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S U M M A R Y
We propose a level-set adjoint-state method for crosswell traveltime tomography using both
first-arrival transmission and reflection traveltime data. Since our entire formulation is based
on solving eikonal and advection equations on finite-difference meshes, our traveltime to-
mography strategy is carried out without computing rays explicitly. We incorporate reflection
traveltime data into the formulation so that possible reflectors (slowness interfaces) in the
targeted subsurface model can be recovered as well as the slowness distribution itself. Since a
reflector may assume a variety of irregular geometries, we propose to use a level-set function to
implicitly parametrize the shape of a reflector. Therefore, a mismatch functional is established
to minimize the traveltime data misfit with respect to both the slowness distribution and the
level-set function, and the minimization is achieved by using a gradient descent method with
gradients computed by solving adjoint state equations. To assess uncertainty or reliability of
reconstructed slowness models, we introduce a labelling function to characterize first-arrival
ray coverage of the computational domain, and this labelling function satisfies an advection
equation. We apply fast-sweeping type methods to solve eikonal, adjoint-state and advection
equations arising in our formulation. Numerical examples demonstrate that the proposed al-
gorithm is robust to noise in the measurements, and can recover complicated structure even
with little information on the reflector.
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1 I N T RO D U C T I O N

Seismic traveltime tomography has been a valuable tool in seismol-
ogy since the works by Bois et al. (1972) and Aki & Lee (1976).
Although the concept of traveltime tomography was originally ap-
peared in medical sciences, the inversion of seismic traveltime data
dates back to the work of Herglotz and Wiechert as early as 1900s
(Aki & Richards 1980). Nowadays seismologists routinely apply
tomography to many experimental geometries and different types
of data (such as reflection, refraction, transmission and earthquake
data) in both crosswell and reflection seismic problems (Bishop
et al. 1985; McMechan et al. 1987; Lutter et al. 1990; Zelt & Smith
1992; Delprat-Jannaud & Lailly 1993, 1995; Sei & Symes 1994,
1995; McCaughey & Singh 1997; Zelt 1999; Clarke et al. 2001;
Rawlinson et al. 2001; Washbourne et al. 2002; Hobro et al. 2003;
Montelli et al. 2004; Leung & Qian 2005, 2006, 2007; Taillandier
et al. 2009; Huang et al. 2012). In this work, we propose a level-
set adjoint-state method for crosswell traveltime tomography using
both transmission and reflection data.

In the reflection seismic problems, refraction and wide-angle re-
flection traveltime tomography is aimed at either simultaneously

determining velocity and interface or determining velocity only by
using wide-aperture seismic data (Bishop et al. 1985; Kennett et al.
1988; Lutter et al. 1990; Zelt & Smith 1992; Jurado et al. 1996;
McCaughey & Singh 1997; Zelt 1999; Rawlinson et al. 2001; Ho-
bro et al. 2003; Jing et al. 2007; Huang & Bellefleur 2012; Huang
et al. 2012). In the crosswell seismic problems, transmission trav-
eltime tomography is usually aimed at recovering slowness distri-
bution only in between wells (McMechan et al. 1987; Bregman
et al. 1989; Ammon & Vidale 1993; Sei & Symes 1994, 1995;
Berryman 2000a,b; Leung & Qian 2005, 2006, 2007; Chung et al.
2011; Lelievre et al. 2011; Li & Leung 2013), and an explicit
recovery of slowness interfaces is usually not addressed. How-
ever, in a recent work Zheglova et al. (2013), a level-set method
(Osher & Sethian 1988) is applied to a particular class of cross-
well traveltime tomography in terms of recovering a sharp bound-
ary between two known slowness values from first-arrival trans-
mission data, and mathematically the assumption of known slow-
ness values reduces the inverse problem to a shape optimization
problem. Since those sharp boundaries are interfaces of slowness
discontinuities which in turn can be viewed as reflectors depend-
ing on incident waves, the question is: ‘whether it is possible to
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Figure 1. Problem setup.

simultaneously recover slowness distributions and interfaces (re-
flectors) in crosswell traveltime tomography?’ (Bube et al. 1995)
found that from reflection traveltime inversion, the depths of the
reflectors can be better determined than the velocity field in the-
ory, and results of refraction and wide-angle reflection tomography
in Farra & Madariaga (1988), White (1989), Lutter et al. (1990),
Williamson (1990), Zelt & Smith (1992), McCaughey & Singh
(1997), Zelt (1999), Rawlinson et al. (2001), Hobro et al. (2003),
Jing et al. (2007) and Huang et al. (2012) all support that performing
a joint tomographic inversion of refraction and reflection data can
better constrain slowness as well as reflector geometry. Therefore,
we propose to perform a joint tomographic inversion of transmis-
sion and reflection data to recover both slowness distributions and
slowness interfaces in terms of reflectors in crosswell traveltime
tomography.

Our approach includes several new developments:

(1) Our entire formulation is based on solving eikonal and advec-
tion equations by using unconditionally convergent fast-sweeping
type schemes on finite-difference meshes (Tsai et al. 2003; Kao
et al. 2004; Zhao 2005; Leung & Qian 2006; Qian et al. 2007a,b;
Kao et al. 2008; Luo et al. 2012, 2014) so that the joint cross-
well traveltime tomography is carried out without computing rays
explicitly.

(2) Since slowness interfaces can assume a variety of irregular
shapes, we use a level-set function defined everywhere to implicitly
parametrize those interfaces, and this level-set function is updated
by solving an eikonal equation so that possible topological changes
of updated interfaces defined by the zero level set can be automati-
cally taken care of during non-linear iterative process.

(3) We establish a mismatch functional to minimize the traveltime
data misfit with respect to the slowness distribution and the level-
set function. To apply the gradient descent method to minimize the
objective functional, we derive adjoint state equations for computing
the gradients of the mismatch functional with respect to the slowness
distribution and the level-set function, respectively.

(4) Furthermore, to assess uncertainty or reliability of recon-
structed slowness models, we introduce a labelling function to char-
acterize first-arrival ray coverage of the computational domain, and
this labelling function can be computed rapidly by solving an ad-
vection equation with fast-sweeping type schemes (Leung & Qian
2006).

We carry out some 2-D and 3-D numerical experiments to validate
the new formulation.

2 P RO B L E M S TAT E M E N T

The problem setup is shown in Fig. 1. Let xs be the location of a
point source. R is an unknown interface (a possible reflector) which
separates the region �2 from �1. We are interested in the slowness
distribution S(x) in the whole region �̄ = �̄1 ∪ �̄2. In this work, we
assume that the slowness S(x) is piecewise continuous: S(x) = S1(x)
for x ∈ �1, S(x) = S2(x) for x ∈ �2, S1(x) ∈ C(�1) and S2(x) ∈
C(�2).

The transmission traveltime Tt (x) is given by the following
eikonal equation,

|∇Tt (x)| = S(x), x ∈ � \ {xs} (1)

Tt (x) = 0, x = xs ; (2)

the reflection traveltime Tr (x) is computed by solving

|∇Tr (x)| = S(x), x ∈ �1 (3)

Tr (x) = Tt (x), x on R, (4)

where the boundary condition is specified on the interface so that
Tr(x) corresponds to the traveltime of the first reflection.

We have receivers on �2 to record the transmission traveltime
Tt and receivers on �1 to record the reflection traveltime Tr. The
crosswell traveltime tomography problem reads as follows: given
Tt(x) on �2, Tr(x) on �1, and the location of point sources xs ∈ �,
one inverts for the slowness distribution S(x) and the location of the
reflector R.

