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An adaptive finite-difference method for traveltimes
and amplitudes

Jianliang Qian∗ and William W. Symes‡

ABSTRACT

The point-source traveltime field has an upwind sin-
gularity at the source point. Consequently, all formally
high-order, finite-difference eikonal solvers exhibit first-
order convergence and relatively large errors. Adaptive
upwind finite-difference methods based on high-order
Weighted Essentially NonOscillatory (WENO) Runge-
Kutta difference schemes for the paraxial eikonal equa-
tion overcome this difficulty. The method controls er-
ror by automatic grid refinement and coarsening based
on a posteriori error estimation. It achieves prescribed
accuracy at a far lower cost than does the fixed-grid
method. Moreover, the achieved high accuracy of trav-
eltimes yields reliable estimates of auxiliary quantities
such as take-off angles and geometric spreading factors.

INTRODUCTION

Many finite-difference methods have been introduced to
compute the traveltime for isotropic media directly on reg-
ular grids (Reshef and Kosloff, 1986; Vidale, 1988; Podvin and
Lecomte, 1991; van Trier and Symes, 1991; Qin et al., 1992;
Schneider et al., 1992; Schneider, 1995; El-Mageed et al., 1997;
Popovici and Sethian, 1997; Kim and Cook, 1999). The travel-
time field is mostly smooth, suggesting that high-order, finite-
difference methods should be effective. The use of upwind
differencing in all of the cited methods confines the errors to
singularities which develop away from the source point. How-
ever, the source point itself is an upwind singularity. The trunca-
tion error of a pth-order method is dominated by the product of
(p+ 1) derivatives of the traveltime field and the (p+ 1) power
of the step(s). The (p+ 1) derivatives of the traveltime field,
however, behave like the (−p+ 1) power of the distance to the
source, since in the constant-velocity case traveltime is equal
to distance divided by velocity. Therefore, near the source—
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when the distance is on the order of the step—the truncation
error is quadratic in the step, i.e., first order. This inaccuracy
spreads throughout the computation and renders all higher-
order methods first-order convergent. Moreover, the resultant
inaccuracy in traveltime prevents reliable computation of aux-
iliary quantities such as take-off angles and amplitudes.

This inaccuracy affects all point-source traveltime compu-
tations using gridded eikonal solvers. In the few published
convergence tests, implementers have resorted to imposing a
grid-independent region of constant velocity near the source
in which the traveltimes are initialized analytically. This is the
approach taken by Sethian (1999) in demonstrating second-
order convergence for a version of his fast marching method.
The approach has two obvious drawbacks: (1) the velocity may
not be homogeneous near the source and (2) the size of the re-
gion of analytic computation must be set by the user and bears
no obvious relation to the grid parameters. In principle, highly
accurate ray-tracing methods could be used to alleviate the first
difficulty, but the second remains: it introduces an arbitrary pa-
rameter into the use of eikonal solvers. Kim and Cook (1999)
take a different approach, similar to the one we advocate. They
refine the grid several times near the source so the reduced
grid spacing compensates for the increased truncation error.
However, their grid refinement strategy appears to be adhoc,
and it once again involves an arbitrary parameter—namely, the
number of grid refinements near the source—without a clear
selection criterion.

In this paper, we show how to use adaptive-gridding concepts
commonplace in the numerical solution of ordinary differen-
tial equations (Gear, 1971) to resolve the difficulty caused by
this inaccuracy. Adaptive gridding has already been used in
numerical solutions of PDEs (Berger and Oliger, 1984; Berger
and LeVeque, 1998). Generally, the grid refinement must be
localized in several dimensions, leading to complex data struc-
tures. Fortunately, the nature of the traveltime field permits
a relatively straightforward adaptive gridding strategy (Belfi
and Symes, 1998). The present work improves that of Belfi and
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Symes through the use of the more accurate Weighted Essen-
tially NonOscillating (WENO) difference scheme and extends
it to solutions of advection equations for various geometric
acoustics quantities. The efficiencies achieved by the adaptive
gridding are considerable—usually more than an order of mag-
nitude reduction in computation time for problems of typical
exploration size, compared to fixed-grid methods giving the
same level of accuracy. We also obtain dramatic improvements
in the accuracy of computed geometric acoustics quantities,
such as take-off angles and geometric amplitudes.

