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ABSTRACT

We design an Eulerian Gaussian beam summation method
for solving Helmholtz equations in the high-frequency re-
gime. The traditional Gaussian beam summation method is
based on Lagrangian ray tracing and local ray-centered coor-
dinates. We propose a new Eulerian formulation of Gaussian
beam theory which adopts global Cartesian coordinates, lev-
el sets, and Liouville equations, yielding uniformly distribut-
ed Eulerian traveltimes and amplitudes in phase space simul-
taneously for multiple sources. The time harmonic wavefield
can be constructed by summing up Gaussian beams with in-
gredients provided by the new Eulerian formulation. The
conventional Gaussian beam summation method can be de-
rived from the proposed method. There are three advantages
of the new method: �1� We have uniform resolution of ray dis-
tribution. �2� We can obtain wavefields excited at different
sources by varying only source locations in the summation
formula. �3� We can obtain wavefields excited at different fre-
quencies by varying only frequencies in the summation for-
mula. Numerical experiments indicate that the Gaussian
beam summation method yields accurate asymptotic wave-
fields even at caustics. The new method may be used for seis-
mic modeling and migration.

INTRODUCTION

The method of Gaussian beam summation is powerful for seismic
ave modeling and migration in the high frequency regime; see
erveny et al. �1982�, Norris et al. �1987�, White et al. �1987�, Hill

1990�, Alkhalifah �1995�, Hill �2001�, Gray �2005�, and references
herein. In contrast to the geometrical ray theory in which the ray am-
litude is unbounded at caustics, a Gaussian beam constructed
round a central ray always has guaranteed regular behavior at caus-
ics, and interference of multiple arrivals is achieved by summing up
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bundle of Gaussian beams. We propose a purely Eulerian Gaussian
eam summation method that combines the Gaussian beam ansatz
ntroduced in Ralston �1983� with the paraxial Liouville formulation
eveloped recently in Qian and Leung �2004, 2006� and Leung et al.
2004�. The resulting Eulerian method is easy to implement and
omputationally efficient.

Gaussian beams are approximate asymptotically valid solutions
o hyperbolic partial differential equations which are concentrated
ear a single ray through the domain. The existence of such solutions
as been known to the applied mathematician since the 1960s, and
hese solutions have been used to obtain results on propagation of
ingularities in hyperbolic PDEs �Hormander, 1971; Ralston, 1983�.
n the other hand, the Gaussian beam migration operator can be
iewed as the adjoint of the Gaussian beam modeling operator.As an
lternative to Kirchhoff depth migration, Gaussian beam migration
an take into account multiarrivals systematically, yielding accurate
nd efficient imaging methods in complex media �Hill, 1990, 2001;
ale, 1992�; this methodology has undergone extensive develop-
ent in recent years �Albertin et al., 2004; Gray, 2005; Han and Wu,

005; Zacek, 2005; Protasov and Tcheverda, 2006�.
Traditional Gaussian beams are constructed by using local ray co-

rdinates. As a result, one has to compute the normal distance from
very observation point to the central ray of every Gaussian beam
Cerveny et al., 1982; George et al., 1987�, which is computationally
umbersome and expensive. To overcome this difficulty, George et
l. �1987� and Hill �1990� propose using local geographic coordi-
ates in the vicinity of an observation point, which only partially
olves the problem.

To implement Gaussian beam summation in a global Cartesian
oordinate, we adopt the ansatz proposed in Ralston �1983� and Ta-
ushev et al. �2007� to construct Gaussian beams along central rays
ithout resorting to local ray-centered coordinates. Mathematically,

his ansatz constructs an approximate traveltime function with an
maginary part as a Taylor expansion around a central ray by using
raveltime derivatives on the central ray; to some extent, the approx-
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SM62 Leung et al.
mate traveltime function in the traditional Gaussian beam summa-
ion can be obtained from the new approximate traveltime function
y using a local ray-centered coordinate transformation. To have an
ulerian formulation capturing multiple arrivals and caustics, we
dopt Liouville equations in a paraxial setting �Qian and Leung,
004, 2006; Leung et al., 2004� to parameterize multiple sources and
eceivers; see these papers and the references therein for recent
rogress in Eulerian geometrical optics.

We begin with an outline of the Lagrangian Gaussian beam sum-
ation method. Then we give details of the Eulerian Gaussian beam

ummation method based on level sets. We briefly describe numeri-
al procedures for implementing the Eulerian Gaussian beam sum-
ation method. Numerical experiments demonstrate the effective-

ess of the new method. See the list of symbols used.

MATHEMATICAL FRAMEWORK

We shall consider a time-harmonic wave problem in n dimensions
ith one distinguished direction, the z-direction. We set up Cartesian

oordinates z,x1, . . . ,xn̄, where n̄ = n − 1. In the first instance, we
onsider the physical domain to be Rn, but this will be truncated and
iscretized later to allow numerical computations.

Because of the special rôle of z, we shall consider the domain
ore naturally as R�Rn̄ and use the notation x̃ = �z,x�
�z,x1, . . . ,xn̄�. In our equations, we shall consider vectors to be col-

mn vectors, but in the text, we shall usually write vectors in trans-
osed form as rows. Thus, we will, for instance, write x̃ = �z,x�
�z,x1, . . . ,xn̄� but regard both x̃ and x as columns in matrix calcula-

ions unless explicitly transposed.

ikonal equations

We consider the Helmholtz wave equation for the scalar wavefield
�z,x,y,��,

�2U�z,x,�� +
�2

v2�z,x�
U�z,x,��

= − ��z − zs���x1 − xs,1� . . . ��xn̄ − xs,n̄� . �1�

n the physical domain Rn, where n̄ = 1 or 2 for practical applica-
ions, � is frequency, v�z,x� the wave speed at point �z,x�, and �0,xs�
he coordinates of a source point. Here and in what follows, we have
ritten the argument z first because of its distinguished role.
We use the standard geometric optics large-� ansatz for U, given

y

U = �A�x̃� + O� 1

�
��exp�i�� �x̃�� . �2�

ubstituting equation 2 into equation 1 and equating the terms of or-
ers �−2 and �−1 zero away from the source, we obtain the eikonal
nd transport equations for traveltime � and amplitude A:

��̃��2 =
1

v2 ,

�̃� · �̃A +
1

2
A�̃2� = 0, �3�

ith corresponding initial conditions. Here, we have written �̃ for
�/�z,�/�x1, . . . ,�/�xn̄� reserving � for the n̄-dimensional gradient
perator ��/�x1, . . . ,�/�xn̄�.

In seismic applications, we assume that z is vertically down, and
e shall assume that the traveltime field satisfies

��

�z
� 0, �4�

.e., rays are subhorizontal. In this case, we may rewrite the eikonal
quation 3 as an evolution equation in depth �Gray and May, 1994;
ian and Symes, 2002; Symes and Qian, 2003�,

��

�z
− 	 1

v2 − ��� �2 = 0,

� �0,x1, . . . ,xn̄� = � 0�x1, . . . ,xn̄�, Im � 0 � 0, �5�


 ��

�z



z = 0
= p0,0��x1, . . . ,xn̄�� ,

� � � �z = 0 = p0��x1, . . . ,xn̄�� , �6�

here � 0�x�, and p0�x,y� are given complex-valued smooth func-
ions satisfying the compatibility conditions,

�� 0 = p0�x,y� , �7�

p0,0�x,y� − 	 1

v2�0,x,y�
− p0

2�x,y� = 0. �8�

At a point source, �0,xs�, we specify initial conditions,

� s = � 0�xs� = � �0,xs� = 0, �9�

p̃s = p̃�xs,�s� =
t̃s

v�0,xs�
=

�̃s

�sv�0,xs�
. �10�

here

p̃s = �ps,0,ps�, t̃s = �ts,0,ts� =
�̃s

�
,

t̃s
2 = 1, �s =

ts

ts,0
,

�̃s = �1,�s�, �s = 	1 + �s
2. �11�

ere, t̃s is a unit vector with ts,0 �0, t0 is the cosine of the angle that p̃
akes with the z-direction, and � = 1/t0. Notice that we have writ-

en t̃s
2 = 1 instead of �t̃� = 1 because we want to keep our expressions

nalytic: for complex t̃, �t̃� might signify 	t̃†t̃ where t̃† is the Hermit-
an transpose. Please refer to the list of symbols for these and other
ymbols.

