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Abstract. We propose a model for the gravitational field of a floating iceberg
D with snow on its top. The inverse problem of interest in geophysics is to find
D and snow thickness g on its known (visible) top from remote measurements
of derivatives of the gravitational potential. By modifying the Novikov’s or-
thogonality method we prove uniqueness of recovering D and g for the inverse
problem. We design and test two algorithms for finding D and g. One is based
on a standard regularized minimization of a misfit functional. The second one
applies the level set method to our problem. Numerical examples validate the
theory and demonstrate effectiveness of the proposed algorithms.

1. Formulation. The Newtonian potential of a (Radon) measure µ is

(1) u(x;µ) =

∫

Ω

Φ(x, y)dµ(y),

where

Φ(x, y) =
1

4π|x− y|
.

We will assume that µ is zero outside D̄ ⊂ Ω, D is some bounded open set, Ω is a
given open set in R3, and Γ0 ⊂ ∂Ω.

The inverse problem of gravimetry
Find µ given

(2) Gα = ∂αu(·;µ), α ∈ A on Γ0,

where A is a set of multiindices α. Here u(·;µ) is the function defined as u(x;µ) at
a point x.

A first crucial question is whether there is enough data to (uniquely) find µ.
Unfortunately, there is a very large (infinite dimensional) manifold of solutions to
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the inverse problem of gravimetry. Indeed, let u0 be a function in the Sobolev space
H2(Ω) which is zero in R3 \D, and let f0 = −∆u0. Then u(·; f0dm) = u0 (dm is
the Lebesgue measure) in R3, and hence u(·; f0dm) has zero data (2). Obviously,
u(·;µ) and u(·;µ) + u(·; f0dm) have the same data (2) on Γ0, so µ and µ + f0dm
produce the same data (2), but they are different in Ω.

Another feature of the inverse problem of gravimetry is its severe ill conditioning.
The (compact) linear operator mapping µ into the data (2) has exponentially fast
decreasing singular values. This decay is growing with the distance from Γ0 to D.
When Ω is a sphere of radius R and D is a concentric sphere of radius r these
singular values behave like the exponential powers of r

R
. A rigorous analysis of this

operator in R2 in some practically important cases (Ω is a lower half plane and Γ is
an interval) was given in a recent paper [7], where it is demonstrated that one can
only expect to find four to seven parameters describing µ.

In this paper we consider µ = χDdm+ gdΓ which models a (sea) ice domain D
with snow covering a part Γ of the upper boundary of D and inducing a density
distribution g on Γ. In section 2 we briefly review available uniqueness results for
the inverse gravimetry problem and demonstrate uniqueness of recovering the x3-
convex D and g on Γ (a known “visible” part of ∂D). Proofs use the Novikov’s
orthogonality method [17] and some new ingredients. In section 3 we design and
implement two new numerical algorithms for finding (D, g) from (2) and test these
algorithms on geophysically meaningful examples. One of the algorithms is based
on the level set method which was used recently for a different inverse gravimetry
problem in [11].

2. Uniqueness results. To regain uniqueness one has to restrict unknown distri-
butions to a smaller, physically meaningful uniqueness class.

Let Ω be bounded. One can look for f with the smallest L2(Ω)-norm. The
subspace of harmonic functions fh in Ω is L2(Ω)-closed, so for any f ∈ L2(Ω) there
is a unique fh such that f = fh + f0, where f0 is L2-orthogonal to fh. Since
Φ(x, y) is a harmonic function of y ∈ Ω when x is outside Ω, u(·; f0dm) = 0 outside
Ω. Hence the harmonic orthogonal component fh of f has the same exterior data
and the minimal L2-norm. It is not hard to show that for Lipschitz Ω this fh is
unique [10]. The equation −∆u(·; fhdm) = fh implies the biharmonic equation
∆2u(·; fhdm) = 0 in Ω. When Γ0 = ∂Ω and we are given u and the normal
derivatives ∂νu on Γ0, we have a well-posed first boundary-value problem for the
biharmonic equation for u(·; fhdm). Solving this problem we find fh. However, it
is hard to interpret fh (geo)physically and knowing fh does not help much with
finding f either.

A (geo)physical intuition suggests looking for a perturbing inclusion D of con-
stant density, i.e. for µ = χDdm (a characteristic function of the set D).

Since (in distributional sense) −∆u(·;µ) = µ in Ω, by using the Green’s formula
(or the definition of a weak solution) we have

(3) −

∫

Ω

vdµ =

∫

∂Ω

((∂νu)v − (∂νv)u)

for any function v ∈ H1(Ω) which is harmonic in a bounded Lipschitz domain Ω,
where ν is the outward normal to the boundary of Ω. If Γ0 = ∂Ω, then the right
handed side in (3) is known so that we are given all harmonic moments of µ. In
particular, letting v = 1 we obtain the total mass of µ, and by taking v to be
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coordinate (linear) functions we obtain moments of µ of first order, and hence the
center of gravity of µ.

Even when one assumes that µ = χDdm, there is non uniqueness due to possible
disconnectedness of the complement of D. To explain it, we recall that if D is the
ball B(a,R) with center a of radius R then its Newtonian potential u(x;χDdm) =
M 1

4π|x−a| , where M is the total mass of D. So for any constant C and R3
1−R3

2 = C

the exterior potentials of all annuli B(a,R1) \ B(a,R2) are the same. By using
this simple example and some reflections in Rn one can find two different domains
with connected boundaries and equal exterior Newtonian potentials. An additional
condensation of singularities argument from the theory of functions of complex
variables creates a continuum of different domains with connected boundaries and
the same exterior potential [10]. So there is a need in imposing some geometrical
conditions on D.

A domain D is called star shaped with respect to a point a if any ray originated
at a intersects D over an interval. An open set D is xj -convex if any straight line
parallel to the xj -axis intersects D over an interval.

In Theorems 2.1-2.4 we assume that Γ0 is a (nonempty) Lipschitz surface in R3.

Theorem 2.1. Let D1 and D2 be two star-shaped Lipschitz domains with respect
to their centers of gravity or two xj-convex Lipschitz domains in R3. Let u1 and u2

be potentials of D1 and D2, respectively.
If ∇u1 = ∇u2 on Γ0, then D1 = D2.