3 T H E L E V E L - S E T A D J O I N T - S TAT E
M E T H O D

We apply the level-set adjoint-state method (Li & Leung 2013)
to solve this tomography problem. The adjoint-state method for-
mulates the inverse problem as the minimization of a mismatch
functional under constraint of partial differential equations, and it
evaluates the gradient of the mismatch functional by solving a sys-
tem of adjoint-state equations.

In our problem, the mismatch functional is given by

E(S) = 1

2

∫
�1

∣∣Tr − T ∗
r

∣∣2 ds + 1

2

∫
�2

∣∣Tt − T ∗
t

∣∣2 ds , (5)

where T ∗
t corresponds to first-arrival traveltimes of the transmitted

waves measured on �2, T ∗
r corresponds to first-arrival traveltimes

measured on �1 of the reflected waves starting from the reflector.
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Tt and Tr are the corresponding viscosity solutions of eqs (1)–(2)
and eqs (3)–(4), respectively. Our goal is to minimize this mismatch
functional to find a suitable slowness distribution S(x).

3.1 Level-set parametrization and slowness perturbation

Since we are concerned with a piecewise continuous slowness model
separated by an interface, we use a level-set function to express such
a structure:

S(x) = S1(x) · {1 − H [φ(x)]} + S2(x) · H [φ(x)] .

Here the level set function φ(x) is the signed distance to the
interface R,

φ(x) =
{−dist(x, R), x ∈ �1,

dist(x, R), x ∈ �2,

and H: R → R is the Heaviside function with

H (x) =
{

0, x < 0,

1, x > 0.

To recover the original slowness model S(x), we need to invert
for S1(x), S2(x) and φ(x) so that the reflector R = φ−1(0). Since
it is a non-linear problem, we use a gradient descent method to
minimize the mismatch functional. To study the change of S(x) with
respect to perturbations of φ(x), S1(x) and S2(x), we use a smoothed
version of the Heaviside function by introducing a small parameter
τ (0 < τ < 1),

Hτ (φ) = 1

2

(
tanh

φ

τ
+ 1

)
. (6)

Then the slowness is expressed as

S(x) = S1(x) · {1 − Hτ [φ(x)]} + S2(x) · Hτ [φ(x)], (7)

and the perturbation is given by

S(φ + εφ̃, S1 + ε S̃1, S2 + ε S̃2) − S(φ, S1, S2)

= (S2 − S1) · [Hτ (φ + εφ̃) − Hτ (φ)] + ε S̃1

·[1 − Hτ (φ + εφ̃)] + ε S̃2 · Hτ (φ + εφ̃). (8)

As shown in Li & Leung (2013), we have

Hτ (φ + εφ̃) − Hτ (φ) = εφ̃ · 1

2τ · cosh2 φ

τ

− ε2φ̃2 · tanh ξ

τ

2τ 2 · cosh2 ξ

τ

=
{

O(1), φ = O(τα) and α ≥ 1,

O(ε), φ = O(τα) and α < 1,
(9)

where ξ ∈ (φ, φ + εφ̃). Here the notation f = O(g) means that
∃ C > 0, such that | f | ≤ C|g|. The order is estimated in the sense of
τ → 0, and we choose ε ≤ τ . Since φ = O(τα) with α ≥ 1 only
occurs for those x near the reflector R, the region consisting of those
x is of measure zero in the limit as τ → 0. Plugging the formula (9)
into (8), we get

S(φ + εφ̃, S1 + ε S̃1, S2 + ε S̃2) − S(φ, S1, S2)

=
⎧⎨
⎩

O(1), φ = O(τα) and α ≥ 1,

O(ε), φ = O(τα) and α < 1.
(10)

In the following, we derive the corresponding changes δTt and
δTr in Tt and Tr due to the perturbation of the slowness S(x).

The transmission traveltime Tt(x) depends on the accumulation of
the slowness along a ray γ starting from the source xs and reaching
x: γ = {y(s): 0 ≤ s ≤ L}, where L is the arc length of the underlying
ray. Similar to the argument in our previous work Li & Leung
(2013), we look at

Tt (x) =
∫

γ

S[y(s)]ds =
∫

γ∩{y:φ=O(τα ), α≥1}
S(s)ds

+
∫

γ∩{y:φ=O(τα ), α<1}
S(s)ds, (11)

where S(s) ≡ S(y(s)) corresponds to the slowness along the ray
γ . Since the measure of the set {y: φ(y) = O(τα), α ≥ 1} is
O(τ ) = O(ε), we expect that the corresponding change of Tt(x)
due to the perturbation in (10) is of O(ε), viz. δTt = O(ε).

The perturbation on the reflection traveltime Tr(x) is more com-
plicated. Looking at (3) and (4), one finds that several parameters
affect the solution Tr(x), including the domain �1, the slowness dis-
tribution S1(x) in �1, the location of the reflector R, and the values
of Tt(x) on R. All these related parameters will be affected once we
perturb S(φ, S1, S2) in (10), and the change of �1 (and therefore the
boundary location R) usually introduces abrupt changes to the solu-
tion Tr(x) (McCaughey & Singh 1997). To obtain a smooth change
in successive iterations, we first imagine that we perturb only S1 and
S2 by fixing φ to get S(φ, S1 + ε S̃1, S2 + ε S̃2) so that the domain of
Tr(x), �1, and the boundary R are frozen; consequently, δTr is only
related to the perturbation of S(x) in �1 and the change of Tt(x) on
R. Since we already know that δTt(x) = O(ε) and the perturbation
of S(x) is depicted by (10), using the same argument as for Tt(x)
we can deduce that the corresponding perturbation on Tr(x) is of
O(ε). In practice of course we cannot have φ frozen since we have
to invert for the location of the reflector; however, the above con-
sideration inspires us that we can reduce the perturbation on φ to
control the magnitude of δTr. Since φ and S have different dimen-
sions, we introduce another small parameter ν (0 < ν < 1) to φ̃ and
use νφ̃ as the perturbation parameter in the level set function. Since
δS = S(φ + ε · νφ̃, S1 + ε S̃1, S2 + ε S̃2) − S(φ, S1, S2), we expect
that the change in �1 (and so the change in R) is very small. Thus
the relation δTr(x) = O(ε) holds almost everywhere in �1.

In summary, with the perturbation of the slowness

δS = S(φ + ε · νφ̃, S1 + ε S̃1, S2 + ε S̃2) − S(φ, S1, S2) , (12)

we expect that the corresponding perturbation on the traveltime is
in the form of

Tt (φ + ε · νφ̃, S1 + ε S̃1, S2 + ε S̃2)

− Tt (φ, S1, S2) = ε · T̃t a.e. in �, (13)

Tr (φ + ε · νφ̃, S1 + ε S̃1, S2 + ε S̃2)

− Tr (φ, S1, S2) = ε · T̃r a.e. in �1, (14)

where a.e. denotes ‘almost everywhere’.
Then combining (13) and (14) with the eikonal eq. (1), we can

derive the following formulas directly relating φ̃, S̃1, S̃2, T̃t and T̃r

by following (Li & Leung 2013) with detailed calculation given in
Appendix A:

νφ̃ · A(φ, S1, S2) + S̃1 · B(φ, S1, S2) + S̃2 · C(φ, S1, S2)

−∇Tt · ∇ T̃t = 0 a.e. in � (15)
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νφ̃· A(φ, S1, S2) + S̃1 · B(φ, S1, S2) + S̃2 · C(φ, S1, S2)