To apply Gaussian beam theory �Ralston, 1983; Tanushev et al.,
007�, we let the axis, or central ray, of a beam be given by x = X�z�,
he corresponding value of p = P�z�, the traveltime by � = T�z�, and
e introduce the Hamiltonian

H�z,X,P� = − P0 = − 	 1

v2�z,X�x��
− P�z�2, �12�

here P �z� = � �z,X�z��, and P�z� = �� �z,X�z��.
0 z
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We shall need the ray tracing system,

Ẋ = HP =
P

	 1

v2 − P2

=
t

t0
= �, �X�z=0 = xs;

Ṗ = − HX =
− vX

v3	 1

v2 − P2

=
− �vX

v2 ,

�P�z=0 = �s ��sv�0,x� ;

Ṫ =
1

v2	 1

v2 − P2

=
�

v
, �T�z=0 = � 0�xs�; �13�

ere the dot �·� denotes the total derivative with respect to z. We also
ave used HP, for instance, to denote the matrix of partial derivatives
H/�Pi, i = 1, . . . , n̄, and P2 to stand for P1

2 + . . . + Pn̄
2, etc. The tra-

ectories X�z� are the rays, and the full trajectories �X�z�,P�z�� are
haracteristic strips which for brevity we shall refer to as xp-rays,
.e., trajectories in the 2n̄-dimensional space of �x,p� which is essen-
ially phase space. Later, when we have eliminated p in favor of �,
e shall refer to the corresponding trajectories as x	-rays.
To emphasize the dependence on the initial conditions, we will

rite X = X�z� = X�z;xs,�s�, P = P�z� = P�z;xs,�s�, and T = T�z�
T�z;xs,�s�.
For later convenience, we define the n̄� n̄ projection matrices Q�

nd Q�:

Q� = I −
�	T

�2 , Q� =
�	T

�2 . �14�

hese are real, symmetric, and satisfy Q�
2 = Q�, Q�

2 = Q�, and
�Q� = 0. For our purposes, we note that the eigenvalues of the ma-

rix uQ� + vQ� are u repeated n̄ − 1 times and the simple eigenvalue
, with respective eigenspaces perpendicular and parallel to � and
et
uQ� + vQ�� = un̄−1v, because Q� projects onto an n̄ − 1 dimen-
ional eigenspace, whereas Q� projects onto a 1D eigenspace.

Each xs, �s defines an axisymmetric Gaussian beam through xs in
he direction t̃ = �1,��/�, waist centered at xs and width determined
y the positive parameter 
. Associated with each such beam is a
eld of xp-rays, parameterized by an n̄-vector � = ��1, . . . ,�n̄�, and
ontaining the central xp-ray, which has initial conditions
X�0�,P�0�� = �xs,ts/v�0,xs��, but with neighboring members of the
eld having slightly different initial conditions X�0;xs,�s,�� = xs

�Q� + �Q���, P�0;xs,ts,�� = ts/v�0,xs� + i
�Q� + �−1Q���. For
ach xs, �s we shall be concerned with the variations of X�z;xs,�s,��
nd P�z;xs,�s,�� along the ray with respect to � at � = 0, and
e define B�z;xs,�s� = ��P�z;xs,�s,��/����=0 and C�z;xs,�s,��
��X�z;xs,�s�/����=0.
The dynamic ray tracing �DRT� system for these variations is ob-

ained by differentiating equation 13 with respect to �:

Ḃ�z� = − HXPB − HXXC, B�0� = i
�Q� +
1

�
Q�� ,

Ċ�z� = HPPB + HPXC, C�0� = Q� + �Q� , �15�

here ��0 and � = 	1 + �2 = 1/cos �, � being the angle that the
ay direction t̃ makes with the z direction. The initial values B�0�,
�0� ensure that the beam has circular symmetry about its axial di-
ection t̃. In the DRT system equations 15, the second derivatives of

are

HPP =
v��1 − v2P2�I + v2PPT�

�1 − v2P2�3/2 ,

HXX =
�1 − v2P2��vvXX − 3vXvX

T� + vXvX
T

v3�1 − v2P2�3/2 ,

HPX = HXP
T =

PvX
T

�1 − v2P2�3/2 . �16�

We notice for future reference that �BC−1�z=0 is i
 times the positive
efinite real symmetric matrix Q� + Q�/�2.

In the neighborhood of the source, the beam has width on the order
f 1/	�
 and is confined to a circular cylindrical region with axis in
he direction of t̃. This cylinder cuts the n̄-plane z = 0 in an ellipsoi-
al region similar to the ellipsoid xT�Q� + Q�/�2�x = 1 with major
nd minor semi-axes proportional to � parallel and 1 perpendicular
o �. It follows that this same cylindrical region cuts a right cross sec-
ion, i.e., the section by the plane t̃T�x̃ − x̃s� = 0 through the source,
n an n̄-sphere. We take all the beams to have axial symmetry and to
e identical except for the directions t̃s of their axes. Each beam has a
amily of rays associated with it, and we shall parameterize this fam-
ly of rays by the coordinates � on the right cross section through the
ource.

The symplectic structure �HPP, and − HXX are symmetric, and
HXP = − �HPX�T� of equations 15 implies, as we have just pointed

ut, that Im
B�z�C�z�−1� remains symmetric and positive definite if,
s implied by the DRT system equations 15, it is symmetric and posi-
ive definite initially.

Because � x = p, � xx = �p/�x = ��p/�����x/���−1 = BC−1, thus
e have the following Taylor series approximation in the neighbor-
ood of x = X,

�z,x;xs,�s� = T�z;xs,�s� +
1

v�
NT�z��x − X�z��

+
1

2
�x − X�z��TB�z�C−1�z��x − X�z�� , �17�

here X, P, B and C also depend on �z,xs,�s� but not on �, and we
ave expressed P in terms of N: P = N/�v��.
Let us express the direction of the central ray of a beam in terms of

, and eliminate p in favor of � as follows in vp̃ = t̃ = �t0,t�
�1,��/�, where t = vp = �/�. Then the ray tracing system 13 be-

omes

Ẋ = N , Ṅ =
�2

v
�vzN − vX� , Ṫ =

�

v
, �18�

ith initial conditions

�0;xs,�s� = xs, N�0;xs,�s� = �s, T�0;xs,�s� = 0. �19�

In the ray tracing system of equations 18 and the initial conditions
quation 19, X and N�Rn̄ and the dependent variables are regarded
s functions of �z,x ,� �. We repeat the DRT system, equations 15:
s s
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Ḃ�z� = − HXPB − HXXC, �B�z��z = 0 = i
�Q� +
1

�
Q�� ,

Ċ�z� = HPPB + HpXC, �C�z��z = 0 = �Q� + �Q�� , �20�

here

HPP = v��I + NNT� = v��Q� + �2Q�� ,

HXP =
�2vXNT

v
,

HXX =
��vvXX − 3vXvX

T� + �3vXvX
T

v3 , �21�

nd

v = v�z,X�z��, � = 	1 + N2, Q� =
NNT

N2 , �22�

Q� = I − Q� .