This result is proven in [10] by the Novikov’s orthogonality method which we will
demonstrate to prove our new Theorem 2.4 below.

In Theorems 2.2-2.4 we assume that {α : |α| = 1} ⊂ A, i.e. that we are given at
least ∇u on Γ0.

In some applications a part of boundary, Γ ⊂ ∂D, is known while the density f
needs to be determined.

Theorem 2.2. Let D = {x : (x1, x2) ∈ Γ′, d(x1, x2) < x3 < γ(x1, x2)} be a
Lipschitz domain and its density f ∈ C(R3) does not depend on x3; D ⊂ suppf ;
let the upper surface of D, Γ = {(x1, x2, γ(x1, x2)) : (x1, x2) ∈ Γ′} be known, where
Γ′ is a known open domain in R2, γ ∈ Lip is a known function, and d ∈ Lip is an
unknown function.

Then the data (2) for µ = fχDdm uniquely determine D and f on D.

A proof is in [10], Theorem 3.2.1.

Theorem 2.3. Let D = {x : (x1, x2) ∈ Γ′, d(x1, x2) < x3 < γ(x1)} be a Lipschitz
domain in R3 and its density f ∈ C(R3) depends only on x3; D ⊂ suppf , where
Γ′ is a known open domain in R2, γ ∈ Lip is a known function, and d ∈ Lip is an
unknown function.

Then the data (2) for µ = fχDdm uniquely determine D and f on D.

This is a particular case of Theorem 3.2.2 in [10].
For further results on inverse problems of gravimetry, we refer to Isakov [10] and

Prilepko[19].
Now we give a new uniqueness result.
Let D = {x : d(x1, x2) < x3 < d+(x1, x2)} be a Lipschitz open bounded set. Let

x′ = (x1, x2) be the projection of x = (x1, x2, x3) onto the (x1, x2) plane and S′

be the projection of the set S ⊂ R3. We will assume that any point x ∈ ∂D with
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Figure 1. Illustration of ice with snow cap.

x′ ∈ P0, where P0 is a subset of zero (Lebesgue) measure in R2 and satisfies the
cone condition. The cone condition [10] means that there are an open cone with
vertex at x and a neighborhood V of x such that ∂D ∩ V does not intersect this
cone. Any D with piecewise C1 boundary satisfies this condition.

The unknown d and d+ describe the shape of the floor/ice,

Γ = {(x1, x2, γ(x1, x2)), (x1, x2) ∈ Γ′}

is a known upper part of ∂D, and Γ0 = {x : x3 = H} (airborne/satellite measure-
ments). Here γ = d+ on Γ′. In applications, the upper part Γ of the unknown
domain D is covered by a relatively thin layer of snow. The single layer gdΓ of
density g ∈ L1(Γ) on Γ is an approximation of this thin volume of snow.

Theorem 2.4. Let both γ ∈ C1+λ with (0 < λ < 1) and Γ′ be known. Then the
data (2) for µ = gdΓ + χDdm uniquely determine g (thickness of snow) on Γ and
D.

In the proof we will use solvability and stability (with respect to a domain) of
a mixed oblique derivative problem for harmonic functions. We will collect some
needed preliminary results. Let Ω1 be a bounded domain with the boundary which
consists of two disjoint closed C1+λ surfaces Γ1 and Γ2. Let l be a C1+λ (nonzero)
vector field on Γ1 which is not tangential to Γ1. Referring to the classical method
of integral equations and maximum principles [16] we claim that for any C1+λ(Γ2)-
function u0, there is a unique solution u ∈ C1+λ(Ω̄1) to the mixed elliptic boundary
value problem

(4) ∆u = 0 in Ω1, ∇u · l = 0 on Γ1, u = u0 on Γ2.

Moreover, maximum and minimum of this solution are achieved on Γ2.
Now we briefly describe approximation and stability results (with respect to a

domain) which are given in the original paper [12] and summarized in [10], section
1.7, in the case of the Dirichlet problem, i.e. when Γ1 is void. Let Ω1n be the
sequence of domains described above, Ω1,n+1 ⊂ Ω1,n, where the boundaries Γ1,n

with the oblique derivative data are the same for all Ω1,n while the boundaries Γ2,n

vary. Let Ω1∗ be the intersection of {Ω1,n} and its boundary consist of the disjoint
parts Γ1∗ ⊂ Γ1,n and Γ2∗ ⊂ Ω1,n. Let u0 ∈ C1+λ(R3) and let un be the solution
to the boundary value problem (4) in Ω1,n. If a point x ∈ Γ2∗ satisfies the exterior
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cone condition with respect to Ω1∗, then there is limn un(x) = u0(x). Proofs follow
the arguments in [12] which are based only on maximum principles, solvability of
the Dirichlet problem in smooth domains, and local arguments using barriers. All
these tools are available in our case.

Proof. Let (D1, g1) and (D2, g2) generate the same data (2), but D1 6= D2. Let D∗

be the smallest (open) x3-convex set containing D1∪D2. The function u(;χD2
dm+

g2dΓ − χD1
dm − g1dΓ) has zero Cauchy data on Γ0 and is harmonic outside D̄∗.

Hence this function is zero outside D̄∗. From (3) with µ = χD2
dm+g2dΓ−χD1

dm−
g1dΓ we obtain

(5)

∫

D1

v +

∫

Γ

vg1dΓ =

∫

D2

v +

∫

Γ

vg2dΓ

for any function v which is harmonic near D̄∗. Letting h be harmonic near D̄∗, it
follows that v = ∂3h is also harmonic there and hence

(6)

∫

D1

∂3h+

∫

Γ

∂3hg1dΓ =

∫

D2

∂3h+

∫

Γ

∂3hg2dΓ

for all h harmonic near D̄∗.
Let D1∗ be a domain containing D∗ with D̄∗ ⊂ D1∗ ∪ Γ, ∂D1∗ ∈ C1+λ, and

Γ ⊂ ∂D1∗. To get a contradiction we would like to use h satisfying the following
conditions

(7) ∆h = 0 in D1∗, ∂3h = 0 on Γ, h ∈ C1(D̄1∗).

