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Finite-difference quasi- P traveltimes for anisotropic media

Jianliang Qian∗ and William W. Symes‡

ABSTRACT

The first-arrival quasi-P wave traveltime field in an
anisotropic elastic solid solves a first-order nonlinear
partial differential equation, the q P eikonal equation.
The difficulty in solving this eikonal equation by a finite-
difference method is that for anisotropic media the ray
(group) velocity direction is not the same as the direction
of the traveltime gradient, so that the traveltime gradient
can no longer serve as an indicator of the group veloc-
ity direction in extrapolating the traveltime field. How-
ever, establishing an explicit relation between the ray
velocity vector and the phase velocity vector overcomes
this difficulty. Furthermore, the solution of the paraxial
q P eikonal equation, an evolution equation in depth,
gives the first-arrival traveltime along downward prop-
agating rays. A second-order upwind finite-difference
scheme solves this paraxial eikonal equation in O(N)
floating point operations, where N is the number of grid
points. Numerical experiments using 2-D and 3-D trans-
versely isotropic models demonstrate the accuracy of the
scheme.

INTRODUCTION

Traveltime computation plays a central role in many seismic
data processing methods, such as Kirchhoff depth migration
and tomographic velocity analysis. Since seismic wave prop-
agation is anisotropic in many sedimentary rocks, maximal
imaging resolution requires that traveltime computation honor
anisotropy whenever it seriously affects data kinematics (Pratt
and Chapman, 1992; Tsvankin and Thomsen, 1995; Anderson,
1996; Cherrett and Singh, 1998).

Contemporary traveltime computation methods fall roughly
into two classes: ray-tracing methods and finite-difference
eikonal solvers. Ray-tracing and related methods for isotropic
propagation extend without essential difficulty to anisotropic
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propagation, but they suffer from shadow zones and related in-
terpolation problems (Cerveny, 1972; Shearer and Chapman,
1988; Meng and Bleistein, 1997) which complicate robust im-
plementations. Finite-difference eikonal solvers compute ap-
proximate first-arrival times directly on a prespecified grid
(Reshef and Kosloff, 1986; Vidale,1988; van Trier and Symes,
1991; Schneider et al., 1992; Qin and Schuster, 1993; Schneider,
1995; Kim and Cook, 1999; Sethian and Popovici, 1999), in-
volve rather simple data structures, and are easy to code
efficiently. Extension of these methods to anisotropic wave
propagation is not entirely straightforward. The methods cited
here and others in the public literature describe only finite-
difference traveltime algorithms for isotropic media.

The finite-difference eikonal solvers cited above depend on
the fact that for isotropic media the ray velocity vector (i.e. the
group velocity) has the same direction as the traveltime gradi-
ent (i.e. the phase velocity), so that we can use the traveltime
gradient as a reliable indicator of energy flow (and thus causal-
ity) in extrapolating the traveltime field. However, this is no
longer true for anisotropic media (Dellinger and Symes, 1997).
The goal of the current paper is to establish a reliable indicator
of quasi-compressional ray velocity direction by formulating a
relation between the group velocity direction and the phase
velocity direction, and to present theoretical formulations,
some implementation details, and illustrative applications of a
finite-difference method for traveltimes of first-arriving quasi-
compressional waves in heterogeneous anisotropic solids.

The mathematical foundation of the finite-difference ap-
proach to traveltime computation is the observation of
Lions (1982): the first-arrival traveltime is a generalized so-
lution of the eikonal equation. A generalized solution concept
is necessary because the eikonal equation does not generally
have differentiable solutions everywhere in the ordinary sense
throughout its domain. However, generalized solutions are not
unique because of the existence of several branches of travel-
time in the presence of strong refraction. Lions and others ab-
stractly characterized a particular generalized solution, which
turns out to be the first arrival. Because of its stability with
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respect to the medium parameters, source location, etc., this
generalized solution is computable by finite-difference approx-
imation. This particular generalized solution is the so-called
viscosity solution (Crandall and Lions, 1983). For a good re-
view of this concept, see Crandall et al. (1992).