Finally, the amplitude along the axial ray is

�z;xs,�s� = 	v�z,X�z��t0�0;xs,�s�det
C�0;xs,�s��
v�0,xs�t0�z;xs,�s�det
C�z;xs,�s��

, �23�

hich is finite and nonzero everywhere �seeAppendix A�.
We recognize ts,0 det
C�0�� as the differential area of the right

ross section of the beam at the source, which has been arranged to
e the same for all beams. Thus, we may write

�z;xs,�s� = 	 const.v�z,X�z��
v�0,xs�t0�z;xs,�s�det
C�z;xs,�s��

. �24�

The previous derivation is based on the paraxial assumption, the
o-called subhorizontal condition; see the inequality equation 4.

hen the paraxial assumption does not apply, we may construct the
aussian beam summation directly by using the approach presented

n Ralston �1983� and Tanushev et al. �2007�.

agrangian Gaussian beam superposition

The wavefield resulting from one Gaussian beam parameterized
ith initial takeoff direction t̃s is

��z,x;xs,�s� = �0	 v�z,X�z��
v�0,xs�t0�z;xs,�s�det
C�z;xs,�s��

�exp�i�� �z,x;xs,�s�� , �25�

here ��z,x;xs,�s� is given by the Taylor series approximation
equation 17� with P�z� = N/��v�, and the radiation factor from
quation B-18 is

�0 =
i

4

� �

2
vs
�n−2

, �26�

nd from equation B-20 we have
��z,x;xs,�s� =
− i

4

� �

2
vs
�n−2	��z�v�z,X�z��

v�0,xs�det
C�

� exp�i��� �z,x;xs,�s��� . �27�

To compute the wavefield generated by a point source at xs, we in-
egrate over beams with central rays emanating from the source in all
he possible directions with t0 positive. However, because of the rap-
d decay of amplitude in each beam away from the axis, only beams
ith axes passing close to �z,x� contribute. From equations 17 and
7 we have

U�z,x;xs� =
i

4

� �

2
vs
�n−2

��
−�

�

¯ �
−�

�

	 ��z,xs,�s�v�z,X�z��
v�0,xs�det
C�z,xs,�s��

�
d	s,1 . . . d	s,n̄

�s
n � exp�i��T�z;xs,�s��

+
1

v�
NT�z,xs,�s��x − X�z,xs,�s��

+
1

2
�x − X�z,xs,�s��TB�z,xs,�s�C−1�z,xs,�s�

��x − X�z,xs,�s��� . �28�

Here, d�s,1 . . .d�s,n̄/�s
n is the solid angle element of integration on

he n̄-hemisphere �1,�s�/�s and �s = 	1 + �s
2 = 1/cos �s, �s being

he angle the tangent to the ray t̃ makes with the z-axis at �0,xs�.
What does equation 28 mean? From uniqueness for system equa-

ions 18, given xs and ts with ts,0 �0, there is just one x	-ray emanat-
ng from the source xs with takeoff direction t̃s = �̃s/�s. It pierces z

constant in the point �z,X�z;xs,�s�,N�z;xs,�s��. As �s varies over
n̄, �X�z;xs,�s�,N�z;xs,�s�� traces out an n̄-dimensional surface

hrough

��z;xs� = 
�X�z;xs,�s�,N�z;xs,�s��:�s � Rn̄� �29�

n R2n̄, and ��0;xs� = 
�xs,�s�:�s �Rn̄� is a vertical n̄-plane in R2n̄.
e note that ��z;xs� can be considered as a surface parameterized by

s, whereas the z-variable indicates the evolution of ��0;xs� under
he ray tracing equations 18. Consequently, the summation formula
equation 28� states that at depth z the integration is carried out with
espect to the parameter �s over the n̄-surface ��z;xs�.

To carry out the above summation process, we need to choose a
umerical quadrature formula, solve the ray tracing equations and
he dynamical ray tracing system with takeoff directions at the
uadrature sampling points, construct a Gaussian beam along each
ay, and sum up the Gaussian beams to obtain the wavefield at each
bservation point. Because the above process is based on the La-
rangian ray tracing, it inherits some shortcomings from the ap-
roach, such as shadow zones and a nonuniform distribution of rays.
herefore, we look for an Eulerian approach to Gaussian beam
uperposition.
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EULERIAN GAUSSIAN BEAM METHOD

araxial Liouville equations

We summarize the level set based Eulerian method for computing
ultivalued traveltimes; see Qian and Leung �2004, 2006� and Le-

ng et al. �2004� for details.
Let the vector fields u and w be defined from the ray tracing equa-

ions 18 as

u�z,x,�� = �, w =
�2

v
�vz� − vX� . �30�

hen the total derivative of any scalar or matrix function ��z,x,�� of
,x,� along any x	-ray trajectory is given by

D�

Dz
= �z + uT�x + wT��. �31�

Let us assume that this rate of change is zero:

D�

Dz
= �z + uT�x + wT�� = 0. �32�

hen the value of � at any point �z,x,�� is the same as its value at the
nitial point �0,xs,�s� on the x	-ray through �z,x,��. We may set
�0,x,�� = f�x,�� to be any function of �x,��. Then ��z,x,��
f�xs,�s�, where �0,xs,�s� is the initial point on the unique x	-ray

hrough �z,x,��. In particular, we shall later take f�x,�� = x and
�x,�� = �.

On the other hand, suppose that the total z derivative along a tra-
ectory is not zero, but for instance �/v�z,x� and the initial value is 0,
hen the solution T�z,x,�� of

DT
Dz

= Tz + uTTx + wTT� =
�

v�z,x�
�33�

s equal to the traveltime ��z,x,�� to �z,x,�� from the initial point �a
ource point� on the ray through �z,x,�� because its initial value 0
nd total derivative along the ray are the same as for �.

We may find the initial point on the ray by solving

DX�0�

Dz
= Xz

�0� + uTXx
�0� + wTX�

�0� = 0 , �34�

or X�0� with initial value

X�0��0,x,�� = x . �35�

We may also find the direction parameter �s on the ray by solving

DN�0�

Dz
= Nz

�0� + uTNx
�0� + wTN�

�0� = 0 , �36�

or N�0� with initial value

N�0��0,x,�� = �. �37�

Given z�0, x and xs, and having T�z,x,�� and X�0��z,x,��, we
ay find the values �* of � for which X�0��z,x,�*� = xs, and there
ay be several. For each of these �*, we have the traveltime
�z,x,�*� from point �0,xs� to point �z,x� with z�0. We have solved

or multiple sources simultaneously and also dealt with the possibili-
y of multiple arrivals at �z,x� from �0,x �. There will, of course, be
s
omputational restrictions relating to whether or not rays remain in
he computational domain for all intermediate values of z.

Similarly, we may use equations of the form given by equation 33
o solve the dynamic ray tracing equations. Thus, we have the fol-
owing equations for B�z,x,�� and C�z,x,��,

Bz + uTBx + wTB� = − HxpB − HxxC ,

B�0,x,�� = i
�Q� +
1

�
Q�� ,

Cz + uTCx + wTC� = HppB + HxpC ,

C�0,x,�� = �Q� + �Q�� , �38�

here 
�0, and

Hpp = v��Q� + �Q��, Hxp =
�2vx�T

v
,

Hxx =
��vvxx − 3vxvx

T� + �3vxvx
T

v3 . �39�

Let us now express equation 28 in terms of the quantities consid-
red in this section; namely,

U�z,x0;xs� =
i

4

� �

2
vs
�n−2

��
��z,xs�

	 ��z,x,��v�z,x�
v�0,xs�det
C�z,x,���

�
dN1

�0� . . . dNn̄
�0�

���0��n exp�i��T�z;x,��

+
1

v�
�T�x0 − x� +

1

2
�x0 − x�T

�B�z,x,��C−1�z,x,���x0 − x��� , �40�

here

� = 	1 + �2 and ��0� = 	1 + �N�0��2, �41�

nd the domain ��z,xs� of integration is the n̄-dimensional surface
orresponding to � of equation 29, or

��z,xs� = 
�x,��:X�0��z,x,�� = xs� . �42�

At this point, we leave the calculation for general dimension n and
pecialize to n = 2. Then ñ = 1 and Q�, B and C reduce to scalars
hereas Q� does not exist.

