·;χDi) can be obtained by Eq. (49), the
exact formula for the gravity field g = u(·;χD1

) + u(·;χD2
) is still available. We

omit the details here.
Firstly, we assume that the gravity field g is measured through the exact formula

at the two aforementioned sets γ with 0% noise (clean measurement). Numerical
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Figure 7. (Ellipsoidal target) Numerical result based on applying
the improved numerical continuation method to partial measure-
ment data with 10% noise made on {(x, y) : x ∈ [0, 1], y = 1} (Red:
exact solution. Blue: numerical solution).

results are shown in Figs. 8(b-c), where the two-disk target is plotted in red and
numerical solutions are plotted in blue. To produce Figs. 8(b-c), we set the threshold
ε̃SVD to be 10−7σmax to compute the pseudoinverse of matrix L in Eq. (32), and
we perform 800 iterations to generate a steady state solution. We can see from
Fig. 8(b-c) that numerical inversions match with the exact solution very well.

Secondly, we assume that the gravity field g is measured through the exact
formula at the top side γ = {(x, y)T : x ∈ [0, 1], y = 1} and is further polluted
with 10% Gaussian noise. Numerical result is shown in Fig. 8(d), where the two-
disk target is plotted in red and the numerical solution is plotted in blue. To
produce Fig. 8(d), we set the threshold ε̃SVD to be 3× 10−3σmax in computing the
pseudoinverse of matrix L in (32); we use 800 iterations to generate a steady state
solution. We can see from Fig. 8(d) that the numerical inversion matches with the
exact solution reasonably well.

5.2. Three-dimensional cases. For 3-D cases, we require that the full measure-
ment data for the gravity field g be given at the 2-D Legendre mesh points rather
than the uniform mesh points, on each of the six faces of Ω. When applying the
improved numerical continuation method, we assume that the partial measurement
data for the gravity field is provided at the 2-D Legendre mesh points on the top face
of Ω: [0, 1]× [0, 1]×{z = 1} only, and we reconstruct the fictitious full measurement
data at the 2-D Legendre mesh points on each of the six faces of Ω again.

Throughout the 3-D examples, we initialize the level set function as

φ(r) = r − ||r − c||,
representing a sphere centered at c = (0.5, 0.5, 0.5) with radius r = 0.35. We
discretize the computational domain Ω by N = n×n×n uniform mesh points with
the grid size h = 1/(n− 1) in each direction in three different cases: 1) n = 33, 2)
n = 65, and 3) n = 129. We choose m̃2 = 15× 15 2-D Guass-Legendre mesh points
to discretize each face so that N0 = 36. In the following examples, we choose
εSV D = 1.0× 10−7 in the low-rank-matrix based compression algorithm.

To produce the synthetic partial or full measurement Legendre data set for the
gravity field g, we compute g(r) for r belonging to the desired set of measurement
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Figure 8. (Two disks) (a): Exact solution; Numerical results on
applying the improved numerical continuation method to partial
measurement data (b): with 0% noise made on {(x, y) : x ∈
[0.25, 0.75], y = 1}; (c): with 0% noise made on {(x, y) : x ∈
[0, 1], y = 1}; (d): with 10% noise made on {(x, y) : x ∈ [0, 1], y =
1}. (Red: exact solution. Blue: numerical solution).

points by Eq.(5); the volume integral over Ω is approximated by the N -points
trapezoidal rule so that different values of N give different levels of accuracy for
the measurement data. To apply the improved numerical continuation method, we
take the hypersurface Γ to be a circle centered at c with radius r = 0.4, and take
the artificial boundary surface Γ1 to be the boundary ∂Ω. When constructing the
matrix L by Eq. (47), we take Ñ = 26 so that the matrix L has 2 × Ñ2 = 1352
columns.

5.2.1. 3-D ellipsoidal target. The first example is an ellipsoid target. Let D be the
3-D ellipsoid:

(x− 0.5)2

0.42
+

(y − 0.5)2

0.32
+

(z − 0.5)2

0.22
< 1.