−∇Tr · ∇ T̃r = 0, a.e. in �1, (16)

where

A(φ, S1, S2) = S(φ, S1, S2) · S2 − S1

2τ · cosh2 φ

τ

, (17)

B(φ, S1, S2) = S(φ, S1, S2) · [1 − Hτ (φ)], (18)

C(φ, S1, S2) = S(φ, S1, S2) · Hτ (φ) . (19)

3.2 Adjoint-state method for the gradient

Now we use the adjoint-state method to calculate the gradient-
descent direction of the mismatch functional. With (5), (13) and
(14), the perturbation on the mismatch functional is given by

δE/ε = [E(φ + ε · νφ̃, S1 + ε S̃1, S2 + ε S̃2) − E(φ, S1, S2)]/ε

=
∫

�1

T̃r (Tr − T ∗
r )ds +

∫
�2

T̃t (Tt − T ∗
t )ds + O(ε). (20)

We will eliminate the dependence of (20) on T̃t and T̃r by introducing
adjoint state equations. To simplify the notation, we denote

W = νφ̃ · A(φ, S1, S2) + S̃1 · B(φ, S1, S2) + S̃2 · C(φ, S1, S2),

(21)

where A, B and C are given by eqs (17)–(19). We have the following
results.

Lemma 3.1. If λ satisfies the adjoint state equation

− div(λ∇Tt ) = 0 in �, (22)

λ
∂Tt

∂n
= Tt − T ∗

t on �2, (23)

λ = 0 on ∂�\�2, (24)

where n denotes the unit outward normal of ∂�, then (20) is reduced
to

δE

ε
=
∫

�

λW dx +
∫

�1

T̃r (Tr − T ∗
r )ds + O(ε). (25)

Lemma 3.2. If μ satisfies the adjoint state equation

− div(μ∇Tr ) = 0 in �1, (26)

μ
∂Tr

∂n
= Tr − T ∗

r on �1, (27)

μ = 0 on ∂�1\(R ∪ �1), (28)

and μ̂ satisfies the adjoint state equation

− div(μ̂∇Tt ) = 0 in �1, (29)

μ̂ = μ on R, (30)

μ̂ = 0 on ∂�1\R, (31)

then the perturbation of the mismatch functional is reduced to

δE

ε
=
∫

�

λW dx +
∫

�1

(μ + μ̂)W dx + O(ε). (32)

We give the detailed proofs of these two lemmas in Appendix B.

Although the adjoint states μ and μ̂ are defined only in �1, we
can extend them to the whole domain � by setting

μ(x) =
{

μ(x) in x ∈ �1

0 in x ∈ �\�1,
(33)

and

μ̂(x) =
{

μ̂(x) in x ∈ �1

0 in x ∈ �\�1.
(34)

Thus (32) can be rewritten as

δE

ε
=
∫

�

(λ + μ + μ̂)W dx + O(ε). (35)

Using formula (21) and neglecting the O(ε) term in (35), we obtain
a descent direction of the perturbation by taking

φ̃ = −A(φ, S1, S2) · (λ + μ + μ̂), (36)

S̃1 = −B(φ, S1, S2) · (λ + μ + μ̂), (37)

S̃2 = −C(φ, S1, S2) · (λ + μ + μ̂), (38)

so that we have

δE ≈ −ε ·
∫

�

(λ + μ + μ̂)2
(
ν A2 + B2 + C2

)
dx ≤ 0.

3.3 Regularizations of φ(x), S1(x) and S2(x)

For the level set function φ(x), we use the level set re-initialization
to maintain φ as a signed distance function as done in Li & Leung
(2013). Specifically, we solve the following system in an artificial
time direction ξ

∂�

∂ξ
+ sign(φ) · (|∇�| − 1) = 0, (39)

�(x, ξ = 0) = φ(x), (40)

∂�

∂n
|∂� = 0, (41)

where sign(φ) = 2
π

arctan φ is the signum function (Qian & Leung
2004). Since we are only interested in the solution near the zero
level set, in practice there is no need to get the steady state solution.
Evolving this equation for several �ξ steps, we replace the original
level set function φ with the solution �.

To maintain a stable update on the shape of the reflector R
in terms of the zero level-set function φ, we regularize φ to
smoothen the shape of the reflector R which is achieved by penal-
izing the L2 norm of ∇φ(x) so that the new mismatch functional is
defined by

Enew = E + γ · Eφ, (42)

where E is given by formula (5), γ is a parameter to control the
weight, and Eφ measures the L2 norm of ∇φ given by

Eφ = 1

2

∫
�

|∇φ|2dx. (43)

When the slowness perturbation is given by (12), the corresponding
change in Eφ is
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δEφ = Eφ(φ + ε · νφ̃) − Eφ(φ)

= εν ·
∫

�

∇φ · ∇φ̃ dx + O(ε2)

= εν ·
[
−
∫

�

�φ · φ̃ dx +
∫

∂�

∂φ

∂n
· φ̃ ds

]
+ O(ε2). (44)

In (44), φ(x) is the level set function before perturbation but after
re-initialization. Since we have ∂φ

∂n

∣∣
∂�

= 0 due to (41), (44) leads
to

δEφ = −εν ·
∫

�

�φ · φ̃ dx + O(ε2) . (45)

Combining (35), (42) and (45), we have

δEnew

ε
= δE

ε
+ γ · δEφ

ε

=
∫

�

νφ̃ · [(λ + μ + μ̂)A(φ, S1, S2) − γ�φ] dx

+
∫

�

(λ + μ + μ̂) · (S̃1 · B(φ, S1, S2)

+ S̃2 · C(φ, S1, S2)
)

dx + O(ε). (46)

Thus to get the gradient descent of the newly defined mismatch
functional Enew, the perturbation on φ should be modified as

φ̃ = −A(φ, S1, S2) · (λ + μ + μ̂) + γ�φ, (47)

where the term γ�φ provides the regularization to control the shape
of the reflector.

We also need to regularize S̃1(x) and S̃2(x) before updating S1(x)
and S2(x) during each iteration. With (46), the corresponding change
of the mismatch functional due to S̃1 is

δES1 := ε ·
∫

�

(λ + μ + μ̂)B(φ, S1, S2)S̃1 dx, (48)

so that S̃1 is selected as in (37) to achieve the gradient descent. Also
the corresponding change of the mismatch functional due to S̃2 is

δES2 := ε ·
∫

�

(λ + μ + μ̂)C(φ, S1, S2)S̃2 dx, (49)

so that S̃2 is chosen to be the form in (38). We smoothen S̃1 and S̃2

by solving the following equations,

(I − α�)S̃∗
1 = S̃1 = −B(φ, S1, S2) · (λ + μ + μ̂) in �,

∂ S̃∗
1

∂n
= 0 on ∂� (50)

and

(I − α�)S̃∗
2 = S̃2 = −C(φ, S1, S2) · (λ + μ + μ̂) in �,

∂ S̃∗
2

∂n
= 0 on ∂�, (51)

where I is the identity operator, � is the Laplace operator, and α >

0 is the weight controlling the amount of regularity that one wants.
Then we use S̃∗

1 and S̃∗
2 to replace S̃1 and S̃2 in the perturbation,

which leads to

δES1 = ε ·
∫

�

(λ + μ + μ̂)B(φ, S1, S2) · S̃∗
1 dx

= −ε ·
∫

�

(I − α�)S̃∗
1 · S̃∗

1 dx

= −ε ·
∫

�

[(
S̃∗

1

)2 + α
∣∣∇ S̃∗

1

∣∣2] dx ≤ 0

and

δES2 = −ε ·
∫

�

[(
S̃∗

2

)2 + α
∣∣∇ S̃∗

2

∣∣2] dx ≤ 0.