SPECIALIZATION TO 2D

In two dimensions x, X become single horizontal components x, X

t0 ⇒ cos � = 1/� ,

t ⇒ t1 = sin � ,

� ⇒ 	 =
t1

t
= tan � . �43�
0
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he ray equations 18 and their initial conditions equations 19 be-
ome

Ẋ = tan �, Ṅ =
�2

v
�vzN − vX�, Ṫ =

1

v cos �
, �44�

�0;xs,�s� = xs, N�0;xs,	s� = 	s, T�0;xs,	s� = 0. �45�

ecause N = tan � and �2 = sec2 �, we can easily eliminate N in fa-
or of �; writing

Ẋ = tan �, �̇ =
1

v
�vz tan � − vX�, Ṫ =

1

v cos �
, �46�

�0;xs,�s� = xs, ��0;xs,�s� = �s, T�0;xs,�s� = 0, �47�

e may define

u = tan �, w =
1

v
�vz tan � − vX� . �48�

hen equations 34–37 lead to

DX�0�

Dz
� Xz

�0� + uTXx
�0� + wTX�

�0� = 0, X�0��0,x,�� = x ,

�49�

D��0�

Dz
� �z

�0� + uT�x
�0� + wT��

�0� = 0, ��0��0,x,�� = � ,

�50�

nd equation 33 leads to

DT �0�

Dz
� T z

�0� + uTT x
�0� + wTT �

�0� =
�

v�z,x�
,

T �0��0,x,�� = 0. �51�

Before writing the dynamic ray tracing equations, note that when
= 2 Q� disappears and Q� = 1. Thus equations 39 become

Hpp =
v

cos3 �
, Hxp =

vx tan �

v cos2 �
, Hxx

=
cos2 ��vvxx − 3vxvx

T� + vxvx
T

v3 cos3 �
. �52�

Equations 38 become

Bz + uBx + wB� = − HxpB − HxxC ,

B�0,x,�� = i
 cos � ,

Cz + uCx + wC� = HppB + HxpC ,

C�0,x,�� =
1

cos �
, �53�
ith u, w, Hxp, Hxx, Hpp given in equations 50 and 52. Equation 40
ow becomes

U�z,x0;xs� =
i

4

�

�x,�����z,xs�
	 v�z,x�

v�0,xs�C�z,x,��cos �
d��0�

� exp�i��T�z;x,�� +
sin �

v
�x0 − x�

+
1

2
B�z,x,��C−1�z,x,���x0 − x�2�� , �54�

here the domain of integration is the curve ��z,xs� in the 2D
�-space:

��z,xs� = 
�x,��:X�0��z,x,�� = xs� . �55�

Because we may compute ��0��z,x,�� from equations 50, we may
egard equation 54 as a Stieltjes integral. To compute it numerically,
e would assume that discrete points �xl,�l�, l = 1, . . . ,L are known
n ��z,xs� and that they are sorted by increasing �l

�0� = ��0��z,xl,�l�.
hen the integral may be approximated by

U�z,x0;xs� =
i

8
	v�0,xs�

����2
�0� − �1

�0��	 v�z,x1�
C
�z,x1,�1�cos �1�

� exp�i��T�z;x1,�1� +
sin �1

v
�x0 − x1�

+
1

2
B�z,x1,�1�C−1�z,x1,�1��x0 − x1�2��

+ �
l = 2

L−1

��l+1
�0� − �l−1

�0� �	 v�z,xl�
C
�z,xl,�l�cos �l�

� exp�i��T�z;xl,�l� +
sin �l

v
�x0 − xl�

+
1

2
B�z,xl,�l�C−1�z,xl,�l��x0 − xl�2��

+ ��L
�0� − �L−1

�0� �	 v�z,xL�
C
�z,xL,�L�cos �L�

� exp�i��T�z;xL,�L� +
sin �L

v
�x0 − xL�

+
1

2
B�z,xL,�L�C−1�z,xL,�L��x0 − xL�2���

�56�

r some more sophisticated integration scheme. As we shall see, for
given x0 only a few terms in the sum will contribute owing to the

mallness of the integrand when x differs significantly from x0, i.e.,
he smallness of the field of a Gaussian beam away from its axis. On
he other hand, for lower frequencies, the width of the beams will
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imit how near x0 may be taken to the boundary of the computational
omain.

Even though the Lagrangian formulation 28 and the Eulerian for-
ulation 40 look quite different, they are theoretically equivalent to

ach other, because we are integrating over the same curve as repre-
ented by ��z;xs� and ��z;xs�. They are parameterized by the same
D parameter, the takeoff direction.

In terms of numerical implementation, in the Lagrangian formula-
ion ��0;xs� is uniformly sampled because of the uniform sampling
f the takeoff angle, whereas ��z;xs� is not uniformly sampled,
ielding nonuniform sampling of traveltimes, as shown in Figure 1.
n the Eulerian formulation ��z;xs� is uniformly sampled, yielding
niform sampling of traveltimes, as illustrated in Figure 2, implying
hat the resulting sampling of takeoff directions must be nonuni-
ormly distributed in the interval �− �max,�max�.

The advantages of the previous Eulerian formulation are multi-
old. The first advantage is that we have uniform resolution of ray
istribution; therefore, the Gaussian beam summation will have uni-
orm resolution as well. The second advantage is that we can obtain
avefields excited at different sources by varying only xs in the sum-
ation formula 40 because all the necessary ingredients are comput-

d already in the previous Eulerian formulation. The third advantage
s that we can obtain wavefields excited at different frequencies as
ell by varying only � in the summation formula 40.

NUMERICAL PROCEDURES

iscretization

We give the beam summation algorithm for constructing wave-
elds.
Wavefield construction using Eulerian Gaussian Beams:

. Discretize the computational domain using

xi = xmin + �i − 1��x, �x =
xmax − xmin

I − 1
,

i = 1,2, ¯ ,I

� j = �min + �j − 1���, �� =
�max − �min

J − 1
,

j = 1,2, ¯ ,J

zk = zs + �k − 1��z, �z =
zf − zs

K − 1
,

k = 1,2, ¯ ,K , �57�
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igure 1. Sinusoidal Model, v�z,x� = 1 + 0.2 sin�0.5
z�sin�3
�x
0.55��. The curve ��z,xs� = ��2,0� by tracing 800 rays with take-

ff angles uniformly sampled from –4
/5 to 4
/5. �a�Arrival angles
nd arrival locations are not uniformly sampled; �b� the resulting
raveltimes are not uniformly sampled either.
and initialize all functions at k = 1, where

�i,j,k = xi

Ti,j,k = 0

Bi,j,k = i
 cos � j

Ci,j,k =
1

cos � j

�i,j,k = � j . �58�

. Solve the Liouville equations according to equations 49–51
and 53. For each i = 1,¯ ,I, j = 1,¯ ,J and k = 2,¯ ,K, de-
termine

��xi,� j,zk�, T�xi,� j,zk�, B�xi,� j,zk� ,

C�xi,� j,zk�, ��xi,� j,zk� . �59�

. For each level z = zk, k = 2,¯ ,K, and for each physical loca-
tion x = xi, determine all �m

* such that ��xi,�m
* ,zk� = xs with m

= 1,¯ ,m�i�. Compute the weight ���xi,�m
* ,k� for m

= 1,¯ ,m�i�.
. Integrate along the level set � = xs to sum up all individual

Gaussian Beams to construct the wavefield.