The essential principle of adaptive gridding is simple. It is
based on a hierarchy of difference schemes of various orders.
Presumably a higher-order step is more accurate than a lower-
order step, so the higher-order step can serve as a substitute
for the exact solution when evaluating the local error in the
lower-order step. Therefore, one can combine the step compu-
tations of two different orders to obtain a so-called a posteri-
ori estimate of the truncation error for the lower-order step.
Since the lower- and higher-order truncation errors stand in
a known asymptotic relation, this permits an estimate of the
higher-order truncation error as well. The asymptotic form
of the truncation error then permits prediction of a step that
will result in a lower-order truncation error less than a user-
specified tolerance. As long as the steps are selected to maintain
this local error, standard theory predicts that the higher-order
global error, i.e., the actual error in the solution computed us-
ing the higher-order scheme, will be proportional to the user-
specified tolerance. This straightforward idea is embedded in
most modern software packages for solutions of ordinary dif-
ferential equations (ODEs) (Gear, 1971). Its use for partial
differential equations (PDEs) is a little more complicated be-
cause it is usually necessary to adjust the grid of the nonevolu-
tion variables along with the evolution step. As first established
by Belfi and Symes (1998), the solution of the (paraxial) eikonal
equation changes in a sufficiently predictable way to make grid
adjustment practical.

The paper begins with a description of paraxial eikonal equa-
tions for traveltimes. Then we formulate the advection equa-
tion for take-off angles and present the amplitude formulas for
a 2-D line source and point source. We briefly describe numeri-
cal schemes needed in the adaptive gridding approach, present-
ing the details in Appendix A. With these ingredients in place,
we introduce the adaptive gridding principle for the eikonal
equation with a point source and present a simple implemen-
tation. Numerical experiments demonstrate that the new ap-
proach gives us not only accurate traveltime fields but accurate
amplitude fields as well. We conclude with some discussion on
adaptive gridding in the 3-D case.

PARAXIAL EIKONAL EQUATIONS

The traveltime field in an isotropic solid satisfies an eikonal
equation. Denote by (xs, zs) the coordinates of a source point
and by (x, z) the coordinates of a general point in the sub-
surface. The first-arrival traveltime field τ (x, z; xs, zs) is the
viscosity solution of the eikonal equation (Lions, 1982),(
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where v is velocity and s= 1/v is slowness.
In some seismic applications, the traveltime field is needed

only in regions where

∂τ

∂z
≥ scos θmax > 0,

i.e., along downgoing, first-arriving rays making an angle ≤
θmax <π/2 with the vertical. To enforce this condition, we mod-
ify the eikonal equation as an evolution equation in depth
(Gray and May, 1994):
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where a> 0 (Qian et al., 1999).
Equation (2) defines a stable nonlinear evolution in z, sui-

table for explicit finite-difference discretization. The smoo-
thed max function makes the numerical Hamiltonian smooth
enough to carry out standard truncation error analysis for
schemes of up to third-order accuracy. The solution τ is
identical to the solution of the eikonal equation provided that
the ray makes an angle ≤ θmax <π/2 with the vertical. If the
ray makes an angle>θmax with the vertical, the corresponding
wavefront is replaced by an artificial plane wave.

ADVECTION EQUATIONS FOR TAKE-OFF ANGLES

Based on the traveltime computed by solving the eikonal
equation, we can approximate the amplitude field by solving a
transport equation. The amplitude satisfies the following trans-
port equation (Cerveny et al., 1977):

∇τ · ∇A+ 1
2

A∇2τ = 0. (3)

Equation (3) is a first-order advection equation for the ampli-
tude A. The Laplacian of the traveltime field is involved in this
advection equation, which implies that we need a third-order
accurate traveltime field to get a first-order accurate amplitude
field (Symes, 1995; El-Mageed et al., 1997).

For convenience in the following presentation, we intro-
duce the ray coordinates. The ray coordinates are defined by
(τ, φ)= (τ (x, z; xs, zs), φ(x, z; xs, zs)), where τ and φ are the
traveltime and take-off angle of a ray from source point (xs, zs)
to a general point (x, z) in the subsurface. In 2-D isotropic me-
dia with line sources, the amplitude also satisfies the formula
(Cerveny et al., 1977; Friedlander, 1958)

A = v

2π
√

2

√
|∇τ ×∇φ|, (4)
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where ∇φ and ∇τ are the gradients of the take-off angle and
the traveltime, respectively.

Since the take-off angle φ is constant along any ray,

∇τ · ∇φ = ∂τ

∂x

∂φ

∂x
+ ∂τ
∂z

∂φ

∂z
= 0. (5)

That is, the wavefront normal ∇τ is tangential to the ray; the
gradient ∇φ is tangential to the wavefront. Equation (5) is
slightly easier to solve numerically than equation (3) because
no second-order traveltime derivatives are explicitly involved
in equation (5). Having solved equation (5) forφ, one produces
the amplitude A through equation (4).