3.4 Formulas for multiple shots

In a typical seismic survey, we collect data sets for multiple shots.
We summarize formulas for dealing with multiple point sources.
Specifically we denote { T ∗

t, j

∣∣
�2

} and { T ∗
r, j

∣∣
�1

} the data sets corre-

sponding to the point source located at x j
s , j = 1, 2, 3, . . . , N. We

simply sum up all individual mismatch functionals and minimize

E N (φ, S1, S2) = 1

2

N∑
j=1

∫
�1

∣∣Tr, j − T ∗
r, j

∣∣2 ds

+1

2

N∑
j=1

∫
�2

∣∣Tt, j − T ∗
t, j

∣∣2 ds + γ · 1

2

∫
�

|∇φ|2 dx,

(52)

where Tt, j and Tr, j are the solutions to (1)–(2) and (3)–(4), respec-
tively, corresponding to the point source x j

s . With almost the same
calculation as above, we have the perturbation of EN,

δE N

ε
= E N (φ + ενφ̃, S1 + ε S̃1, S2 + ε S̃2) − E N (φ, S1, S2)

ε

=
∫

�

νφ̃ ·
⎡
⎣∑

j

(λ j + μ j + μ̂ j )A(φ, S1, S2) − γ�φ

⎤
⎦ dx

+
∫

�

∑
j

(λ j + μ j + μ̂ j ) · [S̃1 · B(φ, S1, S2)

+ S̃2 · C(φ, S1, S2)
]

dx + O(ε) (53)

where A, B and C are given by formulas (17), (18) and (19). The
adjoint states λj, μj and μ̂ j are computed by solving the following
adjoint state equations:

− div(λ j∇Tt, j ) = 0 in �,

λ j
∂Tt, j

∂n
= Tt, j − T ∗

t, j on �2,

λ j = 0 on ∂�\�2, (54)

− div(μ j∇Tr, j ) = 0 in �1,

μ j
∂Tr, j

∂n
= Tr, j − T ∗

r, j on �1,

μ j = 0 on ∂�1\(R ∪ �1), (55)

and

− div(μ̂ j∇Tt, j ) = 0 in �1,

μ̂ j = μ j on R,

μ̂ j = 0 on ∂�1\R, (56)

and we extend the values of μj and μ̂ j to the whole domain � by
setting

μ j =
{

μ j in �1,

0 in �\�1,
(57)
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Figure 2. (Example 1): initial guess of S(x).

μ̂ j =
{

μ̂ j in �1,

0 in �\�1.
(58)

To achieve the gradient descent, φ̃ is set to be

φ̃ = −
∑

j

(λ j + μ j + μ̂ j ) · A(φ, S1, S2) + γ�φ , (59)

while S̃1 and S̃2 are obtained by solving the following regularization
equations:

(I − α�)S̃1 = −B(φ, S1, S2) ·
∑

j

(λ j + μ j + μ̂ j ) in �,

∂ S̃1

∂n
= 0 on ∂�,

(60)

and

(I − α�)S̃2 = −C(φ, S1, S2) ·
∑

j

(λ j + μ j + μ̂ j ) in �,

∂ S̃2

∂n
= 0 on ∂�.

(61)

Then the functions φ(x), S1(x) and S2(x) are updated according to

φnew(x) = φold(x) + ε · νφ̃,

Snew
1 (x) = Sold

1 (x) + ε · S̃1,

Snew
2 (x) = Sold

2 (x) + ε · S̃2.

Finally, we re-initialize the level set function φ(x) by solving
(39)–(41) and then update the slowness distribution S(x) using
formula (7).

Figure 3. (Example 1, Case 1): piecewise homogeneous structure.
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Figure 4. (Example 1, Case 1): Lagrangian ray paths for the illuminated region.

4 I N D I C AT I O N O F I L LU M I NAT E D A N D
U N I L LU M I NAT E D R E G I O N S

In this section, we study the reliability of our reconstruction. When
a slowness model S(x) is inhomogeneous, it is common to have
shadow regions between point sources and receivers; namely, there
are no rays passing through certain regions of larger slowness value.
The existence of such shadow regions implies potential difficulties
for first-arrival based seismic traveltime tomography since the ob-
served first-arrival traveltimes at the boundary receivers are due to
detoured rays which avoid these slow regions with large S(x); con-
sequently, we may not be able to recover the slowness in those slow
regions. To assess uncertainty or reliability of reconstructed slow-
ness models, we introduce a labelling function to identify those
regions where the reconstruction is not reliable. As a result, this
labelling function provides a reliability measure for the inversion.

Given a point source, we say that a point is illuminated if there ex-
ists a first-arrival ray connecting the source and a receiver such that
this ray passes through this point. All such illuminated points define
an illuminated region corresponding to the given source point. To
compute such an illuminated region, we define a labelling function
F(x) such that it has a value 1 if x is in the illuminated region and
it equals 0 otherwise. Consider an arc-length parametrized ray {x:
x = x(s)} arriving at a receiver x∗ on the boundary. We hope that
F(x) ≡ 1 along the ray, or equivalently

dF[x(s)]

ds
= 0 (62)

which implies

∇F(x) · dx(s)

ds
= 0 . (63)

Since the ray direction from the receiver x∗ to the source xs is given
by

dx(s)

ds
= −∇T (x)

S(x)
. (64)

we have

− ∇F(x) · ∇T (x) = 0, F |� = 1, (65)

where T(x) = T(x; xs) is the first-arrival traveltime with the source
at xs, and � is the location of boundary receivers.

According to the above consideration, we introduce two labelling
functions Ft(x) and Fr(x) for transmission traveltime field Tt(x; xs)
and reflection traveltime field Tr(x; xs), respectively,

− ∇Ft (x) · ∇Tt (x) = 0, x ∈ �,

Ft (x) = 1, x ∈ �2, (66)

and

− ∇Fr (x) · ∇Tr (x) = 0, x ∈ �1,

Fr (x) = 1, x ∈ �1. (67)
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Figure 5. (Example 1, Case 2): piecewise continuous structure, results after 10 000 iterations.

The overall labelling function used to indicate the illuminated region
in � is defined as

F(x) = max {Ft (x), Fr (x)} . (68)

Another interpretation of this labelling function F(x) is given as
follows. F(x) = 1 means that there exists a first-arrival ray connect-
ing one of the receivers, the point source and also the location x,
while F(x) = 0 implies that either there is no ray passing through x
or the passing ray does not reach any receiver. Since this labelling
function F(x) highlights all locations where we can find a first-
arrival ray joining the given point source to any one of receivers, in
fact it leads to ray path coverage. In a typical Lagrangian formu-
lation, one has to shoot various rays to determine this coverage. In
the current proposed Eulerian framework, on the other hand, such
ray path coverage can be obtained by solving the above advection
equations.

The above derivation is for one data set corresponding to a sin-
gle point source xs. If we have multiple point sources {x j

s , j =
1, 2, . . . , N } corresponding to multiple shots, then the labelling
function F(x) is defined as

F(x) = 1

N

N∑
j=1

Fj (x), (69)

where each Fj(x) is generated by eqs (66)–(68) using the trans-
mission traveltime T j

t (x) and the reflection traveltime T j
r (x) corre-

sponding to the jth point source x j
s . We can expect that in the region

with a larger F(x) (closer to 1) the reconstructed slowness S(x) is
more reliable.

5 N U M E R I C A L I M P L E M E N TAT I O N

In this section, we summarize the above algorithm and discuss the
numerical implementation in details.