Since Γ is the graph of a C1-function x3 = γ(x′), for small δ > 0 the translation
h(x′, x3 − δ) is harmonic near D̄∗; so we have for this translation the orthogonality
relation (6). Letting in this relation δ → 0 we conclude that

(8)

∫

D1

∂3h =

∫

D2

∂3h

for all h satisfying (7).
In the proof we can assume that D1 * D2 and D2 * D1. Indeed, let D1 ⊂ D2.

Let v solve the Dirichlet problem ∆v = 0 in D1∗ with v = u0 on ∂D1∗, where
u0 ∈ C(R3), u0 = 0 on Γ, and 0 < u0 on ∂D1∗ \Γ. By maximum principles 0 < v in
D1∗. Using this v in the orthogonality relation (5) we obtain a contradiction: the
left handed side will be less than the right handed side.

We will subdivide P = D′
∗ into the following sets,

P1 = {d1 ≤ d2, d
+
1 ≤ d+2 } \ Γ

′, P2 = {d2 < d1, d
+
1 ≤ d+2 } \ Γ

′,

P3 = {d2 ≤ d1, d
+
2 < d+1 }, P4 = {d1 < d2, d

+
2 < d+1 },

P5 = {d1 ≤ d2} ∩ Γ′, P6 = {d2 < d1} ∩ Γ′.

Up to a relabeling of D1 and D2, we may assume that there is a ball B centered at a
point of ∂D2 such that B̄ ⊂ D∗. Using relabel-ling if needed we have the following
three Cases: 1) B′ ⊂ P1, 2) B

′ ⊂ P3, or 3) B
′ ⊂ P5.

In the remainder of the proof we will replace the Laplace equation by another
elliptic equation with a strict maximum principle. Let 0 < w, ∆v < 0 near D̄∗, and
w ∈ C2 which does not depend on x3. We can choose w(x) = 1− δ(x2

1 + x2
2) with δ

a small positive constant. We will use the substitution h = wu. Then the Laplace
equation (7) is equivalent to the elliptic equation Au = 0 whose solutions satisfy
the strict maximum principle. Here Au = w∆u + 2∇w · ∇u+∆wu.
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Integrating by parts in (8) and introducing the notation u(x′; d) = u(x′, d(x′)),
we obtain

(9)

∫

P

w(u(; d+2 )− u(; d2)− u(; d+1 ) + u(; d1)) = 0

for all u satisfying

(10) Au = 0 in D1∗, ∂3u = 0 on Γ, u ∈ C1(D̄1∗).

Using the remarks concerning solutions to (4), we conclude that for any function
u0 ∈ C1+λ(R3), 0 ≤ u0 ≤ 1, there is a function u, 0 ≤ u ≤ 1, which is a pointwise
limit of functions uk, k = 1, 2, · · · , satisfying (10). Moreover, limuk(x

0) = u0(x
0)

as k → +∞ at any point x0 ∈ ∂D∗ \ Γ with x0′ ∈ D′
∗ \ P0, where P0 is a set of

zero Lebesgue measure in R2. Since C2-functions are dense in L1, one can find a
sequence of functions u0k ∈ C2(R3), 0 ≤ u0k ≤ 1, such that

u0k(; d
+
2 ) → 1 in L1(P1 ∪ P2), u0k(; d

+
1 ) → 0 in L1(P3 ∪ P4),

u0k(; d1) → 1 in L1(P1 ∪ P4 ∪ P5), u0k(; d2) → 0 in L1(P2 ∪ P3 ∪ P6).

Hence there are functions uk ∈ C1+λ(D∗ ∪ Γ) satisfying (10) such that

uk(; d
+
2 ) → 1 in L1(P1 ∪ P2), uk(; d

+
1 ) → 0 in L1(P3 ∪ P4),

(11) uk(; d1) → 1 in L1(P1 ∪ P4 ∪ P5), uk(; d2) → 0 in L1(P2 ∪ P3 ∪ P6).

Moreover,

(12) 0 ≤ uk ≤ 1 on D̄∗, uk < 1− ε0 on B

for some ε0 > 0 which does not depend on k. Indeed the inequalities in D∗ follow
from maximum principles. To obtain the inequality on B, let B∗ be a ball with
B̄∗ ⊂ D∗ and B̄ ⊂ B∗. Let u∗ solve the following Dirichlet problem: Au∗ = 0
in B∗, and u∗ = 1 on ∂B∗. By the strict maximum principle u∗ < 1 − ε0 on B
for some (small) positive ε0. By maximum principles uk ≤ 1 on D∗ and hence
uk ≤ u∗ < 1− ε0 on B.

We first consider Case 1). Due to (11) and (12) the lower limit of the integrals
(9) over P1 is equal to

lim inf

∫

P1

w(1 − uk(; d2)− uk(; d
+
1 ) + 1)

≥

∫

P1\B′

(1− 1− 1 + 1) +

∫

B′

(1− (1 − ε0)− 1 + 1) > 0 .

The lower limit of the integrals (9) over P2 is equal to

lim inf

∫

P2

w(1 − 0− uk(; d
+
1 ) + uk(; d1)) ≥ 0 ,

due to (12). The lower limit of the integrals (9) over P3 is equal to

lim inf

∫

P2

w(uk(; d
+
2 )− 0− 0 + uk(; d1)) ≥ 0 ,

again due to (12). The lower limit of the integrals (9) over P5 is equal to

lim inf

∫

P2

w(−uk(; d
+
1 ) + 1) ≥ 0 ,

again due to (12).
Similarly, the lower limits of the integrals (9) over P3, P4, and P6 are non negative.
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In Case 2), due to (11) and (12), the lower limit of the integrals (9) over P3 is
equal to

lim inf

∫

P3

w(uk(; d
+
2 )− uk(; d2)− 0 + 1)

≥

∫

P3\B′

(0− 1− 0 + 1) +

∫

B′

(ε0 − 1− 0 + 1) > 0 .

As above the limits of the integrals over P1, P2, P4, P5, and P6 are non negative.
In Case 3), due to (11) and (12), the lower limit of the integrals (9) over P5 is

equal to

lim inf

∫

P5

w(−uk(; d2) + 1)

≥

∫

P5\B′

(−1 + 1) +

∫

B′

((−1 + ε0) + 1) > 0 .

