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Abstract. We propose a fast local level set method for the inverse problem of gravime-
try. The theoretical foundation for our approach is based on the following uniqueness
result: if an open set D is star-shaped or x3-convex with respect to its center of grav-
ity, then its exterior potential uniquely determines the open set D. To achieve this
purpose constructively, the first challenge is how to parametrize this open set D as its
boundary may have a variety of possible shapes. To describe those different shapes we
propose to use a level-set function to parametrize the unknown boundary of this open
set. The second challenge is how to deal with the issue of partial data as gravimetric
measurements are only made on a part of a given reference domain Ω. To overcome
this difficulty, we propose a linear numerical continuation approach based on the sin-
gle layer representation to find potentials on the boundary of some artificial domain
containing the unknown set D. The third challenge is how to speed up the level set in-
version process. Based on some features of the underlying inverse gravimetry problem
such as the potential density being constant inside the unknown domain, we propose a
novel numerical approach which is able to take advantage of these features so that the
computational speed is accelerated by an order of magnitude. We carry out numerical
experiments for both two- and three-dimensional cases to demonstrate the effective-
ness of the new algorithm.
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1 Introduction

Let Ω be a domain in Rn with connected Rn\Ω̄ and let U(·;µ) be the potential of a
measure µ with respect to the kernel for the Laplacian operator. The inverse problem of
potential theory is formulated as follows [8]: find a measure µ with support contained
in Ω from its potential U(·;µ) in Rn\Ω. As stated, the solution to this problem is no-
toriously non unique. In gravimetry it is reasonable to assume that the measure µ is a
volume mass distribution with density f on an open set D (an open bounded subset of
Ω); moreover, in many realistic situations f is a known constant. Then, under some ge-
ometrical assumptions on the open set D one can claim its uniqueness for the inverse
problem.

As known, the inverse gravimetry problem is severely ill-posed [8], and many regu-
larization techniques have been proposed to obtain a conditionally well-posed problem
so as to solve this important inverse problem numerically. Most recently, the inverse
gravimetry problem with an unknown density f have been tackled in [1] by using the
total-variation regularization. Although the numerical reconstruction in [1] is successful
for some examples, the proposed methods in [1] may run into difficulties due to the pres-
ence of many local minima of the to-be-minimized non convex functional. We propose to
tackle the inverse gravimetry problem with density f =1 on an unknown open set D by
using the level set method. The theoretical foundation for our approach is the uniqueness
result presented in [8]: namely, if D is star-shaped with respect to its center of gravity or
x3-convex, then the exterior potential uniquely determines D. To achieve our purpose,
the first challenge is how to represent D. We propose to consider ∂D as the zero-level
set of a level-set function to be found. The level set method [13] is a powerful approach
for interface or shape-optimization problems, which can take care of interface merging
and topological changes automatically. The second challenge is how to deal with the
issue of partial data as the potential measurement is only made on a part of the whole
boundary of the computational domain. To overcome this difficulty, inspired by ideas
in [6] we propose a numerical continuation approach to obtain fictitious measurements
of the potential due to the unknown domain. The third challenge is how to speed up
the level set inversion process. Based on the features of the underlying inverse gravime-
try problem, we propose a novel approach to speed up the computational process by an
order of magnitude, so that we can carry out numerical experiments for both two- and
three-dimensional cases.

1.1 Related work

For inverse (obstacle) problems the level set method has been first used by Santosa [16].
Later on, there are many efforts to analyze this method and extend this beautiful idea to
a variety of inverse problems; see [2, 3, 7, 11, 19] and references therein.

The closest to our work is the recent interesting paper [18] in which a method based
on multiple level sets has been proposed for piecewise constant volume density recon-
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struction in highly ill-posed inverse potential problems. In [18] the authors assumed
(zero) Dirichlet boundary condition on ∂Ω, while ours does not make such an assump-
tion. Our formulation seems to be more suitable for geophysics. Although in [18] they
tested partial surface data, they did not use the numerical continuation approach to ob-
tain complete fictitious measurements on the boundary of a certain domain enclosing the
unknown target. In addition, they did not use the local level set method as we are using
in this work. Thus, our approach is different from theirs.

The rest of the paper is organized as follows. In Section 2, we introduce the inverse
problem of gravimetry and level set methods. In Section 3, we propose the numerical
method, including a fast local level-set implementation of the proposed approach. In Sec-
tion 4, we present the algorithm for carrying out numerical continuation based on partial
measurements on the surface. In Section 5 we give a variety of examples to demonstrate
the performance of the proposed method, including two- and three-dimensional cases.

2 Inverse problem of gravimetry and level set methods

2.1 Inverse gravimetry

The gravity force generated by mass distribution µ in a domain Ω⊂Rn is

∇xu(x;µ)=
∫

Ω
∇xK(x,y)dµ(y), (2.1)

where

K(x,y)=
1

4π|x−y| when n=3, and − 1

2π
ln|x−y| when n=2.