Its shapes in different resolutions are shown in Figs. 9(a-c), for n = 33, 65 and 129,
respectively. We consider three different measurement data sets:

• Case 1: the measurement surface Γ0 = ∂Ω; the gravimetry data is unpolluted
(clean full measurement data);
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(a) (b) (c)
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Figure 9. (3D ellipsoidal target) (a-c): exact solution in different
resolutions; (d-f): numerical inversions for the clean full measure-
ment data; (g-i): numerical inversions for the clean partial mea-
surement data given on top face z = 1. Number of n used in:
(a,d,g): 33; (b,e,h): 65; (c,f,i): 129.

• Case 2: the measurement surface Γ0 = [0, 1]× [0, 1]×{z = 1}; the gravimetry
data is clean (clean partial measurement data);

• Case 3: the measurement surface Γ0 = ∂Ω; the gravimetry data is polluted
with 5% Gaussian noise (noisy full measurement data).

Numerical results for Case 1, clean full measurement data, are shown in Figs. 9
(d-f) for the three cases: n = 33, 65 and 129, respectively. To produce Figs. 9
(d-f), we perform 640 iterations in Algorithm 2.1 to obtain the steady state level
set solution. We can see that numerical inversions match the exact solution very
well.

Numerical results for Case 2, clean partial measurement data, are shown in Figs. 9
(g-i) for the three cases: n = 33, 65 and 129, respectively. To produce Figs. 9 (g-i),
we first construct the fictitious full measurement data by the improved numerical
continuation method and then perform 640 iterations in Algorithm 2.1 to obtain
the steady state level set solution. To compute the pseudo-inverse of matrix L, we
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use its 406, 461 and 461 largest singular values in the three different cases: n = 33,
65 and 129, respectively. We can see that numerical inversions match the exact
solution very well.

Numerical results for Case 3, noisy partial measurement data, are shown in
Figs. 10(a-c) for the three cases: n = 33, 65 and 129, respectively. To produce

(a) (b) (c)

Figure 10. (3D ellipsoidal target) (a-c): numerical inversions for
the noisy full measurement data with 5% Gaussian noise. Number
of n used in: (a): 33; (b): 65; (c): 129.

Figs. 10(a-c), we perform 640 iterations in Algorithm 2.1 to obtain the steady state
level set solution. We can see that numerical inversions match the exact solution
reasonably well.

5.2.2. Two spheres. The second example consists of two disjointed spheres with
the same radius 0.1 and centered at two points (0.3, 0.3, 0.3) and (0.7, 0.7, 0.7),
respectively. The two spheres in different resolutions are shown in Figs. 11(a-c), for
n = 33, 65, and 129, respectively. We consider four measurement data sets:

• Case 1: the measurement surface Γ0 = ∂Ω; the gravimetry data is unpolluted
(clean full measurement data);

• Case 2: the measurement surface Γ0 = [0, 1]× [0, 1]×{z = 1}; the gravimetry
data is unpolluted (clean partial measurement data);

• Case 3: the measurement surface Γ0 = ∂Ω; the gravimetry data is polluted
with 5% Gaussian noise (noisy full measurement data);

• Case 4: the measurement surface Γ0 = [0, 1]× [0, 1]×{z = 1}; the gravimetry
data is polluted with 5% Gaussian noise (noisy partial measurement data).

Numerical results for Case 1, clean full measurement data, are shown in Figs. 11
(d-f) for the three cases: n = 33, 65 and 129, respectively. To produce Figs. 11
(d-f), we perform 2400 iterations in Algorithm 2.1 to obtain the steady state level
set solution. We can see that numerical inversions match the exact solution very
well.