As above the limits of the integrals over P1, P2, P4, and P6 are non negative.
So the lower limit of the integrals (9) with u = uk as k → +∞ is positive and

we have a contradiction with (9).
When D1 = D2, by using completeness of v in L∞(Γ) (section 1.8 in [10]) we

conclude from (5) that g1 = g2.
The proof is complete.

Remark. If µ = χDdm+ gdΓ, y = (y1, y2, y3), then the potential

u(x;µ) =

∫

Ω

Φ(x, y)χD(y)dy +

∫

Γ

Φ(x, y)g(y)dΓ(y)(13)

=

∫

D′

(

∫ d+(y1,y2)

d(y1,y2)

Φ(x, y)dy3

)

dy1dy2

+

∫

Γ′

Φ(x, (y1, y2, γ(y1, y2)))g(y1, y2, γ(y1, y2))J(y1, y2)dy1dy2(14)

where J(y1, y2) =
√

1 + |∇γ(y1, y2)|2 is the Jacobian.

3. Numerical methods. We propose two strategies to carry out the above inver-
sion process: one is a direct approach, and the other is a level set approach. In the
first approach, we assume that the unknown surface d(y1, y2) has known topology
and there will be no merging or splitting of the surface. This method can deal with
simple objects. A more realistic example, unfortunately, might involve unknown
topology under water. For example, from multiple objects observed above the sea
surface, the numerical approach should be able to detect if there is any connectiv-
ity of these icebergs under the sea surface. In the second part of this section, we
propose a level set approach which can easily handle such a situation.

3.1. A direct approach. Since µ = χDdm+gdΓ , we need to determine functions
d, d+ and g. We will assume that the functions d and d+ are defined on an open
subset Γ∗ of R2 containing D′ and that the function g does not depend on x3. We
let d = d+ on Γ∗ \D

′. We consider the following measurement data:

∇u(x;χDdm+ gdΓ) = g(x), x ∈ Γ0.
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To find d, d+ and g we solve the following minimization problem:

(15) min
d,d+,g

F (d, d+, g) = min
d,d+,g

‖∇u(·;χDdm+ gdΓ)− g‖2L2(Γ0)
.

To that end we calculate the Frechet derivatives of the functional F (d, d+, g) with
respect to d, d+ and g:

F (d+ d1, d
+ + d+1 , g + g1)− F (d, d+, g)

=

(

∂F

∂d
, d1

)

(Γ∗) +

(

∂F

∂d+
, d+1

)

(Γ∗) +

(

∂F

∂g
, g1

)

(Γ′) +O(d21 + d+2
1 ) .

Here (f, d)(Γ∗) is the standard scalar product in L2(Γ∗). To simplify notations, we
introduce

(16) G(x; d, d+, g) = ∇u(x;χDdm+ gdΓ)− g(x) .

Thus

G(x; d+ d1, d
+ + d+1 , g + g1)

= G(x; d, d+, g) +

∫

Γ∗

∫ d(y1,y2)

d(y1,y2)+d1(y1,y2)

∇xΦ(x, y)dy3dy1dy2

+

∫

Γ∗

∫ d(y1,y2)+d
+

1
(y1,y2)

d+(y1,y2)

∇xΦ(x, y)dy3dy1dy2

+

∫

Γ′

∇xΦ(x, (y1, y2, γ(y1, y2)))g1(y1, y2)J(y1, y2)dy1dy2

= G(x; d, d+, g)−

∫

Γ∗

∇xΦ(x, y1, y2, d(y1, y2))d1(y1, y2)dy1dy2

+

∫

Γ∗

∇xΦ(x, y1, y2, d
+(y1, y2))d

+
1 (y1, y2)dy1dy2

+

∫

Γ′

∇xΦ(x, y1, y2, γ(y1, y2))g1(y1, y2)J(y1, y2)dy1dy2 + · · ·

= G(x; d, g) +G1(x; d, d1) +G2(x; d
+, d+1 ) +G3(x; g1) + · · · ,(17)

where · · · denotes terms bounded by C(|d1|
2 + |d+1 |

2), and

G1(x; d, d1) = −

∫

Γ∗

∇xΦ(x, y1, y2, d(y1, y2))d1(y1, y2)dy1dy2

G2(x; g, g1) =

∫

Γ∗

∇xΦ(x, (y1, y2, d
+(y1, y2)))d

+
1 (y1, y2)dy1dy2,

G3(x; g1) =

∫

Γ′

∇xΦ(x, y1, y2, γ(y1, y2))g1(y1, y2)J(y1, y2)dy1dy2.
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So

F (d+ d1, d
+ + d+1 , g + g1)− F (d, d+, g)

=

∫

Γ0

GT (x; d + d1, d
+ + d+1 , g + g1)G(x; d + d1, d

+ + d+1 , g + g1)dΓ0(x)

−

∫

Γ0

GT (x; d, d+, g)G(x; d, d+, g)dΓ0(x)

= 2

∫

Γ0

GT (x; d, d+, g)(G1(x; d, d1) +G2(x; d
+, d+1 ) +G3(x; g1))dΓ0(x) + ...

=

∫

Γ∗

(

2

∫

Γ0

GT (x; d, d+, g)∇xΦ(x, y, d(y))dΓ0(x)

)

d1(y)dy1dy2

+

∫

Γ∗

(

2

∫

Γ0

GT (x; d, d+, g)∇xΦ(x, y1, y2, d
+(y))dΓ0(x)

)

d+1 (y)dy1dy2

+

∫

Γ′

(

2

∫

Γ0

GT (x; d, d+, g)∇xΦ(x, y, γ(y))J(y)dΓ0(x)

)

g1(y)dy1dy2

+ · · · ,

where y = (y1, y2). Therefore, the Frechet derivatives are given by

∂F

∂d
= 2

∫

Γ0

GT (x; d, d+, g)∇xΦ(x, (y1, y2, d(y1, y2)))dΓ0(x),

∂F

∂d+
= 2

∫

Γ0

GT (x; d, d+, g)∇xΦ(x, (y1, y2, d
+(y1, y2)))dΓ0(x),

∂F

∂g
= 2

∫

Γ0

GT (x; d, d+, g)∇xΦ(x, (y1, y2, γ(y1, y2)))J(y1, y2)dΓ0(x).