Since the typical seismic source is a point source, we need
to compensate for the out-of-plane radiation in the 2-D line-
source amplitude formula. The 2-D amplitude with a point
source (2.5-D amplitude) can be computed by

A = v

4π

√
τyy|∇τ ×∇φ|, (6)

where the out-of-plane curvature τyy satisfies another advec-
tion equation (Symes et al., 1994),

∂τ

∂x

∂τyy

∂x
+ ∂τ
∂z

∂τyy

∂z
+ τ 2

yy = 0. (7)

Supposing that the amplitude is required to be first-order ac-
curate, the two gradients∇τ and∇φ involved in the amplitude
formulas should have at least first-order accuracy. However,
because after discretization of equation (5) ∇φ depends on
second-order derivatives of traveltime τ , it implies that to get
a first-order accurate ∇φ the traveltime τ itself should have at
least third-order accuracy. The final conclusion is that a third-
order traveltime solver is required to get first-order accurate
amplitudes, as noted before.

Zhang (1993) uses equation (6) in polar coordinates to com-
pute the geometric spreading factor, but his computation of
the take-off angle is based on the first-order traveltime field.
Consequently, the gradient of take-off angle computed by his
scheme is inaccurate. Vidale and Houston (1990) encounter a
similar difficulty.

FINITE-DIFFERENCE SCHEMES

The literature suggests a large number of competing finite-
difference and related schemes to solve the eikonal equa-
tion. We use the Essentially NonOscillatory (ENO) schemes
(Osher and Sethian, 1988; Osher and Shu, 1991) and the re-
lated Weighed ENO (WENO) schemes (Liu et al., 1994; Shu,
1998; Jiang and Peng, 2000) for the following reasons: (1) sta-
ble schemes of arbitrarily high-order accuracy exist, permitting
accurate solutions on coarse grids (a factor critical to the mesh
refinement or coarsening) and (2) versions exist in any dimen-
sion so that we can straightforwardly extend our methodology
to the 3-D case (El-Mageed et al., 1997; Kim and Cook, 1999).

All of these schemes take the form of recursive depth step-
ping rules:

τ ← τ + δn
nτ, (8)

z← z+1z. (9)

Here, δn
n is a nonlinear update operator expressing the WENO–

Runge-Kutta rule of order n, defining a difference scheme of

formal nth-order accuracy and depending on 1z, 1x, and the
slowness field s. Since we want to emphasize the strategy of
the adaptive gridding approach, we put the detailed form of δn

n

(n= 2, 3) in Appendix A.
Similarly, we solve the advection equation for the take-off

angle φ and the out-of-plane curvature τyy by using WENO
schemes.

ADAPTIVE GRIDDING IMPLEMENTATION

To initialize our algorithm, the user supplies a local error
tolerance ε; σ1 and σ2 are two user-defined positive func-
tions of ε to control coarsening and refinement. For exam-
ple, we can take σ1= 0.1ε and σ2= ε. We use the second-
and third-order eikonal solvers [equations (A-1) and (A-2)]
and estimate the truncation error of the second-order scheme
as e2= max |δ2

2τ − δ3
3τ | over the current depth. As long as

σ1(ε) ≤ e2 ≤ σ2(ε) at every point of the current depth level, we
simply proceed to the next step. It is well known (Gear, 1971)
that for ordinary differential equations, an efficient adaptive
stepping requires rather loose control of the local error. Hence,
the factor of 10 difference between σ1 and σ2 is reasonable and
works pretty well in practice. When e2 <σ1(ε), we increase the
step by a factor of two, i.e.,1z← 21z, and we recompute the τ
update and e2. Similarly, when e2 >σ2(ε), we decrease the step
by a factor of two. As soon as the local error is once again
within the tolerance interval, we continue depth stepping. A
very important point is that we retain the third-order (a more
accurate one) computation of τ at the end of each depth step
as the actual update, discarding the second-order computation,
which is used only in step control.