5.1 Algorithm for slowness reconstruction

Step 1. Initialize φk, Sk
1 and Sk

2 for k = 0.
Step 2. Construct S(x) using (7).
Step 3. Obtain Tt, j(x) and Tr, j(x) by solving (1)–(2) and (3)–(4)

for each point source x j
s , j = 1, 2, 3, . . . N.

Step 4. Obtain λj(x), μj(x) and μ̂ j (x) by solving the adjoint state
eqs (54)–(56), respectively, for j = 1, 2, 3, . . . N.

Step 5. Compute φ̃k , S̃k
1 and S̃k

2 using formulas (59), (60) and
(61), respectively.

Step 6. Update φk+1 = φk + ε · νφ̃k , Sk+1
1 = Sk

1 + ε · S̃k
1 , and

Sk+1
2 = Sk

2 + ε · S̃k
2 .
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Figure 6. (Example 2, Case 1): piecewise homogeneous structure.

Step 7. Re-initialize φk + 1 by solving (39–41), and use � to
update φk + 1.

Step 8. Go back to step 2 until the mismatch functional E ≤ δ or
the iteration step k ≥ kmax for some given convergence
parameters δ and kmax .

Numerically, the Hamilton–Jacobi equation in step 3 can be effi-
ciently solved using the fast sweeping methods (Tsai et al. 2003; Kao
et al. 2004, 2005; Zhao 2005; Qian et al. 2007a,b; Kao et al. 2008;
Luo et al. 2012, 2014). In this work, we follow (Zhao 2005) and have
implemented the local solver based on the Godunov Hamiltonian.
For the reflection traveltime Tr the system of (3)–(4) is defined in
�1 ⊂ �, which is usually a non-square domain. To maintain a finite
difference discretization we solve Tr in the whole domain � and
impose the boundary condition using the level-set function φ(x).
Specifically, since φ(x) is maintained to be the signed distance to
R, we have φ(x) < 0 in �1 while φ(x) > 0 in �2; consequently, the
boundary condition (4) is implemented by setting

Tr (x) = Tt (x), x ∈ {x : φ(x) ≥ 0} (70)

so that we solve (3) in the whole domain � and update Tr(x) only
when φ(x) < 0.

In step 4, we solve the adjoint state eqs (54)–(56) by a fast-
sweeping type method as detailed in Leung & Qian (2006). Here
we mention the treatment of the boundary conditions for (55) and

(56), which aims to maintain the finite-difference discretization in
the non-square domain �1. Firstly, the non-structured part of ∂�1

is due to the reflector R. Mathematically the reflector R is expressed
by R = φ−1(0). Numerically, however, we may have no exactly zero-
valued φ(x) at any gridpoint. To be consistent with the boundary
treatment (70) for the solution of Tr(x), we locate the numerical
reflector R using the following strategy: a gridpoint xi, j is labelled
to be the numerical reflector if

0 ≤ φ(xi, j ) < δ (δ = 3�x in our implementation)

and{
φ(xi−1, j ) < 0, or φ(xi+1, j ) < 0,

or φ(xi, j−1) < 0, or φ(xi,j+1) < 0
}

.

Then we solve (55) and (56) in the whole domain �. For (55), we
extend the coefficient ∇Tr, j to the whole domain � by setting

∇Tr, j =
{∇Tr, j , x ∈ �1 ∪ R,

0, x ∈ �\(�1 ∪ R),

where �1 = {x: φ(x) < 0} and R is the numerical reflector indicated
as above. The fast sweeping iteration is performed in the whole �

with the initial guess μj = 0 everywhere. One finds that in the
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Figure 7. (Example 2, Case 2): piecewise continuous structure.

Figure 8. (Example 3): initial guess of S(x).

region ∇Tr, j = 0, μj is not updated. Thus we actually compute μj

in �1 ∪ R and extend the value to � automatically with μj = 0 in
�\(�1 ∪ R). The value of μj|R is needed for the boundary condition
on R in (56).

For (56), the coefficient ∇Tt, j is set to be

∇Tt, j =
{∇Tt, j , x ∈ �1,

0, x ∈ �\�1,

and the fast sweeping iteration is performed in � with the initial
guess μ̂ j = 0 everywhere. Again one finds that we only update μ̂ j in
�1 and extend the value to the whole domain � automatically with
μ̂ j = 0 in �\�1. We mention that the gradient of the traveltime is
calculated using the third-order WENO scheme (Liu et al. 1994) in
the inner grids while using the first-order upwind scheme near the
boundary.

Finally, we provide a local level set implementation in updating
φ(x), which reduces the overall computational complexity. Based on
(7) for the slowness distribution, the level set function φ(x) mainly
contributes near the reflector R = φ−1(0). Thus we can update the
value of φ only in a small tube containing R, and the re-initialization
strategy maintains φ the signed distance function. Specifically, in
step 5 and step 6 we evaluate φ̃k and update φk + 1 only in the
computational tube {x: |φ(x)| < εlocal}, where εlocal is a parameter
controlling the width of the tube. This strategy helps to speed up
the overall algorithm since we do not need to determine φ̃(x) and
φnew(x) for all gridpoints in the whole computational domain.
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Figure 9. (Example 3, Case 1): piecewise homogeneous structure.

5.2 Algorithm for identifying the illuminated region

Step 1. Apply the reconstructed slowness S(x) into (1)–(2)
and eqs (3)–(4) to solve Tt, j(x) and Tr, j(x) for each point
source x j

s , j = 1, 2, 3, . . . N.
Step 2. For j = 1, 2, 3, . . . N, obtain Ft, j(x) and Fr, j(x) by solving

(66) and (67), and then generate Fj(x) = max {Ft, j(x),
Fr, j(x)}.

Step 3. Obtain F(x) = 1
N

∑N
j=1 Fj (x).

In step 2, we also use the fast sweeping method developed in
Leung & Qian (2006), Li & Leung (2013) to solve the advection
equation. Briefly, to solve the advection equation

a · ∂ F

∂x
+ b · ∂ F

∂y
= 0,

we use the following scheme:

[
a+

i, j · Fi, j − Fi−1, j

�x
+ a−

i, j · Fi+1, j − Fi, j

�x

]

+
[

b+
i, j · Fi, j − Fi, j−1

�y
+ b−

i, j · Fi, j+1 − Fi, j

�y

]
= 0, (71)

where we denote a+ = max {a, 0} and a− = min {a, 0}. (71) implies
that(

a+
i, j − a−

i, j

�x
+ b+

i, j − b−
i, j

�y

)
· Fi, j = a+

i, j · Fi−1, j − a−
i, j · Fi+1, j

�x

+b+
i, j · Fi, j−1 − b−

i, j · Fi, j+1

�y
,

and this gives an expression to build up a fast sweeping-type itera-
tive method. Note that to guarantee F(x) = 0 in the unilluminated
region, we initialize F(x) = 0 everywhere. We update Fi, j only in
the interior region of � and set Fi, j = 0 on the boundary where
no receivers are located. This is because eikonal solvers based on
the fast sweeping approach usually generate artificial creeping rays
along the boundary (Fomel et al. 2009) and we do not want such
artificial ray polluting the computation of our labelling function.