The necessary conditions for the triple (d, d+, g) to be a minimizer are that

∂F

∂d
= 0 ,

∂F

∂d+
= 0 and

∂F

∂g
= 0 .

To obtain these minimizers, we use the method of gradient descent by considering
the gradient flows

∂d

∂t
= −

∂F

∂d
,
∂d+

∂t
= −

∂F

∂d+
and

∂g

∂t
= −

∂F

∂g
,

and we solve the above equations to steady states by letting t go to infinity.
In practice, the shape of the iceberg should have certain regularity. We impose

the following regularization in the energy so that the lower part of the iceberg is
smooth for some α > 0

(18) min
d,d+,g

Fα(d, d
+, g) = min

d,d+,g
‖∇u(·; d, d+, g)−g‖2L2(Γ0)

+α(‖∇d‖2L2+‖∇d+‖2L2) .

3.2. A level set approach. As discussed earlier, the above approach assumes
that the topology of the lower iceberg surface is known and can be expressed as
a function of x1 and x2. To relax these assumptions, we follow our previous work
in [11] using the level set method. For inverse (obstacle) problems the level set
method has been first used by Santosa [23]. Later on, there are many efforts to
analyze this method and extend this beautiful idea to a variety of inverse problems;
see [26, 14, 3, 9, 4, 6] and references therein. More recently, a level set method
was applied to identification of a characteristic function of a domain in the source
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term of the Poisson equation from the Cauchy data on the whole boundary of the
reference domain Ω [24].

To parameterize the unknown domain D, we will introduce a level set function
ϕ which is Lipschitz continuous and

ϕ > 0 on D,

ϕ = 0 on ∂D,

ϕ < 0 on x ∈ D̄c.

Since the upper surface of the iceberg is given, the level set function ϕ must satisfy
the condition

ϕ(x1, x2, γ(x1, x2)) = 0, when x′ ∈ Γ′ .

According to the gravity force relation we define the following operator:

(19) A(ϕ, g)(x) = ∇xu(x;χDdm+ gdΓ), x ∈ Γ0.

Observe that

∇xu(x;χDdm+ gdΓ) =

∫

D

∇xΦ(x, y)dy +

∫

Γ

g(y)∇xΦ(x, y)dΓ(y)

=

∫

Ω

∇xΦ(x, y)H(ϕ(y))dy +

∫

Γ

g(y)∇xΦdΓ(y) ,(20)

where H is the Heaviside function.
In [11], we have proposed a level set formulation for the inverse problem of finding

D when Γ is void. Now we extend this approach to find both D and g. We have to
find D and g so that the given gravity data g satisfies

∇u(·;χDdm+ gdΓ) = g on Γ0 .

Consequently, the inverse problem is stated as finding D represented by ϕ such
that A(ϕ, g) = g. Furthermore, we will be looking for minimum points (ϕ, g) of the
minimization problem:

(21) minF (φ, g) = min ‖A(φ, g)− g‖2L2(Γ0)
.

To that end we compute the Frechet derivative of the functional F (φ, g) with respect
to φ by fixing g:

F (φ + φ1, g)− F (φ, g) =

(

∂F

∂φ
, φ1

)

(Ω) +O(φ2
1) .

To simplify the calculation, we introduce the mismatch function

G(x;φ, g) =

∫

Ω

∇xΦ(x, y) H(φ(y))dy +

∫

Γ

g(y)∇xΦ(x, y)dΓ(y)− g(x) .(22)

Then

G(x;φ + φ1, g) = G(x;φ, g) +

∫

Ω

∇xΦ(x, y) H
′(φ(y))φ1(y)dy + ...
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and we have

F (φ+ φ1, g)− F (φ, g)

=

∫

Γ0

GT (x; (φ + φ1, g)G(x; (φ + φ1), g)−GT (x; (φ, g))G(x; (φ, g)))dx

=

∫

Γ0

2GT (x;φ, g)

(
∫

Ω

∇xΦ(x, y) H
′(φ(y))h(y)dy

)

dx+ ...

=

∫

Ω

(
∫

Γ0

2GT (x;φ, g)∇xΦ(x, y)dx

)

H ′(φ(y))φ1(y)dy +O(φ2
1) .(23)

Hence,
∂F

∂φ
=

∫

Γ0

2GT (x;φ, g)∇xΦ(x, y)dxδ(φ(y)).

The necessary condition for φ to be a minimizer is

0 =
∂F

∂φ
=

∫

Γ0

2G(x;φ, g)T∇xΦ(x, y)dx δ(φ(y)),

0 =
1

|∇φ|

∂φ

∂n
on ∂Ω,(24)

where we have imposed the natural boundary condition for φ on the boundary of Ω.
If we choose φ1 = −∂F

∂φ
, which is the gradient descent direction, then the functional

is decreasing along the negative gradient direction. Thus we will evolve the following
gradient flow to the steady state to compute the minimizer:

∂φ

dt
= −

∂F

∂φ

1

|∇φ|

∂φ

∂n
= 0 on ∂Ω,(25)

where φ = φ(x, t) with t being the artificial evolution time. We will take ϕ(x) =
φ(x,∞) and ∂D = {x : ϕ(x) = 0}.

Note, however, that the previous formulation does not incorporate the constraints
that the structure now is given by µ = g dΓ + χD and also that the upper surface
is given explicitly by the function γ. In the level set formulation, we first convert it
into an implicit representation by the following strategy. We extend the function g
from the upper surface of the iceberg γ(x1, x2) to Ω such that g is constant in the
normal direction away from the surface φ−1(0). Without causing any confusion, we
will denote this extended mass function by the same notation g for the rest of the
paper. Numerically, we obtain such an extension by solving

(26) gτ + sgn(φ)

(

∇φ

|∇φ|
· ∇

)

g = 0 ,

where the boundary condition g(x, τ) is fixed on φ = 0. Since we require the
solution only in a local neighborhood of the surface Γ, we do not solve this PDE
until we obtain the steady state solution. In practice, we can simply solve the above
hyperbolic PDE for several iterations in the τ -direction. Similar techniques have
been widely used in the level set community in various applications [18, 20, 21, 22, 5].