In the above algorithm, Steps 1 and 2 can be interpreted as prepro-
essing steps, which are the most time consuming. Step 3 and 4 are
ostprocessing steps to construct the wavefield emanating from a
articular point source. When we want to compute the wavefield
ith the same velocity model from a different point source, we only
eed to repeat the postprocessing step by changing the value of xs in
he algorithm.
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Multiple TT: Level−set method 
versus ray−tracing method

T
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igure 2. Sinusoidal Model. The evolution of level sets for the
ource location xs = 0. �a� z = 0; �b� z = 2.0: arrival angles and arriv-
l locations are uniformly sampled in the x − � space, implying that
he corresponding takeoff angles are not uniformly sampled. �c� The
raveltimes are uniformly sampled as indicated by the solid line, us-
ng the level set method �Qian and Leung, 2004 and 2006�. The cir-
les are the computed solution when using the ray tracing method.
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emi-Lagrangian methods

We solve Liouville equations 49 and 51 by a semi-Lagrangian
ethod �Leung et al., 2004�, which can be generalized to the 3D case

asily; see Figure 3. Compared to finite-difference methods, semi-
agrangian methods are preferred because of their ability to deal
ith high dimensional Liouville equations in terms of computation-

l memory and complexity �Leung et al., 2004�. We apply the meth-
d of characteristics to the equations for the level set function, the
akeoff angle, and the traveltime function, which yields

D�

Dz
= 0,

D�

Dz
= 0,

DT

Dz
=

1

v cos �
, �60�

here D/Dz is the material derivative defined by

D

Dz
=

�

�z
+ u

�

�x
+ w

�

��
. �61�

At each grid point �xi,� j,zk� for i = 1,¯ ,I, j = 1,¯ ,J and k
2,¯ ,K in phase space, one traces backward from z = zk to z = zs

z1 along the characteristic by integrating dx/dz = u and d�/dz
w to obtain �x�zs�,��zs��. For the level set equation and the takeoff

ngle equation, one assigns ��xi,� j,zk� = ��x�zs�,��zs�,zs� = x�zs�
nd ��xi,� j,zk� = ��x�zs�,��zs�,zs� = ��zs�. For the traveltime equa-
ion, we use the reciprocal principle and integrate the source term
v cos ��z��−1 along the characteristics to obtain T�xi,� j,zk�.

As for B and C, applying the method of characteristics, we have

DB

Dz
= − HxpB − HxxC

DC

Dz
= HppB + HxpC , �62�

ith the initial conditions imposed on the level z = zs. In this case,
e do not have the reciprocal principle as for the traveltime equation

nymore; we need to use the forward ray tracing to solve these quan-
ities along the same characteristic provided by the backward ray

a) b)

x = xs xmax

maxθ
minθ

θ

θ

xmin

x

z

zs x = xs xmax

maxθ
minθ

θ

θ

xmin

x

z

zs

* z*

igure 3. Lagrangian versus Semi-Lagrangian Method. �a� Lagrang-
an methods trace rays to an observation point starting from the
ource; �b� Semi-Lagrangian methods trace rays, starting from an
bservation point, back to the source.

a) b)
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s∆θ

θ θ

igure 4. �a� Lagrangian versus �b� Eulerian Gaussian beam summa-
ion.
racing. This means that one first computes the ray trajectory by inte-
rating dx/dz = u and d�/dz = w backward in z, and then integrates
quation 62 forward in z along the same characteristic.

Numerically, we adopt the second-order Stormer/Verlet scheme
Hairer et al., 2002�, which preserves the symplectic structure of the
amiltonian; certainly, one may use higher order schemes at the cost
f more sophisticated implementation �Hairer et al., 2002�.

avefield construction for multiple point sources

Consider a given source location �xs,zs�. On each level zk, for all xi,
e determine all �* such that ��xi,�*,zk� = xs. Each of these points

xi,�*� corresponds to one central ray which passes through the point
zk,xi� in the physical space at the arrival angle �*; correspondingly,
e can determine the traveltime T, the takeoff angle �, B, and C for

his ray by interpolating the available T, �, B, and C at �zk,xi,�*�. This
nformation defines one particular Gaussian beam centered at �zk,xi�.
ext, at given zk we collect all arrival rays and sort them in the as-

ending order of the take-off angle. The contribution from all Gauss-
an beams to a physical location �zk,xi� can then be computed by inte-
rating equation 54 �see Figure 4�.

omputing the weight for each
ndividual Gaussian beam

� For a given z = zk and for all i = 1,¯ ,I

a� Given ��xi,� j,zk� for all j = 1,¯ ,J, determine all �m
*

such that ��xi,�m
* ,zk� = xs for m = 1,¯ ,m�i�.

b� Interpolate and obtain ��xi,�m
* ,zk� for m = 1,¯ ,m�i�.

� For all i = 1,¯ ,I and m = 1,¯ ,m�i�

a� Among all points �xi±1,�n1

* ,zk� and �xi,�n2

* ,zk� for n1

= 1,¯ ,m�i ± 1� and n2 = 1,¯ ,m�i� and n2�m, deter-
mine two points which have values � closest to
��xi,�m

* ,zk�.
b� Set ���xi,�m

* ,zk� equal to the mean of these two
differences.

quation 54 has two different interpretations, which yield two dif-
erent algorithms for summing up all Gaussian Beams.

� For each observation point �xi,zk�, one first searches in a neigh-
borhood centered at this observation point for all Gaussian
beams and sums the contribution from each of these beams ac-
cording to their corresponding weights using equation 54, as
shown in Figure 5a;

� For each point �xi,zk�, one first determines all Gaussian beams
which pass through it. For each of these beams, one computes
its contribution to the neighboring observation points, as shown
in Figure 5b.

Numerically, the second interpretation yields a more efficient
ummation algorithm than the first interpretation. Therefore, we
nly give the algorithm based on the second interpretation.

avefield construction algorithm

� Initialize Re�U�i,k = Im�U�i,k = 0
� For i = 1,¯ ,I
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� For k = 1,¯ ,K

a� Given ��xi,� j,zk� for all j = 1,¯ ,J, determine all �*

such that ��xi,�*,zk� = xs.
b� For each �* and for i� = 1,¯ ,I

i. Compute

Re�U�i�,k = Re�U�i�,k

+
1

4

���xi,�

*,zk�

��A�xi,�
*,zk��exp�−

�

2

�Im�B�xi,�
*,zk�

C�xi,�
*,zk�

��xi� − xi�2�
�cos���T�xi,�

*,zk�

+
sin �*

v�xi,zk�
�xi� − xi�

+
1

2
Re�B�xi,�

*,zk�
C�xi,�

*,zk�
��xi� − xi�2�

+



2
−

1

2
Arg�C�xi,�

*,zk���
Im�U�i�,k = Im�U�i�,k +

1

4

���xi,�

*,zk�

��A�xi,�
*,zk��exp�−

�

2

�Im�B�xi,�
*,zk�

C�xi,�
*,zk�

��xi� − xi�2�
�sin���T�xi,�

*,zk�

+
sin �*

v�xi,zk�
�xi� − xi�

+
1

2
Re�B�xi,�

*,zk�
C�xi,�

*,zk�
��xi� − xi�2�

+



2
−

1

2
Arg�C�xi,�

*,zk���
c� End for

� End for
� End for

In the algorithm, i� = 1,¯ ,I in Step 3b can be replaced by a local
eighborhood i� = i − 
i,¯ ,i + 
i whenever 
i is chosen to be large
nough.
NUMERICAL EXPERIMENTS

In the following numerical examples, we use 257 = 28 + 1 grid
oints in each x-, �-, and z-direction. The computational domain is
x,�,z�� �− 1,1�� �− �max,�max�� �0,2�. We take �max = 9
/20
or the constant velocity model and �max = 8
/20 for the wave-
uide model. A grayscale plot of the waveguide model is shown in
igure 6.
We choose the initial beam width to be Im�B�0�� = 
 cos �s

cos �s, and we are not going to optimize the beam width in the
ummation process. Although narrow beams combined with an ap-
ropriate window function will yield a more efficient summation al-
orithm, generally it is not an easy task to specify an a priori beam
idth which will be narrow throughout the computation.
Because our Gaussian beam formulation is based on global Carte-

ian coordinates, and the asymptotic solution does not depend on the
nitial beam width, in this work we make the above choice of the ini-
ial beam width and sum up all possible contributions from each
eam at each observation point. On the other hand, our examples
emonstrate that one may not be able to get accurate solutions if one
hooses a summation window to be too narrow at the source because
he narrow beam will become wider along the ray in general.