The result of Lions (1982) pertains to isotropic media. The
central hypothesis of this paper is that the first-arrival quasi-
compressional (q P) traveltime is also a stable generalized so-
lution, and therefore computable by suitable finite-difference
schemes. Also by analogy with the isotropic case, we expect so-
called upwind schemes to be particularly successful (van Trier
and Symes, 1991). Dellinger (1991) and Dellinger and Symes
(1997) investigated this possibility but did not give full details
of a workable algorithm. This paper presents a family of al-
gorithms of Essentially NonOscillatory (ENO) type (Osher
and Sethian, 1988; Osher and Shu, 1991) applied to a depth-
evolution (“paraxial”) form of the eikonal equation. The com-
puted solution gives an accurate approximate time at every
point of a Cartesian grid, which is connected to the source
by a first-arriving ray whose velocity vector makes an angle
less than a prescribed angle with the vertical. A similar ap-
proach has proven quite successful for isotropic traveltime (and
amplitude) computation for use in prestack modeling, migra-
tion, and inversion (Symes et al., 1994; El-Mageed et al., 1997;
Qian et al., 1999). We expect similar applications for the algo-
rithm presented here.

We first derive the eikonal equation for the q P-wave, which
is the fastest propagating body wave. (The kinematics of
q P-waves are considerably simpler than those of quasi-shear
phases; an effective finite-difference approach to the latter
awaits resolution of difficult technical issues.) For downgoing
q P-waves, the eikonal equation can be transformed to an evo-
lution equation in depth, which we call the paraxial eikonal
equation. Definition of the paraxial eikonal depends on the re-
lation of the aperture limitation (i.e. the indicator of the energy
flow), defined in terms of the ray velocity vector and the travel-
time gradient. We show how to formulate this relation and men-
tion the simplifications which occur in the presence of trans-
verse isotropy with a vertical symmetry axis (VTI media). The
VTI assumption permits us to give closed form expressions for
all of the quantities appearing in the paraxial eikonal equation
in terms of Thomsen’s parameters (Thomsen, 1986), whereas
in general these must be computed using numerical eigenvalue
solvers. We use the ENO-Godunov family of finite-difference
schemes (Osher and Sethian, 1988; Osher and Shu, 1991) to
build q Peikonal solvers of arbitrary order of accuracy in two or
three dimensions. Two- and three-dimensional VTI examples
illustrate the accuracy of the ENO schemes as well as the effect
of the paraxial (aperture-limiting) assumption. Application
to (isotropic and anisotropic) Marmousi models (Alkhalifah,
1997) shows the ability of these schemes to reveal the kinematic
effect of anisotropy in geologically complex models.

THE PARAXIAL EIKONAL EQUATIONS FOR qP-WAVES

In velocity structures with mild lateral heterogeneity, most
reflected wave energy propagates down to the target, then up
to the surface. That is, the energy in such a wavefield prop-
agates along downgoing rays: the x3 (“z”) component of the
ray velocity vector remains positive from source to target. The
traveltime along such downgoing rays increases with depth

and should be the solution of an evolution system in depth.
For isotropic wave propagation, Gray and May (1994) sug-
gested modifying the eikonal equation in such a way that (1)
the modified equation defines a depth evolution of traveltime,
and (2) solutions of the modified and original eikonal equation
are identical at every point connected to the source by a first-
arriving ray making a angle with the vertical less than 90◦. The
principal purpose of this section is to explain such a modifica-
tion, resulting in a paraxial eikonal equation, for anisotropic
propagation.

High-frequency approximations to the elastic equation of
motion leads to the Christoffel equation (Musgrave, 1970, 84),∑

k

(∑
i,l

ai jkl pi pl − δ jk

)
Uk = 0, (1)

in which ai jkl are the components of the elastic (Hooke) tensor
divided by density, Uk is displacement vector for a particular
asymptotic phase, p=∇τ is the slowness vector, τ is the travel-
time or phase of the mode, and δ jk is the Kronecker delta. Note
that all of these quantities depend on the spatial coordinate
vector x= (x1, x2, x3), though in this and some of the following
displays this dependence has been suppressed for the sake of
clarity. This equation has nontrivial solutions Uk only when

det

(∑
i,l

ai jkl pi pl − δ jk

)
= 0. (2)