To minimize (21), we propose the strategy of alternating minimization of the
functional with respect to the level set function φ (corresponding to the bottom
shape of the iceberg, i.e. D) and the extended mass function g. Formally we obtain
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the following variation of the level set function in (21) using the property that the
normal derivative of g away from the boundary of the iceberg is zero,

∂F

∂φ
= 2

∫

Γ0

G(x;φ, g)T∇xΦ(x, y)dxδ(φ(y))H(−y3)

with G given by (22). Since the upper surface of the iceberg is given, this variation
formula will be applied to φ for x3 < 0 only.

For the alternating step to minimize the extended mass function g, we rewrite
the surface integral in (13) to

∫

Γ

Φ(x, y)g(y)dΓ =

∫

Ω

Φ(x, y)g(y)δ(φ(y))H(y3)dy .

Now, the variation of F with respect to g in Ω is then given by

(27)
∂F

∂g
= 2

∫

Γ0

GT (x;φ, g)∇xΦ(x, y)dxH(y3) ,

and the gradient flow is given by

(28)
∂g

∂t
= −

∂F

∂g
.

Similar to the direct approach, we also need to stabilize this gradient flow. We
propose to regularize the mass function g defined on the upper surface Γ of the
inclusion by adding the term ‖∇Γg‖

2
Γ to the functional, where the operator ∇Γ is

the surface gradient defined on Γ. The minimizer of this functional can be computed
by finding the corresponding surface Laplacian, ∆Γ, of the mass function. One
possible way to compute this term numerically is to first explicitly parameterize
the surface using triangulation. The gradient, or the surface Laplacian, can then
be approximated using a local coordinate system at each mesh point. In this work,
however, we propose an implicit approach which will naturally combine with the
gradient flow in (27). The idea is based on the property that g is constant in the
normal direction of the surface Γ, which implies ∆g|Γ = ∆Γg on Γ. Therefore, to
regularize the gradient flow, we modify the Frechet derivative by

(29)
∂F

∂g
=

[
∫

Γ0

GT (x;φ, g)∇xΦ(x, y)dx − α∆g

]

H(y3) ,

for some small α > 0. Several similar approaches have been introduced to solve
various PDE’s on surfaces. For example, a level set method was first introduced
to solve elliptic problems on a manifold in [1]. The authors proposed a numerical
projection operator to extend the diffusion operation from the interface to the whole
computational space. Some other approaches can be found in [25, 2, 15, 13].

To summarize, we give the overall algorithm here.

Algorithm:

1. Initialization.
(a) Initialize the level set function φ such that {φ = 0} matches with the given

observation when x3 > 0.
(b) Initialize the mass function g for x3 > 0 such that (n · ∇)g = 0 with n =

∇φ/|∇φ|.
2. Compute the mismatch G(x) on Γ0.
3. Update the level set function.
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(a) Compute the level set function derivative (24).
(b) Evolve the level set equation for a small time-step ∆t according to (25).
(c) Reinitialize the level set function.

4. Update the mass function.
(a) Compute the mass function derivative (29).
(b) Update the mass function for a small time-step ∆t according to (28).
(c) Extend the function g in the normal direction of φ by solving (26) for several

iterations in τ .
5. Iterate steps 2-4 until both φ and g converge.

When applying the level set method, in general it is a subtle issue how often
to reinitialize the level set function during the evolution process. Here we do not
intend to explore this issue; instead, we just solve the reinitialization equation for
several artificial time steps.

3.3. Fast computation of the mismatch. In our previous work [11], we have
proposed a fast algorithm of computing the mismatch term which can reduce the
computational complexity from O(N2n−1) in the full implementation to O(N2n−2),
where N is the number of grid points in each direction and n is the dimension of
the computational space. For three-dimensions, the O(N4) implementation first re-
quires a Cartesian-to-Polar map to construct an explicit representation of the target
boundary using triangulation. With such explicit representation, the next step of
the method computes intersections of all rays in the polar (spherical) coordinates
from the measurement locations to these triangular simplexes.

In this current application, on the other hand, such strategy would not work
directly. We first consider the integral in the mismatch term

I(x) =

∫

Ωz

∇xΦ(x, y) [H(φ(y)) + g(y)δ(φ(y))H(y3)] dy

=

∫

Ωz

∇xΦ(x, y)f(y)dy

where f(y) = H(φ(y)) + g(y)δ(φ(y))H(y3). With the level set implementation,
the delta-function is approximated by a smoothed version which spreads in a small
neighborhood of the zero level set of φ. Indeed, one might implement a sharp
interface method by interpolating the function g on each triangular simplex and
then summing up the corresponding contribution to the gravitation force; such an
algorithm requires interpolation performed on various triangles.

In this work, we propose a new approach based on recent fast algorithms for
low rank matrix approximation. Applying the trapezoidal rule to approximate the
three-dimensional integral, we have

I(xi) =
∑

j

∇xΦ(xi, yj)f(yj)∆x3 ,

where xi are locations with measurements, yj are mesh locations in the computa-
tional domain, i = 1, · · · , p = O(N2), and j = 1, · · · , q = O(N3). These summa-
tions can be written as matrix-vector multiplications, where all three matrices have
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a similar form M(1) = [M
(1)
i,j ], M

(2) = [M
(2)
i,j ] and M(3) = [M

(3)
i,j ] given by

M
(1)
i,j = −

∆x3

4π

(

x
(1)
i − y

(1)
j

)

‖xi − yj‖3
, M

(2)
i,j = −

∆x3

4π

(

x
(2)
i − y

(2)
j

)

‖xi − yj‖3

and M
(3)
i,j = −

∆x3

4π

(

x
(3)
i − y

(3)
j

)

‖xi − yj‖3
.