) b)

xi –1 xi +1

x

xi

(x,  , z*) = xsφθ θ

xi –1 xi +1

x

xi

(x,  , z*) = xsφθ θ

igure 5. Eulerian Gaussian beam summation. Each circle on the
evel set � = xs denotes a particular central ray passing through a
hysical location �xi,zk�, which represents one particular Gaussian
eam. Dashed lines denote the directions of the contribution. �a�
ach observation point receives contributions from all the possible
eams in its neighborhood; �b� each point �xi,zk� owns several
eams, and every neighboring observation point receives contribu-
ion from each of these beams.
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igure 6. The grayscale plots of the velocity field of the waveguide
odel.
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onstant model

We take v�z,x��1. The asymptotic ray theory �ART� solution of
he wavefield is the asymptotic expansion of the Hankel function,
hich is the exact solution of the Helmholtz equation with a point

ource �see Appendix B�. We will use this exact solution to calibrate
he numerical solution based on Eulerian Gaussian beams.

Next, we construct the time harmonic wave fields with different
requencies by using Eulerian Gaussian beams. Figures 7–10 show
he results when no window function is used in the summation pro-
ess, meaning that in the wavefield construction algorithm we set the
ocal neighborhood to be infinity.

In the low frequency regime, for example, when � = 2
, the
avefield shown in Figure 7 and the phase shown in Figures 9 and 10
o not agree very well with the exact solution, which is expected be-
ause we are approximating the wave equation in the high frequency
egime. In the high frequency regime, as we can see from Figure 7,
ur Gaussian beam solution matches theART solution very well. Be-
ause the asymptotes of the Hankel function for �→� and 	x2 + z2

� coincide, Figure 7 also illustrates that for fixed �, the Gaussian
eam solution becomes more accurate as 	x2 + z2→�.

On the other hand, finite-difference modeling for directly solving
elmholtz equations usually requires 10 to 12 mesh points per
avelength to resolve wave propagation well, and the optimal num-
er of mesh points per wavelength is 3 to 5. When � = 64
, the
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igure 9. Constant Model, source at xs = zs = 0 km. Cross section of
he phase along x = 0 km with �a� � = 2
, �b� � = 4
, �c� � = 8
,
d� � = 16
, �e� � = 32
, and �f� � = 64
. The solid lines are the
symptotic ray theory solution; the circles are the computed solution
sing the proposed Gaussian beam approach.
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igure 7. Constant Model, source at xs = zs = 0 km. Cross sections
f Re�U� along x = 0 km for �a� � = 2
, �b� � = 4
, �c� � = 8
,
d� � = 16
, �e� � = 32
, and �f� � = 64
. The solid lines are the
symptotic ray theory solution; the dashed curves are the computed
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avelength � = 2
/� = 1 � 32; thus, the number of waves from z
0 to z = 2 is roughly 64. Because we have 256 mesh points along

he z direction, there are roughly 4 mesh points per wavelength,
hich is almost optimal �see Figure 7f�.
Figure 11 shows that the Gaussian beam solution might not be ac-

urate if one chooses the summation window of the beam that is too
arrow; here, the half width of the window is 3�x.

aveguide model

The velocity function is

v�z,x� = 3 − 2.5 exp�− 0.5x2� . �63�

Ray tracing indicates that with appropriate source locations this
odel yields cusp-type caustics; traditional ray theory predicts infi-

ite amplitude at caustics, whereas Gaussian beam theory predicts
nite amplitude there. Therefore, we use this model to test the validi-

y of Gaussian beam theory.
Figures 12 and 13 show the time harmonic wavefields excited at

ifferent sources with respect to different frequencies. As we can
ee, the wavefields become more concentrated as the frequency in-
reases. At the same time, at caustics the wavefield stays finite, as it
hould. Figure 14 indicates that inside the cusp the wavefield be-
omes stronger.

Φ

) b)

–1 –0.5 0 0.5 1 –1 –0.5 0 0.5 1

–1 –0.5 0 0.5 1 –1 –0.5 0 0.5 1

–1 –0.5 0 0.5 1 –1 –0.5 0 0.5 1

 x (km)

 3

 2

 1

 0

 –1

 –2

 –3

Φ

 x (km)

 3

 2

 1

 0

 –1

 –2

 –3

Φ

) d)

 x (km)

 3

 2

 1

 0

 –1

 –2

 –3

Φ

 x (km)

 3

 2

 1

 0

 –1

 –2

 –3

Φ

) f)

 x (km)

 3

 2

 1

 0

 –1

 –2

 –3

Φ

 x (km)

 3

 2

 1

 0

 –1

 –2

 –3

igure 10. Constant Model, source at xs = zs = 0 km. Cross section
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, �c� �
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, �d� � = 16
, �e� � = 32
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re the asymptotic ray theory solution; the circles are the computed
olution using the proposed Gaussian beam approach.
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ne can compare with Figure 7 to conclude that the accuracy in the

olution depends on the summation window width of the Gaussian
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CONCLUSIONS

The traditional Gaussian beam summation method is based on La-
rangian ray tracing and local ray-centered coordinates. We propose
new Eulerian formulation of Gaussian beam theory which adopts
lobal Cartesian coordinates, level sets, and Liouville equations,
ielding uniformly distributed Eulerian traveltimes and amplitudes
n phase space simultaneously for multiple sources. The time har-

onic wavefield can be constructed by summing up Gaussian beams
ith ingredients provided by the new Eulerian formulation. Numeri-

al experiments indicate that the Gaussian beam summation method
ields accurate asymptotic wavefields even at caustics.

The conventional Gaussian beam summation method can be de-
ived from the proposed method. The new method offers three ad-
antages: uniform resolution of ray distribution, so that the Gaussian
eam summation will have uniform resolution as well; the ability to
btain wavefields excited at different sources by varying only source
ocations in the summation formula; and the ability to obtain wave-
elds excited at different frequencies by varying only frequencies in

he summation formula.
In future work, we will systematically compare our new method

o the traditional Gaussian beam summation method and develop
aussian beam migration methods based on this new formulation.
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igure 13. Waveguide Model, source at xs = 0.5 km and zs = 0 km.
he real part of the wavefield using �a� � = 4
, �b� � = 8
, �c� �
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, and �d� � = 32
.
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. The real part of the wavefield
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ource at xs = 0.5 km and zs = 0 km.
LIST OF SYMBOLS

n � the dimension of the full
space of x̃

n̄ = n − 1 � the dimension of the
horizontal coordinates x

x̃ = �z,x1, . . . ,xn̄� = �z,x� � full position vector
z � special �depth� coordinate