The usual step adjustment in ODE solvers would change1z
by a factor computed from the asymptotic form of the trunca-
tion error (Stoer and Bulirsch, 1992, 499). This is impractical
for a PDE application because it would require an arbitrary
adjustment of the spatial grid (i.e., the x-grid in the difference
scheme) and therefore expensive interpolation. Scaling 1z by
a factor of two, however, implies that the stability may be main-
tained by scaling 1x by the same factor. For coarsening, this
means throwing out every other grid point, i.e., no interpolation
at all, which dramatically reduces the floating-point operations
required. Since the typical behavior of the traveltime field is
to become smoother as one moves away from the source, the
truncation errors generally tend to decrease. Therefore, most
of the grid adjustments are coarsenings and very little or no
interpolation is required. Since the slowness field comes to us
in gridded form, an interpolation is always required to supply
estimates of slowness at the points appearing in the WENO–
Runge-Kutta formula. We use a local quadratic interpolation
in x and z because the third-order accuracy is compatible with
that of the difference scheme. For traveltimes, we use a similar
quadratic interpolation.

Since the traveltime field is not smooth at the source point,
the truncation error analysis on which the adaptive step se-
lection criterion is based is not valid there. Therefore, it is
necessary to produce a smooth initial traveltime field. We
do this by estimating the largest zinit > 0 at which the con-
stant velocity traveltime is in error by <σ2(ε). Details of the
zinit calculation are given in Appendix B. Having initialized
τ at zinit, the algorithm invokes adaptive gridding. Since zinit

is quite small, τ changes rapidly, resulting in a large number
of grid refinements at the outset. However, no interpolation
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is performed because τ is given analytically on z= zinit. This
initially very fine grid is rapidly coarsened as depth stepping
proceeds.

In our current implementation, we maintain a data structure
for the computational grid that is independent of the output
grid; the desired quantities are calculated on the computational
grid and interpolated back to the output grid. As a safeguard
against pathological program behaviors, we specify a maximum
number of permitted grid refinements, MAXREF.

A simplified algorithm framework is as follows.

Input ε, xs, zs, θmax, 1z, MAXREF.
Initialize 1x, τ , z= zinit, Ref= 0.
Do while z< target depth:

– compute e2= max |δ2
2τ − δ3

3τ | over the current depth
level z;

– if e2 ≤ σ1(ε) and REF> 0,
∗ 1z← 21z,
∗ 1x← 21x,
∗ REF← REF− 1,
∗ upsample τ (throw out every other point)

– else if e2 ≥ σ2(ε) and REF ≤MAXREF,
∗ 1z← 1z/2,
∗ 1x← 1x/2,
∗ REF← REF+ 1,
∗ downsample τ (interpolate)

– else
∗ z← z+1z,
∗ τ ← τ + δ3

3τ

– end if

end do.

This description leaves out the output step of the algorithm:
a full implementation monitors the depth level of the next set
of output points and quadratically interpolates the traveltime
field onto them as soon as z passes this depth, using the current
and last two depth levels of τ . Local quadratic interpolation
preserves the third-order accuracy of the computed τ .

To avoid unnecessary computations, we update τ only within
the triangle

{(x, z) : |x − xs| ≤ |z− zs| tan θmax}.
All rays with take-off angles<θmax must lie inside this triangle,
and it is only along such rays that the paraxial eikonal equa-
tion produces correct first-arrival times. Output points outside
the triangle are assigned a very large number so that con-
structed raypaths will never reach those places. Because trav-
eltimes at output points inside the triangle but not lying on rays
with take-off angles <θmax also receive erroneous time values,
they must be washed out of any subsequent computations. For
high-frequency asymptotics computations, this masking is most
easily accomplished by zeroing the geometric amplitude at such
points.

NUMERICAL EXPERIMENTS

To illustrate how the adaptive gridding approach works, we
test our method on a constant-velocity model v = 1 km/s, with
2-D geometry {(x, z) : −0.5 km≤ x ≤ 0.5 km, 0 ≤ z≤ 1.0 km},
where the behaviors of traveltime fields and amplitude fields
are well understood.

In the constant-velocity case, all the desired quantities have
obvious analytic solutions to compare against the computed
solutions. We compare the results obtained by fixed and adap-
tive grid algorithms. Both algorithms use a third-order WENO
scheme (Appendix A) to compute τ ; the adaptive grid scheme
uses a second-order ENO scheme to estimate local truncation
error. The ouput grid is 51× 51, with 1x=1z= 0.02 km. For
adaptive grid algorithms, MAXREF is set to be 5, with the
coarsest grid 17× 17, σ1= 0.1ε, and σ2= ε.

Frist, we compare the computation cost of the two methods.
Tables 1 and 2 show the traveltime error and computation cost
by the fixed and adaptive grid methods, respectively, where
Flops denote the number of floating point operations. The er-
ror is the maximum absolute error at the bottom row of the
gridpoints (z= 1 km). The computed portion of this depth level
(− 0.5 km ≤ x ≤ 0.5 km) lies entirely within the computation
aperture (θmax= 78◦) and so consists of accurately computed
τ values. We can see that to reach the same level of accuracy,
the adaptive-gridding approach requires an order of magni-
tude lower computational cost than does the fixed gridding
approach.