The Christoffel matrix
∑

i,l ai jkl pi pl is positive definite and
scales as p2= p · p. Therefore each eigenvalue takes the form
v2(x, p)p2, where v is a homogeneous function of degree zero
in p. The largest eigenvalue, denoted v2

q P(x, p)p2, is simple
(Fedorov, 1968, 95), and hence depends smoothly on the com-
ponents of the Christoffel matrix (i.e., on p, and the Hooke
tensor). The slowness vector p for which

S(x, p) ≡ |p|vq P(x, p) = 1, (3)

forms the q P slowness surface, and vq P is the qP phase ve-
locity. Note that these slowness vectors solve the Christoffel
equation (2).

The q P-wave eikonal equation results from combining the
slowness surface condition (3) with the slowness identity
p=∇τ :

S(x,∇τ ) = 1. (4)

The method of characteristics relates its solution τ of slow-
ness surface equation (4) to the rays of geometrical optics,
which are the solutions of the ordinary differential equations

dx
dt
= ∇pS(x, p), (5)

dp
dt
= −∇xS(x, p), (6)

where we have used the homogeneity of the eigenvalue vq P in
p, so that τ = t has the dimension of time.

Downgoing rays correspond to the part of the slowness sur-
face on which dx3/dt > 0. A useful description of this part of
the surface follows from its convexity (Musgrave, 1970, 92): the
slowness surface defined by equation (2) is sextic and consists
of three sheets corresponding to three different waves; if the
inner detached slowness sheet related to quasi-P-waves is not
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wholly strictly convex, a straight line could intersect the inner
sheet at four or more points and yet make at least four fur-
ther intersections with the remaining sheets, but any straight
line must intersect the slowness surface at only six points, real
or imaginary because the slowness surface is sextic. By theo-
rem A.1 in Qian (2000), we have that for each x and horizontal
slowness vector (p1, p2), there are at most two choices of p3

for which p = (p1, p2, p3) solves the slowness surface equation
(4); and when two distinct solutions exist, by equation (5) only
one satisfies (Figure 1)

dx3

dt
= ∂S(x, p)

∂p3
> 0.

This choice defines p3 as a function of x, p1, p2:

p3 = H(x, p1, p2), (7)

which is also a partial differential equation for τ with H a con-
cave Hamiltonian.

The characteristics (rays) of eikonal equation (7) are down-
going, so they can be parameterized by x3= z and satisfy

dxi

dx3
= −∂H

∂pi
, i = 1, 2; (8)

dτ

dx3
= H − p1

∂H

∂p1
− p2

∂H

∂p2
. (9)

The ray group velocity is

vg =

√(
∂H

∂p1

)2

+
(
∂H

∂p2

)2

+ 1

H(p1, p2)− ∂H

∂p1
p1 − ∂H

∂p2
p2

, (10)

where
∂H

∂ p1
= −a1 jkl pl gj gk

a3 jkl pl gj gk
, (11)

∂H

∂ p2
= −a2 jkl pl gj gk

a3 jkl pl gj gk
, (12)

with gj the eigenvector corresponding to vq P and the Einstein
summation convention assumed.

FIG. 1. The p3 components of outward normals at the two in-
tersections on the convex slowness surface have opposite signs.

However neither the partial differential equation (7) nor
its rays are well-defined for all p1, p2. To remedy this de-
fect, we introduce another family of Hamiltonian functions
H1, each of which is identical to H along “safely down-
going” rays, and defined everywhere in phase space. It is
convenient to parameterize the horizontal variables (p1, p2)
by polar coordinates: (p1, p2)= (p′ cosφ, p′ sinφ), where
p′ =

√
p2

1 + p2
2. For each planar angle φ, the family of planes

perpendicular to (cosφ, sinφ, 0) is tangent to the slowness
surface at exactly one point (p′max(φ) cosφ, p′max(φ) sinφ,
p3(φ)) since the quasi-P slowness surface is strictly convex,
where p′max is the length of the horizontal slowness vector
defined by that tangent point. Choose 0<1< 1 and consider
a given φ: for p′ ≤ (1−1)p′max(φ), set H1(p′ cosφ, p′ sinφ)=
H(p′ cosφ, p′ sinφ), which is the unique root of S= 1 with
p3 > p3(φ); for p′> (1−1)p′max(φ), set H1(p′ cosφ, p′ sinφ)=
H((1−1)p′max(φ) cosφ, (1−1)p′max(φ) sinφ). By constru-
ction, H1 remains concave by theorem A.4 in Qian
(2000); rays of H1 are rays of H , and hence of the anisotropic
elastic model, so long as their horizontal slowness components
(p′ cosφ, p′ sinφ) satisfy p′ ≤ (1−1)p′max(φ).