Numerical results for Case 2, clean partial measurement data, are shown in
Figs. 11 (g-i) for the three cases: n = 33, 65 and 129, respectively. To produce
Figs. 11 (g-i), we first construct the fictitious full measurement data by the improved
numerical continuation method and then perform 2400 iterations in Algorithm 2.1
to obtain the steady state level set solution. To compute the pseudo-inverse of
matrix L, we use its 297, 413 and 429 largest singular values in the three different
cases: n = 33, 65 and 129, respectively. We can see that numerical inversions match
the exact solution very well.
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Figure 11. (Two spheres) (a-c): exact solution in different reso-
lutions; (d-f): numerical inversions for the clean full measurement
data; (g-i): numerical inversions for the clean partial measurement
data given on top face z = 1. Number of n used in: (a,d,g): 33;
(b,e,h): 65; (c,f,i): 129.

Numerical results for Case 3, noisy full measurement data, are shown in Figs. 12
(a-c) for the three cases: n = 33, 65 and 129, respectively. To produce Figs. 12(a-
c), we perform 2400 iterations in Algorithm 2.1 to obtain the steady state level set
solution. We can see that numerical inversions match the exact solution reasonably
well.

Numerical results for Case 4, noisy partial measurement data, are shown in
Figs. 12(d-f) for the three cases: n = 33, 65 and 129, respectively. To produce
Figs. 12 (d-f), we first construct the fictitious full measurement data by the improved
numerical continuation method and then perform 2400 iterations in Algorithm 2.1
to obtain the steady state level set solution. To compute the pseudo-inverse of
matrix L, we use its 46 largest singular values in all the three cases: n = 33, 65
and 129. We can see that numerical inversions match the exact solution reasonably
well.
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(a) (b) (c)

(d) (e) (f)

Figure 12. (Two spheres) (a-c): numerical inversions for the noisy
full measurement data with 5% Gaussian noise; (d-f): numerical
inversions for the noisy partial measurement data with 5% Gauss-
ian noise given on top face z = 1. Number of n used in: (a,d): 33;
(b,e): 65; (c,f): 129.

5.2.3. Two cubes. The last example consists of two disjointed cubes described by

max{|x− 0.3|, |y − 0.3|, |z − 0.3|} ≤ 0.1,

and
max{|x− 0.7|, |y − 0.7|, |z − 0.7|} ≤ 0.1, .

respectively. The two cubes in different resolutions are shown in Figs. 13(a-c), for
n = 33, 65, and 129, respectively. We consider four different measurement data
sets:

• Case 1: the measurement surface Γ0 = ∂Ω; the gravimetry data is unpolluted
(clean full measurement data);

• Case 2: the measurement surface Γ0 = [0, 1]× [0, 1]×{z = 1}; the gravimetry
data is unpolluted (clean partial measurement data);

• Case 3: the measurement surface Γ0 = ∂Ω; the gravimetry data is polluted
with 5% Gaussian noise (noisy full measurement data);

• Case 4: the measurement surface Γ0 = [0, 1]× [0, 1]×{z = 1}; the gravimetry
data is polluted with 5% Gaussian noise (noisy partial measurement data).

Numerical results for Case 1, clean full measurement data are shown in Figs. 13
(d-f) for the three cases: n = 33, 65 and 129, respectively. To produce Figs. 13
(d-f), we perform 800 iterations in Algorithm 2.1 to obtain the steady state level
set solution. We can see that numerical inversions match the exact solution very
well.

Numerical results for Case 2, clean partial measurement data, are shown in
Figs. 13 (g-i) for the three cases: n = 33, 65 and 129, respectively. To produce
Figs. 13 (g-i), we first construct the fictitious full measurement data by the improved

Inverse Problems and Imaging Volume 9, No. 2 (2015), 479–509



506 Wangtao Lu, Shingyu Leung and Jianliang Qian

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13. (Two cubes) (a-c): exact solution in different resolu-
tions; (d-f): numerical inversions for the clean full measurement
data; (g-i): numerical inversions for the clean partial measurement
data given on top face z = 1. Number of n used in: (a,d,g): 33;
(b,e,h): 65; (c,f,i): 129.

numerical continuation method and then perform 800 iterations in Algorithm 2.1 to
obtain the steady state level set solution. To compute the pseudo-inverse of matrix
L, we use its 313 largest singular values in all the three different cases: n = 33, 65
and 129. We can see that numerical inversions match the exact solution very well.