r = 	z2 + x2 � radial coordinate

�0 � parameter related to beam

width
a = 1 + i
v0r � recurring combination

introduced for brevity
x = �x1, . . . ,xn̄� � other �horizontal� coordinates

X�z,xs,�s� � value of x along the x	-ray
through �0,xs,�s�

X�0��z,x,�� � initial value of x at z = 0 for
the x	-ray through �z,x,��

p = �p1, . . . ,pn̄� = �� � horizontal slowness
P�z,xs,�s� � value of p along the x	-ray

through �0,xs,�s�
p̃ = �p0,p1, . . . ,pn̄� = �p0,p� = �̃� � full slowness vector
t̃ = �t0,t1, . . . ,tn̄� = p̃/�p̃� = vp � unit tangent to the ray, also

ray direction
t = �t1, . . . ,tn̄� � horizontal components of t̃

t0 = cos � = 	1 − t1
2 − . . .− tn̄

2 = 	1 − t2 � � is angle between slowness
and z-direction

� = t/t0 = p/p0 � horizontal direction
parameters

N�z,xs,�s� � value of � along the x	-ray
through �0,xs,�s�

N�0��z,x,�� � initial value for z = 0 of � for
the x	-ray through �z,x,��

� = ��1, . . . ,�n̄� � right cross-sectional
parameters of a beam

�̃ = �1,�� = �	0,	1, . . . ,	n̄� � full direction parameter vector
� = 	1 + �2 = 1/cos � � reciprocal direction cosine

� = ��x1
, . . . ,�xn̄

� � horizontal gradient
�̃ = ��x0

,�x1
, . . . ,�xn̄

� � full gradient
� � travel time

T�z,xs,�s� � value of � along the x	-ray
through �0,xs,�s�

T�z,x,�� � value of � for the x	-ray
through �z,x,��

� � frequency
i�� � phase

C�z,xs,�s� = �x/�� � variation of ray position
along the x	-ray through
�0,xs,�s�

C�z,x,�� = �x/�� � variation of ray position
along the x	-ray through
�z,x,��

B�z,xs,�s� = �p/�� � variation of ray slowness
along the x	-ray through
�0,xs,�s�

B�z,x,�� = �p/�� � variation of ray slowness
along the x	-ray through
�z,x,��

M = BC−1 = �p/�x = � xx � second horizontal derivatives
of traveltime



t
F

T

z

p
t
s
l

i
i
o
t

v
�

b
t
i
M
=
o
g

H

T
e

c
t

T

=
t

I

w
p

T
l
b
h

w

t

w
t

B

Eulerian Gaussian beams SM73
Q� = ��T

�2 , � projection onto the vector �
in Rn̄

Q� = I − Q� � projection onto the plane
orthogonal to � in Rn̄
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APPENDIX A

THE SECOND DERIVATIVE OF
TRAVELTIME AND AMPLITUDE

he second derivative of traveltime

Lemma Under the above assumptions, det
C�z;xs,ts���0 for any
, and Im�BC−1� is real, symmetric, positive definite for all z.

Proof We use the same technique as in Tanushev et al. �2007� to
rove this lemma. Let �B1�z�,C1�z�� and �B2�z�,C2�z�� be two solu-
ions of the DRT system with different initial conditions along the
ame ray trajectory defined by the ray tracing system. Then the fol-
owing Wronskian function

W�z� = C1�z�TB2�z� − B1�z�TC2�z� �A-1�

s constant along the ray; this is established by differentiating W�z�
n z. In what follows, we use the superscript�T� to denote the transpose
f a matrix, an overbar �—� to denote the complex conjugate, and �†�

o denote the conjugate transpose.
Now suppose that C�z�v = 0 for some z and some nonzero vector

. Then applying the Wronskian identity to the two solutions,
B�z�,C�z�� and �B�z�,C�z��, we have

0 = v†�C�z�†B�z� − B�z�†C�z��v = v†�C�0�†B�0�

− B�0�†C�0��v = 2i
v†Nsv � 0, �A-2�

ecause 
 is positive and Ns = I + ��T is real, symmetric, and posi-
ive definite. Thus, we have a contradiction. Therefore, C�z� is nons-
ngular, and we may form M�z� = B�z�C�z�−1. Now let us verify that

�z� = B�z�C�z�−1 is symmetric. But C�0� = Q� + �Q� and B�0�
i
�Q� + �1/��Q�� are both symmetric and commute with each

ther, so by applying the Wronskian identity to �B,C� and itself, we
et

0 = C�0�TB�0� − B�0�TC�0� = C�z�TB�z� − B�z�TC�z�

= C�z�T�M�z� − M�z�T�C�z� . �A-3�

ence, because C�z� is nonsingular, M�z� is �complex� symmetric.
Next notice that C�0�†B�0� = i
I, so that

2i
C�z�−†IC�z�−1 = C�z�−†�C�0�†B�0� − B�0�†C�0��C�z�−1,

=C�z�−†�C�z�†B�z� − B�z�†C�z��C�z�−1,

=�M�z� − M�z�†� = 2i Im
M�z�� . �A-4�

herefore, comparing the first and last members of this string of
qualities, we see that Im
M�z�� = Im
BC−1� is positive definite be-
ause 
C�z�−†NsC�z�−1 is, the eigenvalues of the real symmetric ma-
rix Im
M�0�� being 1 and 1/�1 + �2�.

ransport of amplitude

We have the following transport equation for amplitude A
A�z,x;xs,�s�, which represents energy flux conservation along

ubes of rays:

�̃ · �A2�̃� � = 0. �A-5�

t can be rewritten as

�

�z
�log A�� z +

�

�x1
�log A�� x1

+ . . . +
�

�xn̄
�log A�� n̄

+
1

2
�� zz + � x1x1

+ . . . + � xn̄xn̄
� = 0, �A-6�

hich also is almost immediate from equation A-10. Thus, along a
araxial ray, i.e., one for which � z �0, we have

�

�z
�log A� + �T � log A +

1

2� z
�� zz + �2� � = 0,

d

dz
�log A� +

1

2� z
�� zz + �2� � = 0. �A-7�

o obtain the expression for � zz + �2� along a ray, we integrate the
eft side of equation A-7 over the volume contained by the ray tube
etween z� = 0 and z� = z. Applying the divergence theorem, we
ave

�
0

z

�
S�z��

�� zz + �2� �dSdz� = �
S�z��

�̃� · �ndS�0
z

= �
S�z��

�� zdS�0
z

= �
S�z��

cos �

v
�dS�0

z , �A-8�

here � is the angle between the ray and the z-axis.
Thus, letting S be an infinitesimal element of area cut out by the

ube of rays on the plane z = constant, we have

�
S�z��

�� zz + �2� �dS =
d

dz
�

S�z��

cos �

v
�dS�0

z ,

� zz + �2� =
1

S

d

dz
�St0

v
� , �A-9�

here t0 = cos �. Substituting equation A-9 into the transport equa-
ion A-7, along a ray we have

d

dz
�log A2� +

v
St0

d

dz
�St0

v
� = 0,

A2St0

v
= Constant �A-10�

ut det
C� = S, and so we have
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�z;xs,ts� = 	v�z,X�z;xs,ts��ts,0 det
C�0;xs,ts��
v�0,xs�t0�z;xs,ts�det
C�z;xs,ts��

, �A-11�

hich is nonzero everywhere. Here, we have normalized A�0� to 1.
ecall that ts,0 det
C�0;xs,ts�� is the differential area of a right cross

ection of the tube of rays at the source. We shall assume it is inde-
endent of xs and of �s.