Direct computation of this matrix-vector multiplication requiresO(N2n−1) = O(N5)
operations. Now, taking advantage of the fact that these matrices have simple struc-
ture, we apply the following low rank approximation using SVD. We decompose

M = USVT ≈ ŨS
(k)

ṼT

where U and V are matrices of size p-by-r and q-by-r with r being the rank of
the matrix M, Ũ and Ṽ are k-leftmost columns of U and V, respectively, S and
S(k) are both diagonal and have the same leading k diagonal elements, where the
integer k is much smaller than min(p, q) = O(N2). Numerically, we pick k = 4N =
O(N) which already gives accurate solution in the current application. There are
recent randomized algorithms to compute this k-rank approximation efficiently [8].
Unfortunately, since the matrix M is full, the computational complexity of this low
rank approximation is given by O(kpq) = O(N2n−1) which is not too appealing.
However, we can treat these decompositions as a pre-processing step. We only
need to compute the decomposition once and we can store in the computer memory
these coefficients (there are only O(k(p + 1 + q)) = O(Nn+1) of them). With
this decomposition, the integration can be approximated in O(Nn+1) = O(N4)
operations in three dimensions.

4. Examples. Since recovering only the density with the correct topology is more
straightforward, we are not going to concentrate our effort to that aspect of the
inverse problem. However, we do show an example for the level set approach on an
ellipsoid; see Figure 4.2.1. In this case, the topology is correct while we can nicely
recover the amount of snow on the top of the iceberg.

4.1. Direct approach. In this example, we consider the direct approach to the
inverse problem, where the bottom part of the iceberg is explicitly represented as a
function of Γ′. The upper part and the lower part of the iceberg are given by the
sphere of radius R = 0.35 centered at the origin. The exact mass function g(x, y)
defined on the upper surface γ(x, y) is designed to be 0.5.

Figure 2 shows the inverted shape using our proposed direct approach. In figure
2 (a), we do not impose extra regularity on the shape and so there is a sharp edge
in the solution. With extra penalty terms in the energy (18), the shape is much
smoother. To better visualize the improvement, we also plot some cross-sections of
the solution which are shown in figure 3. With the extra shape regularization, we
are able to obtain a smoother change in the bottom shape of the iceberg.

The second part of the inverse problem is to invert the mass of a thin layer of
ice on the upper iceberg. In figure 2, we color the upper surface according to the
solution g. To better check the accuracy, we plot also the cross-sections of g as a
function of x1 or x2 in figure 4. The extra penalty term in the shape regularity also
slightly improves the estimate of the mass function defined on the upper surface.
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Figure 2. (Example 4.1) Spherical iceberg with R = 0.35. In-
verted lower surface of the iceberg computed using a mesh of 33×33
(a) without and (b) with shape regularization.
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Figure 3. (Example 4.1) Spherical iceberg with R = 0.35. In-
verted lower surface of the iceberg computed using a mesh of 33×33.
Without shape regularization: (a) Cross-section of the bottom ice-
berg along y = 0, i.e. d(x, 0), and (b) along x = 0, i.e. d(0, y).
With shape regularization: (c) Cross-section of the bottom iceberg
along y = 0, i.e. d(x, 0), and (d) along x = 0, i.e. d(0, y).

4.2. Level set formulation. Since there are limitations of the direct approach,
we will concentrate on the level set formulation. One very important advantage
for using the level set method is that the formulation allows topological changes
in the solution. Such a variational formulation can naturally handle breaking or
merging of iceberg. In this section, we will demonstrate the numerical flexibility of
the proposed method in the current application.

Other than applying the low rank approximation in computing the mismatch
term, to further speed up the convergence we propose also another strategy to
design the initial guess for the level set iterations. We first solve the inverse problem
starting from a coarse mesh using a simple initial guess. The given measurement
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Figure 4. (Example 4.1) Spherical iceberg with R = 0.35. Mass
distributed on the upper surface computed using a mesh of 33×33.
Without shape regularization: (a) Cross-section of mass function
on the upper iceberg along y = 0, i.e. g(x, 0), and (b) along x = 0,
i.e. g(0, y). With shape regularization: (c) Cross-section of the
mass function on the upper iceberg along y = 0, i.e. g(x, 0), and
(d) along x = 0, i.e. g(0, y).

data are obtained by approximating the integral (20) using the trapezoidal rule
on the coarse mesh without applying the low rank approximation. Although the
initial conditions might be very different from the exact solution, the computation
is very fast and we can afford to take many iterations. Once we have obtained the
numerical solution, we interpolate the level set function on a finer mesh and use it
as the initial condition for computing a higher resolution solution.

In the following examples, we assume two separated sets of measurements. The
first set of data is given on the sky level x3 = 0.35 at all mesh locations in the
computational domain {(x1, x2) ∈ [−0.5, 0.5]2}. Therefore, there are only 332 mea-
surement locations on a 333 mesh. The second case is that measurement data are
given on both the sky level x3 = 0.35 and the ground/water surface level outside the
iceberg(s). Although the number of measurements is nearly double of the previous
set, these extra measurements are shown to be providing important information for
the reconstruction.

4.2.1. Ellipsoidal iceberg. The first example is a small variation of the previous
example where we now replace the sphere by an ellipsoid and the constant mass
distribution by a slightly more realistic mass function where it is close to zero on
the edge of the iceberg and is more concentrated at the center of the upper surface.
Mathematically, the exact ellipsoidal surface is given by

( x1

0.35

)2

+
( x2

0.35

)2

+
( x3

0.2

)2

= 1 ,
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(c) (d)

(e) (f)

Figure 5. (Example 4.2.1) The inverted solution using 333 mesh
without the low rank approximation in computing the mismatch
integral. (a) The exact solution. (b) The initial guess. Solutions
with measurements on (c) the sky level (x3 = 0.35) and (d) both
the sky level and the ground level (x3 = 0). Cross-sections along
y = 0 with measurements given on (e) the sky level (x3 = 0.35)and
(f) both the sky level and the ground level (x3 = 0).

and the mass distributed on the upper surface is

g(x1, x2) = 0.05 exp

(

−
x2
1 + x2

2

2σ2

)

,

where σ = 0.1. This exact solution is plotted in figure 5 (a).
In this example, we fix the number of mesh points in each dimension to be 33 and

we do not apply multiple sets of meshes to speed up the computation. The initial
guess below the water surface is a lower-half sphere of radius 0.35, figure 5 (b). In
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figure 5(c), we show the solution obtained using measurements imposed only on the
sky level x3 = 0.35. Together with measurements on the ground level x3 = 0 outside
the iceberg, the mass distribution on the upper iceberg is much improved, figure
5 (d). The shape of the under-water surface is also improved. We plot the cross
sections of these solutions along the line y = 0 in figure 5 (e-f). The exact shapes are
plotted in shaded colors in these figures while the computed solutions are plotted
in dashed lines. With only measurements on the sky level, the enclosed volume in
the inverted solution is under-estimated; to better match with the measurements,
the mass distribution is slightly over-estimated; see figure 5 (c).