By corollary A.2 in Qian (2000), the ray angle ψ stays safely
away from 90◦:

|tanψ | =

√(
∂x1

∂τ

)2

+
(
∂x2

∂τ

)2

∂x3

∂τ

=
√(

∂H1

∂p1

)2

+
(
∂H1

∂p2

)2

≤ O

(
1
1

)
. (13)

Numerical algorithms for the paraxial eikonal equation

∂τ

∂x3
= H1

(
x,
∂τ

∂x1
,
∂τ

∂x2

)
, (14)

require explicit bounds on tanψ . Because of the convexity
of the slowness surface, we need only look for these at the
boundary of the region where H1= H , that is, where p′ =
(1 − 1)p′max(φ). Since H1 is radially constant outside of
this region, the required bound is simply the maximum
length of the 2-vector (∂H1/∂p1, ∂H1/∂p2) over the set {p′ =
(1−1) p′max(φ)}.

For the remainder of this paper, we put aside any further
development of the algorithm for general anisotropy and pass
to consideration of a special case, in which most of the details of
the paraxial Hamiltonian construction are much simpler. For
the complete theoretical justification of the paraxial eikonal
equation, see Qian (2000).

APPLICATION: VTI MEDIA

The elastic modulus matrix for a VTI medium has five
independent components among 12 nonzero components
(Musgrave, 1970; Thomsen, 1986). A closed form solution ex-
ists in this case for the eigenvalue problem: equation (2). Con-
sequently, the slowness surface for q P-waves can be simplified
to

S̃(p1, p2, p3) ≡ p2
3 −

2c

−b+√b2 − 4ac
= 0, (15)
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where

a ≡ α2
0β

2
0 , (16)

b ≡ 2α2
0β

2
0

(
1+ δ + (ε − δ)α

2
0

β2
0

)(
p2

1 + p2
2

)− α2
0 − β2

0 ,

(17)

c ≡ ((1+ 2ε)α2
0

(
p2

1 + p2
2

)− 1
)(
β2

0

(
p2

1 + p2
2

)− 1
)
, (18)

with Thomsen’s parameters (Thomsen, 1986; Anderson, 1996,
19); α0 and β0 are the vertical sound speeds for q P- and
qS-waves, and ε and δ are two measures of anisotropy.

Note that S̃ is in a form different from S, but they are equiv-
alent in the sense that they characterize the same q P slowness
surface; therefore, S̃must be convex. Clearly,

∂ S̃

∂p3
= 2p3 > 0 (19)

if

p3 =
√

2c

−b+√b2 − 4ac
> 0, (20)

where we have taken the positive square root of equation (15).
This equation applies to all ε and δ values regardless of the
weak anisotropy assumptions. Hence, the q P eikonal equation
for VTI is

p3 = H(p1, p2) =
√

2c

−b+√b2 − 4ac
. (21)

To obtain the paraxial Hamiltonian, we need consider only
the case of radial angle φ= 0 in the horizontal slowness space
because of the rotational symmetry about the vertical axis.
First, note that for VTI media, we have√

p2
1 + p2

2 =
sin θ
vq P(θ)

, (22)

p3 = cos θ
vq P(θ)

, (23)

where θ is the phase angle with the vertical direction and vq P(θ)
is the related q P phase velocity. Secondly, because the func-
tion ∂ S̃/∂p3 is strictly monotonic, we only need to know where
∂ S̃/∂p3= 0 so that we can find horizontal rays. It follows that p3

has to be zero since ∂ S̃/∂p3= 2p3, so the corresponding phase
angle θ =π/2. Therefore,

p′max(0) = (√p2
1 + p2

2

)
max =

1

vq P

(
π

2

) . (24)

Thus,

H1(p1, p2)

=



H(p1, p2), p =
√

p2
1 + p2

2 ≤
(1−1)

vq P

(
π

2

) ;

H

 (1−1) cosφ

vq P

(
π

2

) ,
(1−1) sinφ

vq P

(
π

2

)
, else.