We will assume that µ is zero outside D̄, where D is some bounded open set, D̄ ⊂ Ω,
and Ω is a given open set. In most geophysical applications, Ω is a half-space or a ball.
Typical mass distributions are 1) µ= f dm (volume mass distribution of density f ∈L1, dm
is the Lebesgue measure), 2) µ= gdΓ (single layer distribution of density g∈L1(Γ) over a
Lipschitz surface Γ), and 3) µ=m1δ(−x(1))+···+mkδ(−x(k)) (point masses mj at points
x(j)).

The inverse problem of gravimetry is to find µ given ∇u(x;µ) on Γ0 ⊂ ∂Ω. We will
assume that µ is a volume distribution, in particular, µ = χDdy, which is the most geo-
physically realistic assumption. Then we can state the inverse problem of gravimetry as
follows: given the gravity data g on Γ0, solve the equation

∇u(·;χD)|Γ0
=g, (2.2)

to find D, where the data g∈L2(Γ0) is given on a part of the boundary: Γ0⊂∂Ω.

We have the following lemma from [8] in terms of continuation.
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Lemma 2.1. [8] Let Ω be a convex domain with analytic (regular) boundary, and Γ0 be a non
empty hyper surface contained in ∂Ω0. If measures µj are non negative and |∇U1|= |∇U2| on
Γ0, then U1 =U2 on Rn\Ω. Here Uj =U(·;µj), j=1,2.

A domain Ω in Rn is said to be star-shaped with respect to a point a is a∈Ω and the
intersection of any ray originated at a with Ω is an interval. An open set Ω is said to
be convex in x1 if the intersection of any straight line parallel to the x1-axis with Ω is an
interval [8]. We have the following uniqueness theorem from [8].

Theorem 2.1. [8] Suppose that either 1) D1 and D2 are star-shaped with respect to their centers
of gravity or 2) D1 and D2 are convex in x3. If U(·;χD1

)=U(·;χD2
) on Rn\Ω, then D1 = D2.

To make use of the uniqueness theorem, we first assume that the measurement is
made on the whole boundary, Γ0 = ∂Ω. Later on, based on the continuation lemma,
we will use numerical continuation to continue the partial measurement towards the
unknown domain so that we can construct a set of gravity data on the whole boundary
of a certain artificial domain enclosing the unknown D.

2.2 The level set method

To parameterize the unknown domain D, we will introduce a level set function φ∗ which
is Lipschitz continuous satisfying

φ∗(x)>0, for x∈D, (2.3a)

φ∗(x)=0, for x∈∂D, (2.3b)

φ∗(x)<0, for x∈ D̄c. (2.3c)

Then we can define the following operator according to the gravity force relation:

A(φ∗(x))=∇xu(x;χD)|Γ0
, (2.4a)

∇xu(x;χD)=
∫

D
∇xK(x,y)dy=

∫

Ω
∇xK(x,y)H(φ∗(y))dy, (2.4b)

where H is the Heaviside function.

Consequently, the inverse problem is stated as finding D represented by φ∗ such that
A(φ∗) = g. Furthermore, we will solve the following minimization problem to find φ∗

and thus D:

minF(φ)=min‖A(φ)−g‖2
L2(Γ0)

. (2.5)

To that end we compute the Frechet derivative of the functional F(φ) by using a varia-
tional approach [19]:

F(φ+h)−F(φ)=<
∂F

∂φ
,h>+O(h2). (2.6)
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To simplify the notation, we introduce

G(x;φ(·))=
∫

Ωz

∇xK(x,z) H(φ(z))dz−g(x). (2.7)

Then we have

F(φ+h)−F(φ)=
∫

Γ0

GT(x;(φ+h)(·))G(x;(φ+h)(·))dx−F(φ)

=
∫

Γ0

2GT(x;φ)

(

∫

Ωy

∇xK(x,y) H′(φ(y))h(y)dy

)

dx+O(h2)

=
∫

Ωy

(

∫

Γ0

2GT(x;φ)∇xK(x,y)dx

)

H′(φ(y))h(y)dy+O(h2). (2.8)

Hence the Frechet derivative of the functional F is:

∂F

∂φ
=

∫

Γ0

2GT(x;φ)∇xK(x,y)dxδ(φ(y)). (2.9)

The necessary condition for φ to be a minimizer is that

0=
∂F

∂φ
=

∫

Γ0

2G(x;φ)T∇xK(x,y)dx δ(φ(y)), (2.10a)

0=
1

|∇φ|
∂φ

∂n
, on ∂Ω, (2.10b)

where we have imposed the natural boundary condition for φ on the boundary Ω. If we
choose h=− ∂F

∂φ , which is the gradient descent direction, then the functional is decreasing

along the negative gradient direction. Thus we will evolve the following gradient flow
to the steady state to compute the minimizer:

∂φ

dt
=−∂F

∂φ
, (2.11a)

1

|∇φ|
∂φ

∂n
=0, on Γ0, (2.11b)

where φ = φ(x,t) with t being the artificial evolution time. We will take φ∗(x)= φ(x,∞)
and ∂D={x : φ∗(x)=0} which is the zero level set of φ∗.