Second, we illustrate the difference of accuracy of the two al-
gorithms. For the fixed gridding algorithm, the computational
grid is 200× 200, with dx= 0.005 km. For the adaptive grid-
ding algorithm, the local error tolerance ε is 0.00001. The trav-
eltime contours (not shown) produced by the two approaches
have no obvious difference because the fixed gridding algo-
rithm still has first-order accuracy. Figure 1 shows contours of
τx computed by two approaches. We can see that τx by the
fixed grid is oscillating but τx by the adaptive grid traveltime
solver is convergent. Because the fixed gridding approach gives
us only first-order accurate traveltime field, the resultant trav-
eltime derivatives have only zero-order accuracy and exhibit
oscillations that do not decrease in magnitude as the grid is
refined (Figure 1a). However, the adaptive gridding approach
yields far more accurate traveltime fields; thus, the traveltime
derivatives are still accurate (Figure 1b). Similar phenomena
are observed for τz.

Now we discuss the take-off angle and its derivatives. Be-
cause the coefficients in the advection equation for take-off
angles depend on the traveltime gradient, the accuracy of φ is
decided by the traveltime solver we use. Since the first-order
traveltime field from the fixed gridding approach results in in-
accurate∇τ , the resultant take-off angle is not accurate enough
to be differentiated. However, the take-off angle based on the
traveltime field from the adaptive gridding approach is accu-
rate enough to be differentiated. Figure 2 shows φx by the two

Table 1. Fixed-grid eikonal solver: a constant velocity model.

dx Absolute error (τ , dx)(s) Flops

0.01 0.001232 261 590
0.00125 0.000219 16 632 765

Table 2. Adaptive-grid eikonal solver: a constant-velocity
model.

ε Absolute error (τ , dx)(s) Flops

0.000025 0.001041 39 815
0.00000169 0.000160 928 770
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approaches. Because the take-off angle based on the travel-
time field from the fixed gridding approach is inaccurate, the
resultant derivatives φx are divergent (Figure 2a). However,
the adaptive gridding approach produces accurate traveltime
gradients, which leads to the convergent φx (Figure 2b). Similar
observations hold for φz.

To further illustrate the differences of the accuracy between
two approaches, Figure 3 shows the distribution of relative er-
rors along the depth direction for φx . The error along the depth
direction is defined as

e(z) = max−0.5≤x≤0.5 | f comp(x, z)− f ana(x, z)|
max−0.5≤x≤0.5 | f ana(x, z)| , (10)

where f comp is the computed solution and f ana is the analytic so-
lution. For instance, substituting f with φx in Equation (10), we
get the error distribution forφx along the depth direction. From
Figure 3, we can conclude that the adaptive gridding approach
produces much more accurate ∇φ than does the fixed gridding
approach. The resultant amplitudes with a line source based on
∇τ and∇φ by the two approaches are shown in Figure 4; one is

FIG. 1. The value τx for a constant velocity model. (a) τx by fixed grid is oscillating. (b) τx by adaptive grid is convergent.

FIG. 2. The value φx at z= 1 for a constant-velocity model. (a) Fixed grid; solid line (−)—true solution; star (*)—computed solution.
(b) Adaptive grid; solid line (−)—true solution; star (*)—computed solution.

divergent by the fixed gridding approach, the other is accurate
by the adaptive gridding approach. Note the episodic nature
of the convergence for the adaptive gridding algorithms. Be-
cause we have allowed the local error estimate to vary by an
order of magnitude before adjusting the grid and then permit-
ted only step changes by factors of 2, the error exhibits sticky,
discontinuous behaviour.

Finally, Figure 5 shows the computational results for the out-
of-plane curvature τyy and the amplitude field with the point
source by the adaptive gridding approach. The computed τyy is
accurate, and the resultant amplitude is convergent.

We have embedded the adaptive grid traveltime and ampli-
tude solver in 2-D Kirchhoff prestack migration and inversion
code (Symes et al., 1994). Figure 6 shows the impulse response
of the inversion for a WENO third-order eikonal solver, where
the Beylkin determinant required by the inversion is computed
by using the information from traveltimes and take-off angles.
We will report the complete test result of the new adaptive
traveltime and amplitide solver embedded in migration and
inversion in a future paper.
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FIG. 3. Relative errors in φx . (a) Fixed grid—maximum relative error is almost 45%. (b) Adaptive grid—maximum relative error
is <1.5%.