(25)

Notice that when we set φ≡ 0 in the second branch statement,
we will get a 2-D Hamiltonian for a 2-D VTI medium. Next,
we want to simplify the above Hamiltonian. For 0 < 1 < 1,
if we apply the intermediate value theorem to the function
f (θ)= sin θ/vq P(θ) in interval [0, π/2], there exists 0 < θmax <

π/2 such that

sin θmax

vq P(θmax)
= (1−1)

vq P

(
π

2

) . (26)

Substitute the above relation into paraxial Hamiltonian (25)
and combine the two branch statements into one, and we have

Hθmax(p1, p2) =
√√√√max

(
2c

−b+√b2 − 4ac
,

cos2(θmax)
v2

q P(θmax)

)
,

(27)
where we have used the subscript θmax to emphasize the depen-
dence of the Hamiltonian on phase angle θmax. We call θmax the
maximum phase angle. This Hamiltonian implies that we can
set up a maximum phase angle to obtain a paraxial Hamiltonian
in VTI.

Finally, we have a paraxial eikonal equation for q P-waves in
VTI:

p3 = Hθmax(p1, p2)

=
√

max
(

2c

−b+√b2 − 4ac
,

cos2(θmax)
v2

q P(θmax)

)
. (28)

The two derivatives needed in the numerical algorithms satisfy

∂H

∂ p1
=

− p1
(
2α2

0(1+ 2ε)β2
0

(
p2

1 + p2
2

)+ Ap2
3 −α2

0(1+ 2ε)− β2
0

)
p3
(
2α2

0β
2
0 p2

3 + A
(
p2

1 + p2
2

)− α2
0 − β2

0

) ,

(29)

∂H

∂ p2
=

− p2
(
2α2

0(1+ 2ε)β2
0

(
p2

1 + p2
2

)+ Ap2
3 − α2

0(1+ 2ε)−β2
0

)
p3
(
2α2

0β
2
0 p2

3 + A
(
p2

1 + p2
2

)− α2
0 − β2

0

) ,

(30)

with

A = 2α2
0

(
α2

0(ε − δ)+ β2
0 (1+ δ)). (31)

ENO SCHEMES FOR PARAXIAL EIKONAL EQUATIONS

Equation (14) is a nonlinear first-order partial differential
equation for traveltime τ . However traveltime is not unique:
when the elastic parameters vary with position, in general many
rays pass over at least some points in the subsurface. More
than one traveltime may be assigned to each such point. One
choice of unique traveltime for each subsurface point is the
least time (“first-arrival time”). It turns out that this first-arrival
time field is a solution of the eikonal equation (in a generalized
sense). In fact, it is the only possible single-valued choice of
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traveltime field uniquely and stably determined by the data
(source position and elastic parameters). These assertions were
established some time ago (Lions, 1982) for isotropic eikonal
equations with convex Hamiltonians, and we surmise that they
apply as well to anisotropic problems with a convex slowness
surface.

To compute the first-arrival traveltime field by a grid-
based finite-difference scheme, we derived a first-order upwind
scheme from ray tracing, rather than directly from the eikonal
equation (Qian, 2000). Because our use of ray tracing in the
derivation inherently honors causality, the resulting difference
scheme is upwind, a term more or less synonymous with causal-
ity in this setting.

The first-order upwind scheme is hopelessly inefficient;
moreover, the traveltime field produced by it is so inaccurate
as to prevent convergent computation of associated fields such
as take-off angles, amplitudes, etc. So we use the first-order
scheme as a building block to design high-order schemes. To
increase the order of convergence, we employ higher-order
ENO refinements (Osher and Sethian, 1988; Osher and Shu,
1991; Shu, 1998).