3 Numerical methods

3.1 The algorithm

In this section, we first summarize the algorithm and then describe the numerical proce-
dures in solving the level set evolution.
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Algorithm:

1. Initialization. Initialize the level set function φ.

2. Compute the mismatch G(x) along the boundary Γ0 according to (2.7).

3. Compute the level set derivative of the energy according to (2.10).

4. Evolution. Evolve the level set function according to the gradient flow (2.11).

5. Reinitialization. Reinitialize the level set function to maintain the signed distance property.

6. Repeat 2-5 until it converges.

The first component is to compute the mismatch G(x;φ) between the measurements
g(x) and the numerical solution, given by (2.7) along the boundary Γ0. The Heavi-
side function H(φ) in the integrand is numerically approximated by the following ǫ-
Heaviside function Hǫ(φ),

Hǫ(φ)=











0, φ<−ǫ,
1
2 + φ

2ǫ + 1
2π sin

(

πφ
ǫ

)

, −ǫ≤φ≤ǫ,

1, ǫ<φ.

(3.1)

The integral is then computed by applying the simple midpoint quadrature rule on an
underlying uniform Cartesian mesh. Numerically, assuming that there are N mesh points
in each direction, the computational complexity of determining the mismatch G(x;φ) for
all x∈∂Ω is O(N3) for a 2-D case and O(N5) for a 3-D case.

Once we have the mismatch along the boundary, we back-propagate it into the com-
putational domain Ω by evaluating the convolution (2.10). This essentially provides the
normal velocity vn to the level sets. With N the number of grid points in each direction,
we have the computational complexity of this part given by O(N3) for a 2-D case and
O(N5) for a 3-D case. To speed up the algorithm, we can replace this full level set im-
plementation by the local level set method [14]. Since we only care about the location of
the zero level set, we modify the level set function only in a neighborhood of the zero
level set. To update this computational tube and maintain the signed distance property
of the level set function, we also solve the following reinitialization equation for several
τ steps [12, 15],

φ̃τ +Sǫ(φ)(|∇φ̃|−1)=0 (3.2)

with the initial condition

φ̃(τ =0)=φ, (3.3)

where Sǫ is the ǫ-signum function given by Sǫ(φ)=2Hǫ(φ)−1.

Both the gradient flow (2.11) and the reinitialization equation are Hamilton-Jacobi
equations. We apply the TVDRK3 [17] in the time direction and the WENO5 [9] for the
spacial derivative. This gives a high-order accurate solution to the time evolution. The
CFL condition for solving the Hamilton-Jacobi equation is given by dt < dx/max(vn) =
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O(1/N). We may also use other fast methods to solve the above Hamilton-Jacobi equa-
tions [4, 5, 10]

3.2 Fast implementation for computing the mismatch term (2.7)

As discussed in the last subsection, one of the most computationally expensive step in
the algorithm is to evaluate the integral in equation (2.7) for any x∈ Γ0. We propose an
O(N2(n−1)) algorithm for computing this integral by taking advantage of the fact that the
integrand is in fact zero for any z∈Ω\D.

3.2.1 Two-dimensional cases

For simplicity, we first consider the following two dimensional case where the kernel
K(x,z) =−ln|x−z|/(2π). Changing the variable from the Cartesian coordinates to the
polar coordinates centered at the point x∈Γ0, we have

∫

Ωz

∇xK(x,z) H(φ(z))dz =
1

2π

∫

{(r,θ):H(φ)≥0}

r·(cosθ,sinθ)

r2
rdrdθ (3.4a)

=
1

2π

∫

{(r,θ):H(φ)≥0}
(cosθ,sinθ)drdθ . (3.4b)

To numerically evaluate this integral, we will need two ingredients. The first one is an
efficient Cartesian-to-polar mapping of the level set function in (3.4a) which determines
the domain {(r,θ):H(φ)≥0} for the integration. The second one is an efficient quadrature
to sum up the integral (3.4b) in this polar coordinate system.

An efficient quadrature is readily available for the integral (3.4b) if for each θk, we
have an explicit representation of the set {(r,θk) : H(φ(r,θk)) ≥ 0}, i.e. the interval(s)
[ri

k,min,ri
k,max] (i = 1,··· ,ik), in which the level set function φ is positive. Then the compu-

tational complexity of this integral will be O(N) for each x if we discretize the θ-domain
using N grid points.

We propose the following strategy to determine the Cartesian-to-polar mapping which
will give [ri

k,min,ri
k,max] (i = 1,··· ,ik) for each θk. The first step is a pre-processing step to

convert the implicit level set representation into an explicit representation. We represent
the boundary of the target by connected segments [pm,pm+1] for m = 0,1,··· ,M =O(N)
with p0 = pM+1; this yields a polygon approximation to the boundary of the target.

An easy way to determine such explicit representation is to use the MATLAB function
contourc. For the most trivial implementation without using this implementation, one can
search all O(N2) cells and then determine this explicit representation. Even though the
computational complexity of this trivial implementation is O(N2), this pre-processing
step is only done once and will not increase the computational complexity of the overall
process.