Numerical results for Case 3, noisy full measurement data are shown in Figs. 14(a-
c) for the three cases: n = 33, 65 and 129, respectively. To produce Figs. 14(a-c), we
perform 800 iterations in Algorithm 2.1 to obtain the steady state level set solution.
We can see that numerical inversions match the exact solution reasonably well.

Numerical results for Case 4, noisy partial measurement data are shown in
Figs. 14(d-f) for the three cases: n = 33, 65 and 129, respectively. To produce
Figs. 14 (d-f), we first construct the fictitious full measurement data by the improved
numerical continuation method and then perform 800 iterations in Algorithm 2.1 to
obtain the steady state level set solution. To compute the pseudo-inverse of matrix
L, we use its 46 largest singular values in all the three cases: n = 33, 65 and 129.
We can see that numerical inversions match the exact solution reasonably well.

Inverse Problems and Imaging Volume 9, No. 2 (2015), 479–509



Level set method of inverse gravimetry 507
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(d) (e) (f)

Figure 14. (Two cubes) (a-c): numerical inversions for the noisy
full measurement data with 5% Gaussian noise; (d-f): numerical
inversions for the noisy partial measurement data with 5% Gauss-
ian noise given on top face z = 1. Number of n used in: (a,d): 33;
(b,e): 65; (c,f): 129.

5.2.4. Resolution and accuracy. We make some comments on the relation between
resolution and accuracy to end this section. Since in practical surveys, the most
common situation is that measurement data are collected on the top face z = 1,
we use those numerical results for partial measurement data, such as Cases 2 and
4 in the two-sphere and two-cube examples, to illustrate the relation between the
resolution and accuracy.

With the new algorithms at our disposal, the improved level set method is capable
of dealing with fine meshes and computing high-resolution solutions. We can see
that relevant numerical results for clean partial measurement data attain almost
the same level of accuracy as those for clean full measurement data in all three
different resolutions. This indicates that the partial measurement data with the
help of the numerical continuation method suffices to infer the anomalies in different
resolutions, provided that the partial measurement data are accurate enough. In
fact, higher resolution requires higher accuracy in data.

On the other hand, for noisy partial measurement data, a finer mesh seems to
give a worse, not better, numerical inversion. We assert that this “unreasonable”
phenomenon is caused by the gravimetry problem itself, not by our algorithms. The
reason is as follows: when the synthetic measurement data are unpolluted, they have
different levels of accuracy for different resolutions; however, when they are polluted
with a 5% Gaussian noise, the pollution can degrade the data accuracy in different
resolutions to the same low level of accuracy; the inverse gravimetry problem is
severely ill-posed and therefore for a data set with a low level of accuracy, a finer
mesh may make the accumulation of numerical errors more pronounced. Therefore,
when the data do not meet the required accuracy, high-resolution inversions are not
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so useful. However, development in contemporary scientific instruments makes it
possible to collect gravity data with high precision, which renders it necessary to
develop rapid algorithms to carry out high-resolution inversion to delineate gravity
anomalies with sharp resolution. Therefore, the improved level-set method proposed
here will be valuable in carrying out such tasks rapidly and efficiently.

6. Conclusion. We proposed an improved fast local level set method for the in-
verse problem of gravimetry to recover open sets from their exterior volume poten-
tials. To achieve this purpose, we developed two novel algorithms: one is of linear
complexity designed for computing the Frechet derivative of the nonlinear domain
inverse problem, and the other is designed for carrying out numerical continuation
rapidly so as to obtain fictitious full measurement data from partial measurement.
We studied a number of numerical experiments to exhibit the effectiveness of the
proposed new algorithms. The improved level-set method is capable of dealing with
fine meshes and computing high-resolution inversions, indicating its great potential
in handling 3-D large-scale inverse gravimetry problems.
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