Furthermore, the advection system (67) is defined in �1 ⊂ �

which is usually non-rectangular. To maintain a regular finite-
difference discretization, we extend (67) to the whole domain �

by setting

∇Tr (x) =
{∇Tr (x), x ∈ �1,

0, x ∈ �\�1,
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Figure 10. (Example 3, Case 2): piecewise continuous structure.

where �1 = {x: φ(x) < 0}, �\�1 = {x: φ(x) ≥ 0} and φ(x) is the
level set function in the reconstructed S(x). Then we perform the
fast sweeping iteration for (67) in �, but Fr(x) is updated only in
�1 = {x: φ(x) < 0}.

6 N U M E R I C A L E X P E R I M E N T S

In all examples, the smoothing parameter τ in the numerical Heav-
iside function Hτ (x) is chosen to be τ = 0.01, and the updating step
size is fixed to be ε = 10−3. The parameter to reduce the perturba-
tion of φ is ν = 0.1, the weight of the regularization term in φ is
γ = 0.01, and the weight in controlling the amount of regularity in
S̃1 and S̃2 is α = 1. Furthermore, the width of the computational
tube for the local level-set implementation is set to be εlocal = 4�x.

6.1 2-D examples

The computational domain is set to be � = [0, 2] × [0, 2] which
is discretized using 65 × 65 mesh grids. We assume that N = 49
point sources are located along one side of the domain: (x j

s , z j
s ) =

(0.05, 0.04 j), j = 1, 2, . . . , N. In all these examples, we have
receivers on all the grid nodes along �2 = {x = 2} to record the

transmission traveltime Tt, and we put receivers on all the grid nodes
along �1 = {x = 0} to record the reflection traveltime Tr.

6.1.1 Example 1: a concave circular reflector

In this example the reflector is defined by {(x, z) : x = x(z) = 2 −√
1.52 − (z − 1)2, 0 ≤ z ≤ 2} and the slowness distribution is

S(x, z) =
{

S1(x, z), x ≤ 2 −√
1.52 − (z − 1)2,

S2(x, z), x > 2 −√
1.52 − (z − 1)2.

Case 1: a piecewise homogeneous model with S1(x, z) = 1 and
S2(x, z) = 0.5. We start the iteration with initial guess S0

1 = 1.5,
S0

2 = 0.3 and φ0(x) = x − 1. The initial slowness function S(x) is
shown in Fig. 2. Fig. 3 provides the numerical results after 10 000
iterations. One finds that the structure is well recovered and the
error mainly appears in the region near the discontinuity. Also the
illumination is clearly identified by our labelling function F(x) in
(d). We can see that for those regions where the function F(x) is
close to one, the inversion result is very accurate. Near the boundary
of the computational domain (for example, near x = 0.6 and z near
0 and 2), on the other hand, F(x) is close to zero; this implies
that there are few rays passing through those regions in terms of
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Figure 11. (Example 4, Case 1): disconnecting reflector.

first-arrival rays between all source–receiver pairs, and this explains
why the reconstruction in those regions incurs relatively large errors.

We emphasize again that our labelling function F(x) indeed gives
a simple representation of ray path coverage in the first-arrival sense
in the Eulerian framework. To compare our illumination function
F(x) with the ray path coverage, we have also extracted several La-
grangian ray paths in Fig. 4. In particular, we have shown some rays
emitted from the point sources at (xs, zs) = (0.05, 0.08) in Figs 4(a)
and (b) and (xs, zs) = (0.05, 1) in Figs 4(c) and (d), respectively.

Case 2: a piecewise continuous model with

S1(x, z) = 1 + 0.5 · exp{−16[(x − 0.25)2 + (z − 1)2]}

and S2(x, z) = 0.5. The initial guess of S(x) is the same as shown in
Fig. 2. We perform 10 000 iterations, and Fig. 5 shows the numerical
results. One finds that the shape of the reflector is well recovered
and the slowness distribution including the anomaly structure is
well recovered.
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Figure 12. (Example 4, Case 2: no noise): disconnecting reflector.

Figure 13. (Example 4, Case 2: with noise) 2 per cent Gaussian noise with zero mean is added to the clean measurements in Fig. 12.
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Figure 14. (Example 5, Case 1): 3-D tomography, piecewise homogeneous structure. Panels (a)–(c) and (g)–(i): exact slowness with slices y = 0, 1, 2 and
z = 0.5, 1, 1.5. Panels (d)–(f) and (j)–(l): results after 2000 iterations with slices y = 0, 1, 2 and z = 0.5, 1, 1.5.

6.1.2 Example 2: a sinusoidal reflector

The sinusoidal reflector is defined by {(x, z): x = x(z) = 0.65 −
0.25 sin (π z), 0 ≤ z ≤ 2} and the slowness distribution is

S(x, z) =
{

S1(x, z), x ≤ 0.65 − 0.25 sin(π z),

S2(x, z), x > 0.65 − 0.25 sin(π z).

We have tested two cases with the initial guess for S(x) as shown
in Fig. 2.

Case 1: a piecewise homogeneous model with S1(x, z) = 1 and
S2(x, z) = 0.5. We perform 20 000 iterations and the final numerical
results are shown in Fig. 6. We get a perfect reconstruction for the
shape of the reflector. In the recovered S(x) as shown in (b), the
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rough structure is correct and the error is acceptable, though there
are shadow regions which deviate from the homogeneity.

Case 2: a piecewise continuous model with

S1(x, z) = 1 + 0.5 · exp

{
−
[

(x − 0.4)2

0.42
+ (z − 1.5)2

0.22

]}
and S2(x, z) = 0.5. We perform 11 000 iterations and the numerical
results are shown in Fig. 7. The shape of the reflector is well recov-
ered. The recovered anomaly in S(x) is not perfect due to the inherent
heterogeneity. However, the reconstruction in (b) still provides us
with useful information in understanding the structure.

In both cases, we found that the large errors in the construction
occur near the region where the illumination is low, that is when
F(x) is relatively small. For example, in region near x = 0.6 and
z = 0, there are just a few first-arrival rays joining any source–
receiver pairs. It is, therefore, extremely challenging to recover the
velocity model in those regions.

6.1.3 Example 3: a convex circular reflector

In this example, the reflector is now moved further away from the
sources and is defined by

{(x, z) : x = x(z) =
√

1.52 − (z − 1)2, 0 ≤ z ≤ 2}.
The slowness distribution is

S(x, z) =
{

S1(x, z), x ≤ √
1.52 − (z − 1)2,

S2(x, z), x >
√

1.52 − (z − 1)2.

Case 1: a piecewise homogeneous model with S1(x, z) = 1 and
S2(x, z) = 0.5. We start the iteration with the initial guess S0

1 = 0.7,
S0

2 = 0.3 and φ0(x) = x − 1. The initial slowness function S(x) is
shown in Fig. 8. Fig. 9 shows the numerical results after 10 000
iterations. Both the piecewise structure and the reflector are well
recovered.

Case 2: a piecewise continuous model with S1(x, z) = 1 + 0.3 ·
exp {−[(x − 0.7)2 + (z − 1)2]} and S2(x, z) = 0.5. The initial guess
of S(x) is the same as shown in Fig. 8. Fig. 10 shows the numerical
results after 13 000 iterations. From the plot of error in Fig. 10(c),
one finds that the location of the reflector is perfectly recovered.
Also we get a good inversion of the slowness distribution including
the non-homogeneous structure beyond the reflector.

6.1.4 Example 4: irregular reflectors

In this example, we consider more challenging cases where the true
reflector has an irregular shape. We will demonstrate that starting
from a regular initial guess of the true reflector in terms of an
initial level-set function, the level-set defined interface will undergo
topological changes during the level-set evolution in the energy
minimization process, and the level-set method can handle such
topological changes naturally.