Next, given x∈Γ0, we determine for each segment [pm,pm+1] if it intersects with any
of the polar axis: θ = θk (k = 1,··· ,N). This can be done by checking if ⌊θ(pm)/∆θ⌋ =
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⌊θ(pm+1)/∆θ⌋, where ⌊·⌋ is the integer part of the argument, θ(pm)= Arg(pm−x) is the
polar angle of the point pm represented in the polar coordinate system centered at the
point x, and ∆θ =2π/(N−1) is the mesh size in the θ-direction. If those two integers are
different, then it implies that the segment intersects with a certain polar axis θ = θk, and
we determine the location where they intersect; this yields an approximation to ri

k,min or

ri
k,max (i=1,··· ,ik), for k=⌊θ(pm+1)/∆θ⌋.

Therefore the whole algorithm to compute the integral in (2.7) for all x∈ Γ0 consists
of carrying out a pre-processing step (O(N2) operations), determining intervals for in-
tegration (N points on the boundary Γ0 and O(N) operations each), and carrying out a
trapezoidal summation (N points on the boundary Γ0 and O(N) operations each). This
yields an O(N2) algorithm for computing (2.7).

3.2.2 Three-dimensional cases

For the three dimensional case, we apply the spherical coordinates (ρ,ψ,θ) with the origin
at x, and the integral in (2.7) becomes

∫

Ω
∇xK(x,z) H(φ(z))dz=

1

4π

∫

{H(φ)≥0}
(sin2 ψcosθ,sin2ψsinθ,sinψcosφ)dρdψdθ. (3.5)

We can easily generalize the above two dimensional Cartesian-to-polar mapping to
the three dimension. The pre-processing step is to obtain an explicit representation of
the interface by patches of triangles. This surface triangulation can be done by using the
command isosurface in MATLAB. Other packages can also be used and the computational
complexity of this step can be at worst of O(N4) without altering the total computational
complexity of computing the integral everywhere on Γ0, where N is the number of grid
points in each dimension. The output from this pre-processing step is O(N2) triangles
with vertices vi which approximate the zero level set of φ.

For each point x on the boundary Γ0, we first construct a new coordinate system
to simplify our later computations. We translate the Cartesian coordinate system to be
centered at the point x; then we construct the Householder reflector,

H = I−2
ṽṽT

ṽTṽ
, (3.6)

where ṽ=||v̄||e2−v̄ and v̄=∑i vi/∑i1 is the centroid of the vertices from the triangulation.
With this reflector, we obtain a Cartesian coordinate system so that x is now at the origin
and the ỹ-axis, the new y-axis, points at the centroid of the vertices.

The next step in computing the integral (3.5) is to discretize the θ−ψ space and then
to determine ri,j,min and ri,j,max for each θ = θi and ψ = ψj. First we apply the spherical
coordinates and project each of the above triangles onto the θ−ψ space. Now if the
observation point x∈ Γ0 lies outside the zero level set, the translation and reflection we
proposed above will guarantee that all projected triangles will give θ∈(0,π) and ψ∈(0,π)
rather than θ∈[0,2π) in the original spherical coordinate system. This simplifies our later
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implementation since we need not worry about the 2π periodicity in the representation
using the spherical coordinates. The projection of a triangulated surface in R

3 onto the
θ−ψ space is still a triangle. If this projected triangle contains any of (θi′ ,ψj′), we then
determine the distance between x and the triangulated surface in the direction (θi′ ,ψj′).
This would give an approximation to ri′ ,j′,min or ri′,j′,max such that φ(θi′ ,ψj′ ,r)=0. For each
observation point x on the boundary Γ0, the computational complexity to determine all
ri,j is therefore of O(N2), the same order of the number of triangulated surfaces. Once
we sweep through all triangles, we can approximate the integral (2.7) evaluated at x∈Γ0

with an extra O(N2) operations using the Trapezoidal rule in the θ−ψ space. Therefore,
the overall computational complexity of evaluating (2.7) everywhere on the boundary is
O(N4), which is one order of magnitude lower than the full implementation in Section
3.1.

4 Partial measurements and numerical continuation

In the above discussions, we have assumed that the measurements are given everywhere
on the boundary of the domain. However, the derivation carries through directly to the
situation where measurements are made only on a portion of Γ0 = ∂Ω. Suppose that we
have only partial data on γ along the boundary Γ0; see marked points in Fig. 1. Nev-
ertheless, the uniqueness theorem guarantees uniqueness only when we have the full
measurement on the whole boundary of Γ0 = ∂Ω. To overcome this difficulty, we use
Lemma 2.1 to carry out an analytical continuation numerically.

Referring to Fig. 1, we first represent the partial measurement due to the unknown
domain as an equivalent single-layer potential due to an unknown surface density on the

Figure 1: Illustration of numerical continuation.
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surface Γ; then we try to reconstruct the surface density on Γ from the partial measure-
ment on γ⊂Γ0 = ∂Ω; finally we use the reconstructed surface density on Γ to obtain the
“fictitious” full measurement on Γ1 due to the unknown domain. Then the inversion will
be based on the data on Γ1. Such a numerical continuation has been used in [6].