FIG. 4. 2-D amplitude with a line source for a constant-velocity model. (a) The amplitude by fixed grid is divergent. (b) The amplitude
by adaptive grid is convergent.

FIG. 5. (a) τyy at z= 1 for a constant-velocity model by adaptive grid; solid line (−)—true solution; star (*)—computed solution.
(b) 2-D amplitude with a point source for a constant-velocity model by adaptive grid.
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FIG. 6. The impulse response by inversion with adaptive grid-
ding WENO traveltime—amplitude solver. The Beylkin de-
terminant needed in the inversion is computed by using the
information from traveltimes and take-off angles, and the re-
sponse is smooth as expected.

CONCLUSIONS

In this paper we stated a paraxial eikonal equation with
depth as evolution direction and an advection equation for
take-off angles. Then we presented high-order WENO dif-
ference schemes to solve the eikonal equation for the trav-
eltime and the advection equation for the take-off angle. To
deal with the singularity of a point source, we proposed a new
adaptive grid eikonal solver and detailed the implementation.
Numerical experiments showed that the new method yields an
efficiency gain of more than an order of magnitude in compu-
tational time. Adaptive gridding does not altogether eliminate
the arbitrary parameter feature, for which we criticized other
approaches in the introductory section of this paper; however,
our arbitrary parameter is the local-error tolerance ε. In prin-
ciple, ε is proportional to the (global) error in the computed
solution, but the relation is complex (as the numerical exam-
ple shows) and not a byproduct of the algorithm. Nonetheless,
we maintain that the simplicity and homogeneity of the algo-
rithm and the direct if not apparent relation between ε and
the global solution error make the adaptive grid scheme easier
to use than its alternatives. Also, the considerable success of
the variable-step selection methods for ODEs, which have the
same indirect error control feature, supports this contention.

The extension to 3-D isotropic media is straightforward. Be-
cause all of the difference schemes presented here can easily be
extended to the 3-D case, there is no difficulty in implementing
a 3-D version of the adaptive traveltime and amplitude solver.
Moreover, we expect the efficiency gain in computational cost
will be even more dramatic in the 3-D case. Furthermore, we al-
ready extended the adaptive gridding algorithm to computing
traveltimes and amplitudes in anisotropic media (Qian, 2000).
A fully adaptive eikonal solver based upon a posteriori error
estimates for general numeric methods for Hamilton-Jacobi

equations (Albert et al., 2002) will be the subject of a subse-
quent paper.
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APPENDIX A

WENO SCHEMES FOR EIKONAL EQUATIONS

Our adaptive scheme is based on the second- and third-
order WENO difference schemes introduced by Jiang and
Peng (2000). These in turn are extensions of second- and third-
order ENO difference schemes, which we present first.

For a function f of the space variable (x, z) in the computa-
tional domain, we write

f k
i = f (xi , zk),

(xi , zk) = (xmin + (i − 1)1x, zmin + (k− 1)1z).

Let

τ k
i = τ (xi , zk; xs, zs)

and define the forward D+ and backward D− finite-difference
operators

D±x τ
k
i =
±[τ k

i±1 − τ k
i

]
1x

.

The second- and third-order ENO refinements of D±x τ are

D±,2x τi = D±x τi ∓ 1
2
1x m

(
D±x D±x τi , D−x D+x τi

)
,

D±,3x τi = D±,2x τi − 1
6

(1x)2

×m
(
D±x D±x D±x τi , D+x D+x D−x τi , D+x D−x D−x τi

)
,

where

m(x, y) = min(max(x, 0),max(y, 0))

+ max(min(x, 0),min(y, 0)).

Similar refinements exist for any order.
The upwind ENO approximations for ∂τ/∂x are

D̂n
xτ = modmax

(
max

(
D−,nx τ, 0

)
,min

(
D+,nx τ, 0

))
,

where the modmax function returns the larger value in
modulus.

The second and third-order ENO–Runge-Kutta steps are

δ1
2τ = 1zH

(
D̂2

xτ
)
,

δ2
2τ =

1
2

(
δ1

2τ +1zH
(
D̂2

x

(
τ + δ1

2τ
)))
, (A-1)

and
δ1

3τ = 1zH
(
D̂3

xτ
)
,

δ2
3τ =

1
4

(
δ1

3τ +1zH
(
D̂3

x

(
τ + δ1

3τ
)))
,

δ3
3τ =

1
3

(
2δ2

3τ + 21zH
(
D̂3

x

(
τ + δ2

3τ
)))
. (A-2)

The depth step 1z must satisfy the stability condition

1z≤ 1zcfl = 1x

tan(θmax)
.