Case 1: the exact reflectors are given by the two disjoint curves
(x−1.2)2

0.32 + (z−2)2

0.52 = 1 and (x − 1.2)2 + (z − 0.5)2 = 0.32. The slow-
ness distribution is

S(x, z) =

⎧⎪⎪⎨
⎪⎪⎩

S2(x, z), (x−1.2)2

0.32 + (z−2)2

0.52 ≤ 1,

S2(x, z), (x − 1.2)2 + (z − 0.5)2 ≤ 0.32,

S1(x, z), otherwise,

where S1(x, z) = 0.7 + 0.5 · exp {−[(x − 0.4)2 + (z − 1)2]} and
S2(x, z) = 0.4. This exact solution is shown in Fig. 11(a). The initial

guess for S(x) is shown in Fig. 11(b), where S0
1 = 0.7, S0

2 = 0.3
and φ0(x) = 0.9 −√

(x − 1)2 + (z − 1)2. Fig. 11(c) plots the solu-
tion after 3000 iterations. Our proposed algorithm can successfully
recover the disconnecting reflectors starting from an initial guess
where the corresponding reflector has a different shape. This exam-
ple demonstrates that the level set method provides a flexible tool
for automatically capturing the correct topology of the interface.
Once again, the error in the reconstruction occurs mostly at loca-
tions where the illumination is low, that is F(x) is close to zero, as
shown in Fig. 11(d).

To demonstrate the improvement in the solution by the joint
transmission-reflection tomography, we further provide the recov-
ered slowness using only transmission tomography and reflection
tomography in Figs 11(e) and (f), respectively, after 3000 and 1500
iterations. Note that in the reflection tomography, we do not update
S2(x, z) at all because the region inside the reflector is always unil-
luminated. Comparing solutions from (c), (e) and (f), we found that
our joint tomography gives a much better reconstruction solution
than using information from only either transmission traveltime or
reflection traveltime. In particular, we better resolve the structure in
the background region comparing to the solution from the transmis-
sion tomography, while we also determine the topologically correct
solution comparing to the solution from the reflection tomography.
Because of the extra information introduced in the minimization
formulation, the joint traveltime tomography indeed gives a more
accurate solution for this highly ill-conditioned inverse problem.

Case 2: the reflector is defined by {(x, z): (z − 1)2 − (x − 2)2

= 0.25, 0 ≤ x ≤ 2, 0 ≤ z ≤ 2}, and we consider the slowness
distribution given by

S(x, z) =
{

S1(x, z), (z − 1)2 − (x − 2)2 < 0.25,

S2(x, z), (z − 1)2 − (x − 2)2 ≥ 0.25,

where S1(x, z) = 1 + 0.3 · exp { − [(x − 0.7)2 + (z − 1)2/0.25]}
and S2(x, z) = 0.5. The initial guess for S(x) is the same as shown in
Fig. 8. Fig. 12 provides the numerical results after 6000 iterations.
The disconnecting reflectors are well recovered and our reconstruc-
tion also approximates the inhomogeneous structure well.

To further test the robustness of the algorithm, we have perturbed
the measurements T ∗

t and T ∗
r by 2 per cent Gaussian noise with

zero mean. The results after 6000 iterations are shown in Fig. 13.
We found that our reconstruction is not too sensitive to the added
noise. The solution in Fig. 13(a) is similar to the recovered solution
using the clean measurements as shown in Fig. 12(b).

6.2 A 3-D example

We consider a 3-D example where the domain � = [0, 2] × [0, 2] ×
[0, 2] is discretized by a 65 × 65 × 65 mesh. We put N = 49 point
sources on one side of the domain: (xs, yi

s , z j
s ) = (0.05, 0.1 + 0.3 ·

(i − 1), 0.1 + 0.3 · ( j − 1)), i, j = 1, 2, . . . , 7. In all these examples,
we have receivers at all the grid nodes along �2 = {x = 2} to record
the first-arrival transmission traveltime Tt, and we put receivers at
all the grid nodes along �1 = {x = 0} to record the reflection
traveltime Tr.

6.2.1 Example 5: a spherical reflector

A 3-D reflector is defined by

{(x, y, z) : x =
√

3.52 − (y − 1)2 − (z − 1)2 − 2,

0 ≤ y ≤ 2, 0 ≤ z ≤ 2}
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Figure 15. (Example 5, Case 2): 3-D tomography, piecewise continuous structure. Panels (a)–(c) and (g)–(i): exact slowness with slices y = 0, 1, 2 and z = 0.5,
1, 1.5. Panels (d)–(f) and (j)–(l): Results after 2000 iterations with slices y = 0, 1, 2 and z = 0.5, 1, 1.5.

and the slowness distribution is

S(x, y, z) =
{

S1(x, y, z), x ≤ √
3.52 − (y − 1)2 − (z − 1)2 − 2,

S2(x, y, z), x >
√

3.52 − (y − 1)2 − (z − 1)2 − 2.

We have tested two cases, and we start both tests with the same
initial guess given by S0

1 (x, y, z) = 0.7, S0
2 (x, y, z) = 0.3 and φ0(x,

y, z) = x − 1.

Case 1: a piecewise homogeneous model with S1(x, y, z) = 1
and S2(x, y, z) = 0.5. Fig. 14 shows numerical results after 2000
iterations, where the 3-D structure is presented by slices. We plot
the slices of S(x) at y = 0, 1, 2 and z = 0.5, 1, 1.5. The shape of the
reflector is perfectly recovered and the deviation in the reconstructed
slowness structure is acceptable.

Case 2: a heterogeneous model with S1(x, z) = 1 + 0.3 · exp(−
((x − 0.7)2 + (y − 1)2 + (z − 1)2)) and S2(x, z) = 0.5. Fig. 15 shows
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the numerical results after 2000 iterations. Once again, like other
2-D examples, both the shape and the location of the reflector are
very well recovered. The inhomogeneous structure in the shallow
region is well reconstructed. Even though the exact slowness in
the right region is homogeneous, our numerical algorithm does not
explicitly impose that constraint but simply looks for a piecewise
smooth solution. Our inverted solution approximates well with the
exact constant, as shown in Fig. 15.

7 D I S C U S S I O N A N D C O N C LU S I O N

In this paper, we have extended the level-set adjoint-state method to
solve the joint transmission-reflection tomography problem. We in-
vert for the heterogeneous structure including the location of reflec-
tors using only first-arrival transmission and reflection traveltimes.
For the transmission part, the derivation of the adjoint-state method
is similar to our previous work in Li & Leung (2013), while the
reflection part has to be done differently. The major issue is that we
should maintain an inflow boundary condition for the adjoint-state
equation such that the information propagates from the receivers
on the boundary back into the interior region. We have discussed in
details the derivation of two adjoint state equations to handle the re-
flection part in the mismatch functional. Furthermore, we have also
proposed an easily computed quantity which can be used to quan-
tify the reliability of the reconstruction and can also be regarded as
an Eulerian interpretation of ray path coverage in the first-arrival
sense.

Various synthetic examples have been considered in the paper
to test the accuracy and robustness of our algorithm. Because of
the level-set formulation, the proposed method can handle topolog-
ical change of the estimated reflector in the energy minimization
process. We can recover a complicated structure starting from an
initial guess with little assumption on the reflector. We have also
demonstrated that the numerical approach is not sensitive to noise
in the measurements.