According to the single layer potential theory for the Laplacian operator, we have for
any x outside the domain enclosed by Γ,

u(x)=
∫

Γ
f (y)K(x,y)dΓ, (4.1)

where f (y) is the potential density to be determined due to the unknown target. To de-
termine f (y) we use the measurement data on the top boundary for x∈γ⊂Γ0. However,
this will be an extremely ill-posed problem because it is a Fredholm integral equation of
the first kind. We use the Singular Value Decomposition (SVD) to solve this equation to
obtain f at some discrete points. Once we have f at those discrete points, we can use the
expression to compute u on Γ1 outside the domain enclosed by Γ.

Numerically, we discretize Eq. (4.1) using

∇xu(xi)=h∑
j

f j∇xK(xi,yj). (4.2)

Here xi ∈ γ are locations where we have measurements, yj ∈ Γ, and the mesh size h =
∆x = ∆y. This implies that the system of linear equations Kf = u, where the matrix K is
under-determined. We apply SVD to compute the least-squares solution to this system.
We decompose K= USVT, where S is a diagonal matrix, and U and V are unitary. To
regularize the computations, we construct the pseudo-inverse for the diagonal matrix S
to obtain T =[ti,j] by

ti,i =

{

1/si,j, if si,j >ǫSVD,
0, otherwise.

Then the least-squares solution is obtained by f = VTUTu. Once we have f j, we can
determine u(xk) for xk∈Γ1 and use these data as measurements for the level set algorithm
as designed above.

5 Numerical examples

Unless otherwise specified, we have discretized the two-dimensional computational do-
main Ω2 = [0,1]2 using 65 mesh points in each direction and the three-dimensional do-
main Ω3 = [0,1]3 using 333 mesh points. The initial zero level set is a circle centered at
xc = (xc,yc) = (0.5,0.5) with radius r = 0.45 for two dimensional cases and is a sphere
centered at xc = (xc,yc,zc) = (0.5,0.5,0.5) with the same radius r = 0.45 for the three-
dimensional cases. The corresponding level set function can be easily assigned at each
grid location by

φ(x)= r−||x−xc ||2. (5.1)
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Such an initial guess is based on a rough estimate where the target is located so that
the initial zero level set encloses the target; otherwise, the level set method may fail. As
long as the initial zero level set encloses the target, the level set method is not sensitive to
the specific location of the zero level set.

5.1 Two-dimensional cases

5.1.1 Ellipsoidal target

In this computation test, we use the following benchmark example in which the gravity
force of D is given by a simple formula. Let D be the ellipse a−2

1 x2
1+a−2

2 x2
2 < 1, where

0< a2 ≤ a1 are to be chosen. As shown in [8], page 99,

∂u(x;χD)=− a1a2

2(x+
√

x2−e2)
=− a1a2

2e2
(x−

√

x2−e2), x∈R2\D, (5.2)

where we complexify x as x1+ix2 so that ∂= 1
2 (∂1−i∂2), and e=

√

a2
1−a2

2. Thus we identify

R2 with C, and use multiplication in C.
We use the branch

√
z2−e2 of the many-valued function on C\[−e,e] fixed by the

requirement
√

e2 = e. The real-valued form of this formula would be

∇u(x;χD)=− a1a2

e2

(

x1−y1,−x2+
x1x2

y1

)

, (5.3)

where y1,y2 are (signed) solutions to the equation
√

x2−e2 = y1+iy2 so that sign(x1) =
sign(y1), or

x2
1−x2

2−e2 =y2
1−y2

2 , x1x2 =y1y2.

By using the branch condition
√

z2 = z, we have

y1 =sign(x1)

√

1

2

(

x2
1−x2

2−e2+
√

(x2
1−x2

2−e2)2+4x2
1x2

2

)

. (5.4)

In the following, we take a1 =0.3 and a2 =0.15.
First, we assume that data collection is carried out along the whole boundary of the

computational domain; namely, we have a complete set of data measurement along the
whole boundary. To test robustness and stability of the level set algorithm, we will use
measurement with different levels of noise: 0% noise (clean measurement), 10% noise
and 20% noise.

Fig. 2 shows the results in the case of measurement with 0% noise, where the com-
plete, clean measurement is given by the analytical expression (5.3). The zero level set at
various stages of evolution are shown in Fig. 2, where the elliptic target is plotted in red
centered at (x1,x2)=(0.5,0.5) and the initial level set is drawn in blue. As we can see, the
steady state solution to the level set evolution matches with the target very well.



V. Isakov, S. Leung and J. Qian / Commun. Comput. Phys., 10 (2011), pp. 1044-1070 1055

(a) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: (Ellipsoidal Target) Complete clean measurements.
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Figure 3: (Ellipsoidal Target) Complete measurements with 10% noise.
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Figure 4: (Ellipsoidal Target) Complete measurements with 20% noise.

Fig. 3 shows the results in the case of measurement with 10% noise, where the com-
plete, clean measurement is given by the analytical expression (5.3). The zero level set at
various stages of evolution are shown in Fig. 3, where the elliptic target is plotted in red
centered at (x1,x2)=(0.5,0.5) and the initial level set is drawn in blue. As we can see, the
steady state solution to the level set evolution matches with the target reasonably well.