We have typically chosen 1z= 0.91zcfl.
The nth-order scheme is then

τ k+1 = τ k + δn
nτ

k (A-3)
for k= 0, 1, 2, . . . .

We have observed that the gradient of the take-off angle
based on the third-order ENO traveltime is too noisy to lead
to an accurate amplitude field. To alleviate this phenomenon,
instead of ENO third-order refinements, we use WENO third-
order refinement (Jiang and Peng, 2000) to compute D±x τ in the
third-order Runge-Kutta step, which yields an accurate ampli-
tude field.

The WENO third-order schemes for D±x τi are

D±W,3
x τi = 1

12

(−D+x τi−2 + 7D+x τi−1 + 7D+x τi − D+x τi+1
)

±1x8W(D−x D+x τi±2, D−x D+x τi±1, D−x D+x τi ,

D−x D+x τi∓1
)
,

where

8W(a, b, c, d) = 1
3
w0(a− 2b+ c)

+ 1
6

(
w2 − 1

2

)
(b− 2c+ d)

with weights defined as

w0 = α0

α0 + α1 + α2
, w2 = α2

α0 + α1 + α2
,

α0 = 1
(δ + β0)2

, α1 = 1
(δ + β1)2

, α2 = 1
(δ + β2)2

,

β0 = 13(a− b)2 + 3(a− 3b)2,

β1 = 13(b− c)2 + 3(b+ c)2,

β2 = 13(c− d)2 + 3(3c− d)2.
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In the denominators above, we added a small positive number
δ to avoid dividing by zero. In the computation, δ is chosen to be
10−6. In practice, the solution is not senstive to the choice of δ.

Next, we have to compute the take-off angle φ and out-of-
plane curvature τyy. To match with the evolution form of the
eikonal equation in depth, we formulate the advection equa-
tion for take-off angles as an evolution equation in depth as
well, i.e.,

∂φ

∂z
= −

(
∂τ

∂z

)−1
∂τ

∂x

∂φ

∂x
. (A-4)

To take full advantage of the accuracy of traveltimes pro-
duced by the WENO Runge-Kutta third-order scheme for the
eikonal equation and simplify the implementation, we embed
the third-order scheme for equation (A-4) into the third-order
scheme for the eikonal equation. Because the coefficient of
the discretized advection equation has only second-order ac-
curacy, which is computed from the eikonal equation by the
third-order scheme, we use a second-order upwind WENO
scheme to approximate the derivatives ∂φ/∂x. The advec-
tion equation for τyy is treated similarly. See Qian (2000) for
details.

APPENDIX B

ESTIMATE THE INITIAL STEP

To initialize the traveltime for finite-difference schemes, we
assume that the velocity near the source is constant and equal
to the velocity at the source. Now we desire to analyze the trav-
eltime error resulting from this assumption and compute an a
priori estimate of the initial step.

Assuming that the source is at the origin, we consider the
2-D ray-tracing equation. By the method of characteristics for
the eikonal equation, we have

ẋ = v2 p, (B-1)

ż = v2q, (B-2)

ṗ = −1
v

∂v

∂x
, (B-3)

q̇ = −1
v

∂v

∂z
, (B-4)

where the dot (·) denotes the differentiation with respect to
time t along the ray, p= ∂τ/∂x, and q= ∂τ/∂z.

Denoting the group angle as θ , we have

ẋ = v sin θ, (B-5)

ż = v cos θ. (B-6)

Furthermore, equations (B-1) and (B-2) yield

p = sin θ
v(x, z)

, (B-7)

q = cos θ
v(x, z)

. (B-8)

Differentiating equation (B-7) with respect to time t and sim-
plifying the resultant equation, we have

θ̇ = − cos θ
∂v

∂x
+ sin θ

∂v

∂z
. (B-9)

Now we introduce polar coordinates, i.e.,

x = r sinψ, (B-10)

z = r cosψ. (B-11)

Differentiating equations (B-10) and (B-11) with respect to
time t and solving for ṙ and ψ̇ , we have

ṙ = v cos(θ − ψ), (B-12)

ψ̇ = v

r
sin(θ − ψ). (B-13)

Next we want to estimate (θ −ψ). First of all, we have
|θ −ψ | < π , since for the downward-wave propagation both θ
and ψ lie in the interval (−π/2, π/2). Defining

a(t) = θ̇ , (B-14)

b(t) = vt

r

sin(θ − ψ)
(θ − ψ)