4.2.2. Two ellipsoidal icebergs. This example is to demonstrate that the level set
formulation can naturally split a big iceberg into several smaller ones to better
match with the measurements. The exact solution consists of two disconnected
icebergs each of which has a spherical upper surface of radius r = 0.2 centered at
(0.175, 0.175) and (−0.175,−0.175), and an ellipsoidal lower surface of the longer
semiaxis with length given by 0.4, figure 6 (a). The initial condition is a connected
torus-shaped surface with the mass function being zero everywhere; see figure 6 (b).

Figure 6 (c) shows the solution with measurements given only on the sky level
x3 = 0.35. Similar to the previous example, the algorithm under-estimates the
volume enclosed but over-estimates the mass distribution on the upper surface of
the iceberg. With extra measurements given on the ground level outside the iceberg,
the solution (both the lower shape and also the mass distribution on the upper
surface) is much improved, as shown in figure 6 (d).

To further speed up the computations, we apply the low rank approximation to
the mismatch integral and also use the iterative procedure by using the solution from
a coarser mesh as an initial condition for the finer mesh computation. Figure 6 (e)
shows the solutions for 653 meshes with given measurements only on the sky level
x3 = 0.35. Figure 6 (f) shows the corresponding solution with extra measurements
given on the ground level outside the iceberg surface. Even though this solution is
less accurate than the full implementation as in (d), these solutions are qualitatively
similar to what we obtained before.

4.2.3. Discovering connectivity. Opposite to the previous example, this case is to
show that the level set formulation could discover hidden connectivity under the sea
surface. In practice, one can observe those surfaces only if they are above the sea
surface. In this example, we assume that the given surfaces are upper half-spheres
centered at (0.175, 0.175) and (−0.175,−0.175) with radius 0.2, figure 7 (a). To
test the capability of the level set method for recovering the correct topology in the
solution, we take an initial condition which has a different topology from the exact
solution and is shown in Figure 7 (b). And we would like to test if our proposed
method could automatically merge these surfaces and give a topologically correct
solution. Since the connected region is completely immersed under the sea surface,
the direct approach proposed in Section 3.1 is not able to determine such a solution.

Figure 7 (c) shows the inverted solution using only measurements given on the
sky level x3 = 0.35, where the mismatch integral is computed without applying the
low rank approximation. With very little information given, the iceberg does not
merge but the algorithm puts more mass on the upper surface of the iceberg to
compensate for the missing underwater mass connecting these two objects. With
extra information provided on the ground level, the algorithm is able to connect
these two objects and give a topologically correct solution.

Inverse Problems and Imaging Volume 7, No. 2 (2013), 523–544



Inverse Gravimetry Problem for Ice with Snow Caps 541

(a) (b)

(c) (d)

(e) (f)

Figure 6. (Example 4.2.2) (a) The exact solution in 333 mesh.
(b) The initial guess. The inverted solution without the low rank
approximation in computing the mismatch integral: Measurements
given on the sky level (x3 = 0.35) and (d) both the sky level and the
ground level (x3 = 0). The inverted solutions on the 653 mesh with
the low rank approximation in computing the mismatch integral:
Measurements given on (e) the sky level (x3 = 0.35) and (f) both
the sky level and the ground level (x3 = 0).

We follow a similar procedure as in the previous case to speed up the fine mesh
computations. Figures 7 (e-f) show the solutions on a 653 mesh using the low rank
approximation in the mismatch functional with measurements only on the sky level
(figure 7 (e)) and on both the sky level and the ground level (figure 7 (f)). As in
the previous example, we are able to efficiently obtain the inverted solution using
a fine mesh by applying the low rank approximation to the mismatch integral and
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(a) (b)

(c) (d)

(e) (f)

Figure 7. (Example 4.2.3) (a) The exact solution in 333 mesh.
(b) The initial guess. The inverted solution without the low rank
approximation in computing the mismatch integral: Measurements
given on (c) the sky level (x3 = 0.35) and (d) both the sky level
and the ground level (x3 = 0). The inverted solutions on the 653

mesh with the low rank approximation in computing the mismatch
integral: Measurements given on (e) the sky level (x3 = 0.35) and
(f) both the sky level and the ground level (x3 = 0).

picking a better initial guess for the iterations. The solutions are qualitatively the
same as those by the full implementation.

We remark that although the geometry is rather simple in all these examples, it
is sufficient to demonstrate the capability of the proposed method to recover the
quantity of snow and the topology of the iceberg, which is the most important in
practice.
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5. Conclusion. We introduced a model of floating ice D with snow cap. We
demonstrated uniqueness of recovering D and snow thickness from the remote mea-
surements of their gravitational potential under mild and seemingly minimal as-
sumptions on D. We designed and tested two different numerical algorithms for
finding D and snow thickness. Due to the analysis of the stability of the harmonic
continuation in [7] it is realistic to find in a stable way at most 10-15 parameters
describing D and g. So we expect to recoverD slightly more general than ellipsoids.

Goals for the near future are to understand resolution limits of our numerical
methods in terms of dependence on data errors, the collection set A of measure-
ments, sizes of measurement site Γ0 and sizes of domain D, and on the distance
from Γ0 to D. Then one of the main challenges is to apply our methods to realistic
data and compare recovered D with (geo) physical reality. Since the density of the
sea water is nearly constant, we have a fortunate situation of a known background.

Another challenge is to develop a suitable model for floating ice touching the
sea bottom, where ice can be identified from exterior gravity data, and to design
appropriate numerical methods for the related inverse problem.
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