ENO schemes belong to a family of upwind schemes, which
are attractive for the three reasons: (1) stable schemes of arbit-
rarily high order of accuracy exist, permitting accurate solu-
tions on coarse grids; (2) versions exist in any dimension—in
particular, 3-D analogs are available; and (3) ENO schemes
are easy to program.

The principal feature of the ENO scheme is high-order inter-
polation with adaptive stencils which tries to avoid high gra-
dient regions whenever possible. Specifically, we use a high-
order ENO discretization in the x1, x2 directions. Then, in the
x3 = zdirection, we use a high-order total variation diminishing
(TVD) Runge-Kutta scheme to guarantee nonlinear stability
and high-order accuracy of the whole scheme.

Given mesh sizes 1x1, 1x2, and 1x3, we denote τ n
m,k as the

numerical approximation to the viscosity solution (Lions, 1982)
τ (xm

1 , xk
2 , xn

3 ) of equation (14) at the grid point (xm
1 , xk

2 , xn
3 ). The

backward (−) and forward (+) first-order difference quotient
approximations to the left and right derivatives of τ (x1, x2, x3)
at the location (xm

1 , xk
2 , xn

3 ) with respect to x1 and x2 are defined
as

D±x1
τ n

m,k = ±
τ n

m±1,k − τ n
m,k

1x1

, D±x2
τ n

m,k = ±
τ n

m,k±1 − τ n
m,k

1x2

.

(32)

The second-order ENO refinements to ∂τ/∂x1 (Osher and
Sethian, 1988) are

D+,2x1
τ = D+x1

τ − 1
2
1x1m

(
D+x1

D+x1
τ, D−x1

D+x1
τ
)
, (33)

D−,2x1
τ = D−x1

τ + 1
2
1x1m

(
D−x1

D−x1
τ, D−x1

D+x1
τ
)

(34)

with

m(x, y) = min(max(x, 0),max(y, 0))

+ max(min (x, 0),min(y, 0)). (35)

ENO refinements for ∂τ/∂x2 are defined similarly.
Therefore, a second-order ENO Runge-Kutta scheme for

equation (14) can be formulated as

τ
n+ 1

2
m,k = τ n

m,k +1xcf l
3 Ĥ1(

D+,2x1
τ n

m,k, D−,2x1
τ n

m,k, D+,2x2
τ n

m,k, D−,2x2
τ n

m,k

)
,

(36)
τ n+1

m,k =
1
2

(
τ n

m,k + τ
n+ 1

2
m,k +1xcf l

3 Ĥ1(
D+,2x1

τ
n+ 1

2
m,k , D−,2x1

τ
n+ 1

2
m,k , D+,2x2

τ
n+ 1

2
m,k , D−,2x2

τ
n+ 1

2
m,k

))
,

(37)

where the flux Ĥ1 is defined by (Osher and Shu, 1991)

Ĥ1(u+, u−, v+, v−)= extu∈I (u−,u+)extv∈I (v−,v+) H1(u, v);
(38)

the function extu∈I (a,b)=maxa≤u≤b if a≤ b, extu∈I (a,b)=
minb≤u≤a else; I (a, b) = [min(a, b),max(a, b)]; 1x3

c f l is
Courant-Friedrichs-Lewy step,

1x3
c f l

(
max
p1,p2

√(
∂H1

∂p1

)2

+
(
∂H1

∂p2

)2
)
≤ 1x11x2√

1x2
1 +1x2

2

,

(39)
with the maximum taken over the relevant range of p1 and p2.

Because the Hamiltonian H1 is concave, the above flux func-
tion Ĥ1 is not difficult to compute as long as the “sonic point”
(at which ∂H1/∂p1 or ∂H1/∂p2 changes sign) is located. Fur-
thermore, from equations (29) and (30), we know that for VTI
media the sonic point is at p1= 0 or p2= 0. Thus, a second-order
ENO Runge-Kutta scheme for equation (28) can be formulated
as

τ
n+ 1

2
m,k = τ n

m,k +1xcf l
3 Hθmax

((
∂̂τ

∂x1

)n

m,k

,

(
∂̂τ

∂x2

)n

m,k

)
,

(40)