APPENDIX B

THE FACTOR �0

We have the ray tracing system for the constant velocity case, i.e.,
�z,x� = v0,

dX

dz
�z� = Ẋ�z� = Hp =

p

	 1

v0
2 − p2

=
t

t0
= �, �X�z = 0 = xs;

dp

dz
�z� = ṗ�z� =

ṫ�z�
v0

= 0; �B-1�

dT

dz
�z� = Ṫ�z� =

1

vt0
=

�

v
, �T�z = 0 = � 0�xs�; �B-2�

The dynamic ray tracing system is given by

dB

dz
= 0 ,

dC

dz
= v0���Q� + �2Q���B , �B-3�

ith the initial conditions

�B�z = 0 = i
�Q� +
1

�
Q�� �C�z = 0 = Q� + �Q� . �B-4�

olving these two systems, we have

x�z� = xs + z�, t = ts, � �z� =
z�

v0
=

r

v0

B�z� = i
�Q� +
1

�
Q�� , C�z� = a�Q� + �Q�� , �B-5�

here we have written

r = z�, and a = 1 + i
v0r . �B-6�

e note that

B�z�C�z�−1 =
i


a
�Q� +

1

�2Q�� . �B-7�

or x near the point xs + z� on the central ray parameterized by xs, ts,
e have

T�z,x;xs,ts� =
z�

v0
+

1

v0�
�T�x − xs − z�� +

i


2a
�x − xs

− z��T�Q� +
1

�2Q���x − xs − z�� . �B-8�

rom equation 25 the wavefield resulting from the beam through
x ,t � is
s s
�z,x;xs,ts� =
�0

	t0�z�det
C�z��
exp�i�T�z,x;xs,ts�� , �B-9�

here the velocities have canceled because v = v0 = constant and

	t0 det
C� = an̄/2. �B-10�

Integrating all the beams for t̃ = �t0,t� on the hemisphere t0 �0
sing 	1, . . . ,	n̄ as variables of integration, we have

��z,x;xs� = �
−�

�

. . . �
−�

�

��z,x;xs,��
d	1 . . . d	n̄

�n . �B-11�

ere,

d	1 . . . d	n̄

�n �B-12�

s the differential element of solid angle. The integrand is seen from
quation B-9 to have the form

��z,x;xs,�� � g�z,x;xs,��exp�i�T�z,x;xs,��� , �B-13�

here

g�z,x;xs,�� =
�0

an̄/2�n . �B-14�

To apply the multidimensional saddle point method, we need the
ollowing quantities evaluated at the stationary point � = x/z:

g0 = �g�z,x;xs,����=�x−xs�/z
=

�0

an̄/2�n ,

T0 = �T�z,x;xs,����=�x−xs�/z
=

r

v0
,

T0,� = �T��z,x;xs,����=�x−xs�/z
= 0 ,

T0,�� = �T���z,x;xs,����=�x−xs�/z
= −

r

v0a�2Q�

−
r

v0�4a
Q� ,

so that det
T0,��� = � − r

v0a
�n̄ 1

�2n , �B-15�

s we see from equation B-8 on differentiating with respect to
1, . . . ,	n̄ holding z,x,xs fixed. Thus, the stationary point is � = �x
xs�/z, and by the stationary phase method, we have asymptotically

or large �

��x,z� � �2


�
�n̄/2 g0

	det
T0,���
exp�i�T0�exp�−

in̄


4
�

= �0�2
v0

�r
�n−1/2

exp�i��r

v0
−

�n − 1�

4

�� .

�B-16�

We require that ��x,z� match with the large argument asymptot-
cs of the Green’s function �seeAppendix C�
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Hence, we get

�0 =
i

4

� �

2
v0
�n − 2

. �B-18�

hus, we have

�0 = �
i

4

for n = 2,

i�

8
2v0
for n = 3 � . �B-19�

hus, from equations 25 and B-18 we have �:

��z,x;xs,�s�

�
i

4

� �

2
v�0,xs�
�n − 2	 v�z,x�

v�0,xs�t0�z�det
C�z��

�exp�i�T�z,x;xs,ts�� . �B-20�

APPENDIX C

THE CONSTANT �0 AND THE CONSTANT
VELOCITY GREEN’S FUNCTION

It is easily confirmed that

Gn�r� =
i

4
� �

2
v0r
�n/2 − 1

Hn/2−1
�1� ��r

v0
� �C-1�

atisfies the Helmholtz equation,

�̃2Gn +
�2

v0
2 Gn = 0, �C-2�

xcept possibly at the origin. We shall verify that

�̃2Gn +
�2

v0
2 Gn = − 	�x̃� , �C-3�

here 	̃�x̃� is the n-dimensional Dirac delta function

	̃�x̃� = ��z���x1� . . . ��xn̄� . �C-4�

We first consider the integral of �̃2Gn + �2/v0
2Gn over the interior

r of a small sphere Sr of radius r and centered at the origin. By ap-
lying the divergence theorem to the first term, we obtain

�
Vr

�̃2Gn +
�2

v0
2 GndV = �

Sr

dGn

dr
dA + �

Vr

�2

v0
2 GndV , �C-5�

here Vr, Sr, dV, and dA are respectively the n-dimensional volume
nterior to the sphere S , its n̄-dimensional surface, the differential
r
olume element in Vr, and the differential area element on Sr. We
hall let r tend to zero, but first we need to study the asymptotic form
f GN�r� as r→0. We find from Abramowitz and Stegun �1965�, for-
ulas 9.1.8 and 9.1.9, that

H0
�1���r

v0
� �

2i



log�r� ,

Hn/2 − 1
�1� ��r

v0
� � −

i



��n

2
− 1��2v0

�r
�n/2 − 1

�C-6�

hus,

G2�r� � −
1

2

log�r�, Gn�r� �

��n

2
− 1�

4


1


n/2 − 1rn − 2 ,

�C-7�

ith derivative

dGn

dr
� −

�n

2
− 1�!

2


1


n/2 − 1rn − 1 �C-8�

s r→0 and is true also for n = 2. But the surface area of Sr is

n/2rn − 1/�n/2 − 1�! and so as r→0 the first integral on the right of
quation C-5 tends to –1, and the second integral tends to zero. This
erifies equation C-3.

Let us now examine the large argument asymptotic approxima-
ion to Gn�r�. Using Abramowitz and Stegun �1965� formula 9.2.3

Hn/2 − 1
�1� ��r

v0
� �	 2v0


�r
exp�i��r

v0
−

�n − 1�

4

�� , �C-9�

e find that as r→�

Gn�r� � −
1

4
� �

2v0
�n − 3/2� 1


r
�n − 1/2

�exp�i��r

v0
−

�n + 1�

4

�� . �C-10�

APPENDIX D

THE STORMER/VERLET SCHEME

Consider the following Hamiltonian system

dp

dt
= −�qH�p,q� ,

dq

dt
= �pH�p,q� , �D-1�

here H�p,q� is a smooth function defined on an open set �
Rd�d,
ith the initial conditions p�t = 0� = p0 and q�t = 0� = q0. To

chieve a higher order of accuracy, we consider the following
tormer/Verlet scheme �Hairer et al., 2002�:

qn + 1/2 = qn +
�t

2
�pH�pn,qn + 1/2� �D-2�
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pn + 1 = pn −
�t

2
��qH�pn,qn + 1/2� + �pH�pn + 1,qn + 1/2��

�D-3�

qn + 1 = qn + 1/2 +
�t

2
�pH�pn + 1,qn + 1/2� . �D-4�

Here, equation D-4 is explicit, but equation D-2 and D-3 are im-
licit in both pn + 1 and qn + 1/2. Numerically, we solve them using
ewton’s method with a forward Euler step as the initial guess

p̃n + 1, q̃n + 1/2�, i.e.,

n + 1 = pn − �t�qH�pn,qn� , q̃n + 1/2 = qn +
�t

2
�pH�pn,qn� .

�D-5�

his numerical method is second-order accurate, very simple to im-
lement, and also preserves the symplectic structure.
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