Indeed, one shortcoming of the proposed approach is in the com-
putational efficiency. This is mostly because we use only straight-
forward gradient descent method in minimizing the mismatching
functional, which therefore required thousands of numerical itera-
tions in obtaining satisfactory solution. As a future work, we will
incorporate more efficient numerical optimization methods, such as
quasi-Newton type methods, into our formulation so that the whole
algorithm can be sped up significantly. While we are improving the
overall computational efficiency of the algorithm, we expect that
our proposed method will be useful for traveltime tomography in
practical seismic surveys.
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A P P E N D I X A : D E R I VAT I O N O F
P E RT U R B AT I O N R E L AT I O N S ( 1 5 )
A N D ( 1 6 )

Consider the eikonal eq. (1) which is valid for both Tt (φ + ε ·
νφ̃, S1 + ε S̃1, S2 + ε S̃2) and Tt(φ, S1, S2),

[∇Tt (φ + ε · νφ̃, S1 + ε S̃1, S2 + ε S̃2)
]2

= S2(φ + ε · νφ̃, S1 + ε S̃1, S2 + ε S̃2), (A1)

[∇Tt (φ, S1, S2)]2 = S2(φ, S1, S2). (A2)

Plugging formula (13) into (A1) and subtracting (A2) from (A1),
we get

2ε∇Tt · ∇ T̃t + O(ε2) = S2(φ + ε · νφ̃, S1 + ε S̃1, S2 + ε S̃2)

−S2(φ, S1, S2). (A3)

From (8) and (9), we have

S(φ + ε · νφ̃, S1 + ε S̃1, S2 + ε S̃2)

= S(φ, S1, S2) + ε · νφ̃ · S2 − S1

2τ · cosh2 φ

τ

+ ε S̃1

· [1 − Hτ (φ)] + ε S̃2 · Hτ (φ) + O(ε2). (A4)

Now, substituting (A4) into (A3), we obtain

2ε∇Tt · ∇ T̃t + O(ε2)

= 2ε · S(φ, S1, S2) ·
{

νφ̃ · S2 − S1

2τ · cosh2 φ

τ

+ S̃1

·[1 − Hτ (φ)] + S̃2 · Hτ (φ)

}
+ O(ε2). (A5)

To simplify the notation, we denote

A(φ, S1, S2) = S(φ, S1, S2) · S2 − S1

2τ · cosh2 φ

τ

,

B(φ, S1, S2) = S(φ, S1, S2) · [1 − Hτ (φ)],

C(φ, S1, S2) = S(φ, S1, S2) · Hτ (φ).

Then, matching O(ε) terms in (A5), we obtain

νφ̃ · A(φ, S1, S2) + S̃1 · B(φ, S1, S2)

+ S̃2 · C(φ, S1, S2) − ∇Tt · ∇ T̃t = 0,

which is (15).
Performing a similar calculation for Tr in the domain �1, we have

the relation between φ̃, S̃1, S̃2 and T̃r ,

νφ̃ · A(φ, S1, S2) + S̃1 · B(φ, S1, S2)

+ S̃2 · C(φ, S1, S2) − ∇Tr · ∇ T̃r = 0,

which gives (16).
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A P P E N D I X B : P RO O F S O F L E M M A 3 . 1
A N D L E M M A 3 . 2

B1 Derivation of Lemma 3.1

Multiplying (15) by λ, integrating it over � and adding to (20), we
get

δE

ε
=
∫

�1

T̃r (Tr − T ∗
r )ds +

∫
�2

T̃t (Tt − T ∗
t )ds

+
∫

�

λ(W − ∇Tt · ∇ T̃t )dx + O(ε)

=
∫

�1

T̃r (Tr − T ∗
r )ds +

∫
�2

T̃t (Tt − T ∗
t )ds +

∫
�

λW dx

+
∫

�

div(λ∇Tt ) · T̃t dx −
∫

∂�

λ
∂Tt

∂n
· T̃t ds + O(ε) , (B1)

where W is the abbreviation in formula (21) and n denotes the unit
outward normal of ∂�. From (B1), we conclude that if λ satisfies
the adjoint state eqs (22), (23) and (24) given in Lemma 3.1, the
perturbation of the mismatch functional reduces to

δE

ε
=
∫

�

λW dx +
∫

�1

T̃r (Tr − T ∗
r )ds + O(ε),

which is (25) in Lemma 3.1.

B2 Derivation of Lemma 3.2

We want to eliminate the term T̃r in δE by using (16) as a constraint.
We have

δE

ε
=
∫

�

λW dx +
∫

�1

T̃r (Tr − T ∗
r )ds

+
∫

�1

μ(W − ∇Tr · ∇ T̃r )dx + O(ε)

=
∫

�

λW dx +
∫

�1

T̃r (Tr − T ∗
r )ds +

∫
�1

μW dx

+
∫

�1

div(μ∇Tr ) · T̃r dx −
∫

∂�1

μ
∂Tr

∂n
· T̃r ds + O(ε). (B2)

First we consider the adjoint state eqs (26)–(28) given in Lemma
3.2,

−div(μ∇Tr ) = 0, in �1

μ
∂Tr

∂n
= Tr − T ∗

r , on �1

μ = 0, on ∂�1\(R ∪ �1),

so that (B2) reduces to

δE

ε
=
∫

�

λW dx +
∫

�1

μW dx −
∫

R
μ

∂Tr

∂n
· T̃r ds + O(ε). (B3)

To eliminate T̃r on R, we use the important relation between Tt and
Tr given by (4). Since Tr(x) = Tt(x) on R, we have

T̃r (x) = T̃t (x), x on R. (B4)

Substituting (B4) into (B3), we get

Figure B1. Notation used in simplifying the boundary condition (B8).

δE

ε
=
∫

�

λW dx +
∫

�1

μW dx −
∫

R
μ

∂Tr

∂n
· T̃t ds + O(ε). (B5)

One finds that the relation (15) can be utilized again to reduce the
integrating term involving T̃t . Multiplying (15) by μ̂, integrating it
over �1 and adding to (B5), we have

δE

ε
=
∫

�

λW dx +
∫

�1

μW dx −
∫

R
μ

∂Tr

∂n
· T̃t ds

+
∫

�1

μ̂(W − ∇Tt · ∇ T̃t )dx + O(ε)

=
∫

�

λW dx +
∫

�1

μW dx −
∫

R
μ

∂Tr

∂n
· T̃t ds +

∫
�1

μ̂W dx

+
∫

�1

div(μ̂∇Tt ) · T̃t dx −
∫

∂�1

μ̂
∂Tt

∂n
· T̃t ds + O(ε). (B6)

Then the adjoint state equation for μ̂ is

− div(μ̂∇Tt ) = 0, in �1 (B7)

μ̂
∂Tt

∂n
= −μ

∂Tr

∂n
, on R (B8)

μ̂ = 0, on ∂�1\R, (B9)

where (B7) is (29) and (B9) is (31) in Lemma 3.2. Therefore, the
mismatch functional finally reduces to (32),

δE

ε
=
∫

�

λW dx +
∫

�1

(μ + μ̂)W dx + O(ε) .

We can further simplify the boundary condition (B8) in the
adjoint state equation for μ̂. As shown in Fig. B1, we have
|∇Tt(x)| = |∇Tr(x)| = S(x) at the point x ∈ R due to the eikonal
equation. Hence,

∂Tt

∂n
= ∇Tt · n = |∇Tt | · |n| · cos θ = S(x) · cos θ

∂Tr

∂n
= ∇Tr · n = |∇Tr | · |n| · cos(π − θ ) = −S(x) · cos θ ,

which imply that

∂Tt

∂n
= −∂Tr

∂n
. (B10)

Plugging (B10) into (B8), we finally obtain the simplified boundary
condition (30) given by

μ̂ = μ, on R .