Fig. 4 shows the results in the case of measurement with 20% noise, where the com-
plete, clean measurement is given by the analytical expression (5.3). The zero level set at
various stages of evolution are shown in Fig. 4, where the elliptic target is plotted in red
centered at (x1,x2)=(0.5,0.5) and the initial level set is drawn in blue. As we can see, the
steady state solution to the level set evolution matches with the target with reasonably
accuracy, given the high-level noise.

Next we assume that data collection is only carried out along a part of the bound-
ary; namely, we only have partial measurement along the boundary. We consider two
possible strategies to use this partial measurement. One strategy is to use this partial
measurement directly in the inversion process, as our level set formulation allows us to
do so with slight change in terms of implementation. The other strategy is to carry out
a numerical continuation by using the partial measurement as shown in Section 4 so as
to obtain a complete set of data along the whole boundary of a fictitious domain which
encloses the unknown domain.

We apply both strategies to two sets of partial measurements: 1) the measurement
is made on {(x,y) : x ∈ [0.25,0.75],y = 1}; 2) the measurement is made on {(x,y) : x ∈
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Figure 5: (Ellipsoidal Target) (a) The solution using measurements directly on {(x,y) : x∈ [0.25,0.75],y = 1}.
(b) The solution using measurements directly on x∈ [0,1] and y=1. (c) The solution using measurements from
numerical continuation using data on {(x,y) : x∈ [0.25,0.75],y=1}. (d) The solution using measurements from
numerical continuation using data on {(x,y) : x∈ [0,1],y=1}.
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Figure 6: (Ellipsoidal Target) The solution of
ellipsoidal targets of different size using mea-
surements from numerical continuation using
data on {(x,y) : x∈ [0,1],y = 1}. Figure (a) is
the same as Fig. 5(d).
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Figure 7: (Ellipsoidal Target) (a) The solution using measurements with 1% noise from numerical continuation
using data on {(x,y) : x ∈ [0,1],y = 1}. (b) The solution using measurements with 5% noise from numerical
continuation using data on {(x,y) : x∈ [0,1],y=1}. (c) The solution using measurements with 10% noise from
numerical continuation using data on {(x,y) : x∈ [0,1],y=1}. (d) The solution using measurements with 20%
noise from numerical continuation using data on {(x,y) : x∈ [0,1],y=1}.
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Figure 8: (Ellipsoidal Target) The solution of
the ellipsoidal target with different sizes using
measurements with 10% noise from numerical
continuation using data on {(x,y) :x∈ [0,1],y=
1}. Figure (a) is the same as Fig. 7(c).
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[0,1],y=1}. In the numerical continuation, the threshold ǫSVD in the SVD regularization
is 10−10maxi σi, where σi are the singular values of the matrix K; the interface Γ used in
numerical continuation as shown in Fig. 1 is chosen to be

√

(x−0.5)2+(y−0.5)2 =0.375,
which is further discretized with 4(N−1) points (N the number of grid points of the
underlying Cartesian mesh in each direction), and the interface Γ1 in Fig. 1 is chosen to be
max(|x−0.5|,|y−0.5|)=0.4375. Fig. 5 shows the corresponding results. As we can see, the
strategy based on numerical continuation makes significant differences in the inversion
results in comparison to the strategy based on directly using the partial measurement.

To further test the effectiveness of numerical continuation and the resolution of the
level set formulation, we decrease the size of the unknown target in the setting of the par-
tial measurement on the boundary where {(x,y) : x∈ [0,1],y=1}. Fig. 6 shows the results,
where the computational setup in terms of numerical continuation is the same as in Fig. 5;
namely, the interface Γ as shown in Fig. 1 is chosen to be

√

(x−0.5)2+(y−0.5)2 =0.375,
which is further discretized with 4(N−1) points (N the number of grid points of the
underlying Cartesian mesh in each direction), and the interface Γ1 in Fig. 1 is chosen
to be max(|x−0.5|,|y−0.5|) = 0.4375; the threshold ǫSVD in the SVD regularization is
10−10maxi σi, where σi are the singular values of the matrix K. As we can see, the resolu-
tion degrades as the target becomes smaller.

We also consider partial measurement with different levels of noise using the strategy
of numerical continuation. The partial measurement is made on the boundary where
{(x,y):x∈[0,1],y=1}, and we add 1%, 5%, 10% and 20% noise to the partial measurement.
Afterwards, we apply the numerical continuation procedure to the polluted data, and the
setup for numerical continuation is the same as in Fig. 5; namely, the interface Γ is chosen
to be

√

(x−0.5)2+(y−0.5)2 = 0.375, the interface Γ1 is chosen to be max(|x−0.5|,|y−
0.5|)=0.4375, and the threshold ǫSVD in the SVD regularization is 10−1maxi σi, where σi

are the singular values of the matrix K. Fig. 7 shows the results. As we can see, increasing
level of noise does degrade the resolution, but we are still able to capture the target with
reasonable accuracy.

To further test our algorithm based on numerical continuation, we also decrease the
size of the unknown target in the setting of polluted data. The partial measurement
is made on the boundary where {(x,y) : x ∈ [0,1],y = 1}, and we add 10% noise to the
partial measurement. Afterwards, we apply the numerical continuation procedure to
the polluted data. Fig. 8 shows the results, where the computational setup in terms of
numerical continuation is almost the same as in Fig. 5, but the threshold ǫSVD in the SVD
regularization is 10−1maxi σi, where σi are the singular values of the matrix K. As we can
see, in this case the resolution degrades as the target becomes smaller.