, (B-15)

by equations (B-9) and (B-13) we have an ordinary differential
equation for (θ −ψ),

θ̇ − ψ̇ = a(t)− b(t)
t

(θ − ψ). (B-16)

Its solution is

θ − ψ =
∫ t

0
dτa(τ ) exp

(
−
∫ t

τ

dσ
b(σ )
σ

)
. (B-17)

Because b(t)≥ 0 and the function a is bounded by amax, which
is equal to the supremum of the length of gradient of the ve-
locity, i.e., |a| ≤ amax, equation (B-17) yields an estimate for
θ −ψ :

|θ − ψ | ≤ amaxt. (B-18)

Now we are ready to get an approximate relative error esti-
mate for the traveltime. Denote t0 as the approximation to the
exact traveltime t when we are using the constant velocity v0 at
the source as the approximation to the exact velocity v. Since

ṫ0 = ṙ

v0
= v

v0
cos(θ − ψ), (B-19)

we have

ṫ0− ṫ =
(
v

v0
−1

)
cos(θ − ψ)+cos(θ−ψ)−1. (B-20)

Furthermore,

|ṫ0 − ṫ | ≤
∣∣∣∣ vv0
− 1

∣∣∣∣+ | cos(θ − ψ)− 1|. (B-21)

If |ṫ0− ṫ | ≤ ε, then |t0− t | ≤ εt . So let’s specify that∣∣∣∣ vv0
− 1

∣∣∣∣ ≤ ε

2
(B-22)

and

| cos(θ − ψ)− 1| ≤ ε

2
. (B-23)
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Expanding v at the origin (the source) by Taylor theorem with
remainder, we have

v(x, z) = v0 + ∂v
∂x

(ζ1, η1)x + ∂v
∂z

(ζ2, η2)z, (B-24)

where (ζ1, η1) and (ζ2, η2) lie in

D = {(ζ, η) : min(x, 0) ≤ ζ ≤ max(x, 0), 0 ≤ η ≤ z}.
(B-25)

As a consequence,

|v(x, z)−v0| ≤
√

2r sup{|∇v(ζ, η)| : |ζ | ≤ |x|, 0 ≤ η ≤ z}
(B-26)

by Cauchy inequality.
Because we are only bounding the error inside the aperture,

|x| ≤ z tan θmax, r ≤ z

cos θmax
. (B-27)

It follows that∣∣∣∣v − v0

v0

∣∣∣∣ ≤
√

2r

v0
sup{|∇v(ζ, η)| : |ζ | ≤ z tan θmax,

0 ≤ η ≤ z} ≤
√

2zB

v0 cos θmax
, (B-28)

where zmax is the maximum depth and

B = sup{|∇v(ζ, η)| : |ζ | ≤ zmax tan θmax, 0 ≤ η ≤ zmax}.
(B-29)

For equation (B-22) to hold, by equation (B-28) we should
choose z such that

z≤ z1 = v0ε cos θmax

2
√

2B
. (B-30)

Finally we choose z so that equation (B-23) holds, and we need
a lemma to do so.

Lemma 1.—Along a ray segment {(x(τ ), z(τ )) : 0≤ τ ≤ t},
the following inequality holds:

t ≤ r

vmin
, (B-31)

where r =√x2(t)+ z2(t); vmin is the minimum velocity along the
ray segment.

Proof.—Denote the true raypath as s and its length |s|, and
the straight raypath as l and its length |l |, which is equal to r .
In addition, use l to approximate the true raypath s. Then by
Fermat’s principle, we have

t =
∫

s
dσ

1
v
≤
∫

l
dσ

1
v
≤
∫

l
dσ

1
vmin
= r

vmin
. (B-32)

Using equation (B-18) and lemma 1, we have

| cos(θ −ψ)− 1| =
∣∣∣∣− 2 sin2 (θ − ψ)

2

∣∣∣∣ ≤ r 2 B2

v2
min

, (B-33)

where we use the relation amax≤ B inside the aperture. Hence,
to make equation (B-23) hold implies that

z≤ z2 =
√
ε

2
vmin cos θmax

B
. (B-34)

So for error tolerance ε, zinit should be chosen such that

zinit = min(z1, z2). (B-35)

Although both z1 and z2 depend on B (the bound of gradient
of velocity model), there are at least two ways to estimate B.
One way is setting B to be a big number that is larger than
the actual value. The other way is computing the gradient of
velocity model from the given discretized model. Both ways
produce a reasonable initial step.