5.1.2 Disjoined targets

A very nice property of the level set method is the ability to naturally model the topolog-
ical change in any interface evolution. By using disjoined targets, we will demonstrate
the advantage of formulating the inverse problem using the level set formulation. The
unknown domain consists of two disks centered at (0.5±0.25,0.5). To obtain full or par-
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Figure 9: (Two disks) Complete clean measurements.
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Figure 10: (Two disks) Complete measurements with 10% noise.

tial measurement g(x), we will use formula (2.4b) with the exact φ∗ such that H(φ∗) is
the characteristic function of the two disks.

First, we assume that data collection is carried out along the whole boundary of the
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Figure 11: (Two disks) Complete measurements with 20% noise.
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Figure 12: (Two disks) (a) The solution using measurements from numerical continuation using data on
{(x,y) : x∈ [0.25,0.75],y=1}. (b) The solution using measurements from numerical continuation using data on
{(x,y) : x∈ [0,1],y=1}.

computational domain; namely, we have a complete set of data measurement along the
whole boundary. To test robustness and stability of the level set algorithm, we will use
measurement with different levels of noise: 0% noise (clean measurement), 10% noise
and 20% noise.

Fig. 9 shows the results in the case of measurement with 0% noise. The zero level set
at various stages of evolution are shown in Fig. 9, where the two-disk target is plotted in
red and the initial level set is drawn in blue. As we can see, the steady state solution to the
level set evolution matches with the target very well, and the initial one single zero-level
curve is split into two zero-level curves as time evolves.

Fig. 10 shows the results in the case of measurement with 10% noise. The zero level set
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at various stages of evolution are shown in Fig. 10, where the two-disk target is plotted
in red and the initial level set is drawn in blue. As we can see, the steady state solution to
the level set evolution matches with the target reasonably well, and the initial one single
zero-level curve is split into two zero-level curves as time evolves.

Fig. 11 shows the results in the case of measurement with 20% noise. The zero level set
at various stages of evolution are shown in Fig. 11, where the two-disk target is plotted
in red and the initial level set is drawn in blue. As we can see, the steady state solution to
the level set evolution matches with the target well, and the initial one single zero-level
curve is split into two zero-level curves as time evolves.

Next we assume that data collection is only carried out along a part of the bound-
ary; namely, we only have partial measurement along the boundary. Then we carry out
numerical continuation by using the partial measurement as shown in Section 4 so as
to obtain a complete set of data along the whole boundary of a fictitious domain which
encloses the unknown domain. We apply this strategy to two sets of partial measure-
ments: 1) the measurement is made on {(x,y) : x ∈ [0.25,0.75],y = 1}; 2) the measure-
ment is made on {(x,y) : x∈ [0,1],y = 1}. In numerical continuation, the threshold ǫSVD

in the SVD regularization is 10−10maxi σi, where σi are the singular values of the ma-
trix K; the interface Γ used in numerical continuation as shown in Fig. 1 is chosen to
be

√

(x−0.5)2+(y−0.5)2 = 0.375, which is further discretized with 4(N−1) points (N
the number of grid points of the underlying Cartesian mesh in each direction), and the
interface Γ1 in Fig. 1 is chosen to be max(|x−0.5|,|y−0.5|)=0.4375. Fig. 12 shows the cor-
responding results. As we can see, the strategy based on numerical continuation yields
inversion results which matches with the target disks very well.

5.1.3 A star-shaped target

Next we consider a star-shaped unknown domain. Fig. 13 shows the solutions with
complete measurements, and partial measurements on the boundary of {(x,y) : x ∈
[0.25,0.75],y=1}, respectively. As we can see from Fig. 13, the algorithm yields reasonable
solutions near the region where the measurements are made.

5.2 Three-dimensional cases

The level set approach can be easily extended to higher dimensions.

5.2.1 3-D Ellipsoidal target

We consider an ellipsoid target in three dimension and the measurement is made on the
whole boundary of the cube [0,1]3. Fig. 14 shows our solutions at various iteration steps
(a-e). It converges to the exact solution very well after very few iterations (30 iterations)
and with relatively coarse mesh (33 grid points in each direction).
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Figure 13: (Star-shaped target) (a) The solution using 129 grid points with complete measurements. (b) The
solution based on measurements from numerical continuation using data on {(x,y) : x∈ [0.25,0.75],y=1}, 129
grid points in each direction and 512 points to discretize Γ1.

(a) (b)

(c) (d)

(e) (f)

Figure 14: (Ellipsoidal Target in 3D) The solutions at various iterations using measurements on (x,y,z)∈∂[0,1]3,
33 grid points in each direction. The exact solution is plotted in (f).
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Figure 15: (Two spheres in 3D) The solutions at various iterations using measurements on (x,y,z)∈∂[0,1]3, 33
grid points in each direction. The exact solution is plotted in (f).

5.2.2 Two spheres

We consider a case in which the target consists of two spheres. To validate the algorithm,
we will consider three different sets of data measurements: the complete measurement
on the whole boundary of the unit cube [0,1]3, the fictitious measurement based on nu-
merical continuation of the partial data given on the surface z=1, and the fictitious mea-
surement based on numerical continuation of the partial data of 5% noise given on the
surface z=1.

The numerical continuation is carried out in the following way as illustrated in Fig. 1:
the interface Γ is chosen to be

√

(x−0.5)2+(y−0.5)2+(z−0.5)2 = 0.375, which is dis-
cretized by 6(N−1)2 points with N the number of grid points of the underlying Cartesian
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Figure 16: (Two spheres in 3D) The solution using measurements from numerical continuation using data

on the surface {(x,y,z) : (x,y) ∈ [0,1]2,z = 1}, 33 grid points in each direction and 1002 points to discretize
Γ1 ={(θ,ψ)∈ [0,2π)×[0,π]}. Solutions at various iterations. The exact solution is plotted in (f).

mesh in each direction, and Γ1 is chosen to be max(|x−0.5|,|y−0.5|,|z−0.5|)=0.4375.

Fig. 15 shows the results based on the complete measurements on the whole boundary
of the unit cube. As we can see, the inversion result matches with the exact solution very
well.

Fig. 16 shows the results based on numerical continuation using the data on the sur-
face {(x,y,z) : (x,y)∈ [0,1]2 ,z = 1}. As we can see, the inversion result matches with the
exact solution pretty well.

Fig. 17 shows the results based on numerical continuation using the data of 5% noise
on the surface {(x,y,z) : (x,y)∈ [0,1]2 ,z =1}. As we can see, the inversion result matches
with the exact solution in a decent way.
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Figure 17: (Two spheres in 3D) The solution using measurements from numerical continuation using 5% noisy

data on the surface {(x,y,z) : (x,y)∈ [0,1]2,z=1}, 33 grid points in each direction and 1002 points to discretize
Γ1 ={(θ,ψ)∈ [0,2π)×[0,π]}. Solutions at various iterations. The exact solution is plotted in (f).

5.2.3 Two cubes

We consider a case in which the target consists of two cubes. To validate the algorithm,
we will consider three different sets of data measurements: the complete measurement
on the whole boundary of the unit cube [0,1]3, the fictitious measurement based on nu-
merical continuation of the partial data given on the surface z=1, and the fictitious mea-
surement based on numerical continuation of the partial data of 5% noise given on the
surface z=1.

The numerical continuation is carried out in the following way as illustrated in Fig. 1:
the interface Γ is chosen to be

√

(x−0.5)2+(y−0.5)2+(z−0.5)2 = 0.375, which is dis-



V. Isakov, S. Leung and J. Qian / Commun. Comput. Phys., 10 (2011), pp. 1044-1070 1067

(a) (b)

(c) (d)

(e) (f)

Figure 18: (Two cubes in 3D) The solutions at various iterations using measurements on (x,y,z)∈ ∂[0,1]3, 33
grid points in each direction. The exact solution is plotted in (f).

cretized by 6(N−1)2 points with N the number of grid points of the underlying Cartesian
mesh in each direction, and Γ1 is chosen to be max(|x−0.5|,|y−0.5|,|z−0.5|)=0.4375.

Fig. 18 shows the results based on the complete measurements on the whole boundary
of the unit cube. As we can see, the inversion result matches with the exact solution very
well.

Fig. 19 shows the results based on numerical continuation using the data on the sur-
face {(x,y,z) : (x,y)∈ [0,1]2 ,z = 1}. As we can see, the inversion result matches with the
exact solution pretty well.

Fig. 20 shows the results based on numerical continuation using the data of 5% noise
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(a) (b)

(c) (d)

(e) (f)

Figure 19: (Two cubes in 3D) The solutions at various iterations using measurements from numerical continu-

ation using data on the surface {(x,y,z) : (x,y)∈ [0,1]2,z=1}, 33 grid points in each direction and 1002 points
to discretize Γ1 ={(θ,ψ)∈ [0,2π)×[0,π]}. The exact solution is plotted in (f).

on the surface {(x,y,z) : (x,y)∈ [0,1]2,z =1}. As we can see, the inversion result matches
with the exact solution in a decent way.

6 Conclusion

We proposed a fast local level set method for the inverse problem of gravimetry to re-
cover open sets from their exterior volume potentials. To achieve this purpose, we have
used the level set method, numerical continuation, and a novel approach for evaluating



V. Isakov, S. Leung and J. Qian / Commun. Comput. Phys., 10 (2011), pp. 1044-1070 1069

(a) (b)

(c) (d)

(e) (f)

Figure 20: (Two cubes in 3D) The solutions at various iterations using measurements from numerical continu-

ation using data of 5% noise on the surface {(x,y,z) : (x,y)∈ [0,1]2,z=1}, 33 grid points in each direction and

1002 points to discretize Γ1 ={(θ,ψ)∈ [0,2π)×[0,π]}. The exact solution is plotted in (f).

an integral associated with the inversion process. We have carried out numerical experi-
ments for both 2-D and 3-D cases to demonstrate the effectiveness of the new algorithm.
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