τ n+1
m,k =

1
2

(
τ n

m,k + τ
n+ 1

2
m,k +1xcf l

3 Hθmax((
∂̂τ

∂x1

)n+ 1
2

m,k

,

(
∂̂τ

∂x2

)n+ 1
2

m,k

))
, (41)

where (
∂̂τ

∂x1

)n

m,k

= maxmod
(

max
(

D−,2x1
τ n

m, 0
)
,

min
(

D+,2x1
τ n

m, 0
))
, (42)(

∂̂τ

∂x2

)n

m,k

= maxmod
(

max
(

D−,2x2
τ n

m, 0
)
,

min
(

D+,2x2
τ n

m, 0
))
, (43)

with maxmod returning the larger value in modulus.

NUMERICAL EXAMPLES

To give some idea of the accuracy obtainable with the dif-
ference schemes outlined in the preceding section, we demon-
strate the scheme on smooth VTI models and the (isotropic
and anisotropic) Marmousi model; that is, we solve the parax-
ial eikonal equation (28) by using a second-order ENO scheme.
All examples are assumed to be of constant density.
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First, we have to address the traveltime initialization. Due to
the singularity of the traveltime field at the source which will
lead to the contamination of global numerical accuracy, to ini-
tialize the traveltime we have to use some special techniques,
such as the adaptive grid method (Qian et al., 1999) or the
local uniform mesh refinement (Kim and Cook, 1999). How-
ever, here we assume a homogeneous layer near the source (for
which it is supposed to be easy to assign an accurate traveltime)
and start the finite difference scheme some distance away from
the source; namely, we use a nonlinear iteration method to com-
pute the group velocity and initialize directly the traveltime at
every grid point on a surface away from the source. This ini-
tialization technique, called the analytic method, is a simplified
version of a general shooting method, which is detailed in Qian
(2000), for traveltimes in anisotropic media.

2-D VTI

The first example occupies the rectangle {−0.5 km ≤ x1 ≤
0.5 km, 0 ≤ x3 ≤ 1 km}; the source is located at x1= 0.0 km,
x3= 0.0 km. The four Thomsen’s parameters of homogeneous
Green River Shale are α0= 3.330 km/s, β0= 1.768 km/s, ε=
0.195, and δ=−0.220.

Because the absolute value of the parameter δ differs from
that of ε only slightly, the near-vertical anisotropic response
is dominated by δ (Thomsen, 1986), so we use this example to
demonstrate not only the accuracy of the second-order scheme,
but also the capability of the scheme in capturing the anisotropy
of wave propagation. The initial data depth for the finite-
difference scheme is at x3= 0.24 km. The maximum phase an-
gle is taken as θmax= 80◦. The results are shown on Table 1,
where 1x3= 0.01 km; Abs.Err (the maximum absolute error)
and Rel.Err (the maximum relative error) are both measured
at bottom x3= 1 km. The formulas for the two errors are

Abs.Err(τ,1x1) = max
∣∣τana− τ1x1

f d

∣∣,
and

Rel.Err(τ,1x1) = max
∣∣τana− τ1x1

f d

∣∣
max |τana| ,

where τana denotes the traveltime from the analytic method and
τ f d the traveltime from the finite difference scheme. Finally, α
is the estimated convergence order,

α = 1
log 2

log

(
Rel.Err(τ, 21x1)
Rel.Err(τ,1x1)

)
.

From Table 1, both the absolute error and relative error are
decreased four times as1x1 is halved, and the accuracy order α
goes to 2 as1x1 goes to zero, so this scheme is of second-order
accuracy. When 1x1=1x3= 0.01 km, the maximum absolute
traveltime error at bottom is less than 0.02 ms.

Table 1. Convergence order of the scheme (see text for
explanation).

1x1 Abs.Err(τ,1x1)(s) Rel.Err(τ,1x1) α

0.08 7.3754e-04 0.00168
0.04 2.1380e-04 6.1296e-04 1.45
0.02 5.5932e-05 1.6035e-04 1.93
0.01 1.4162e-05 4.0602e-05 1.98
0.005 3.5643e-06 1.0218e-05 1.99

In the second example, the model occupies the rectangle
{−0.5 km ≤ x1 ≤ 0.5 km, 0 ≤ x3 ≤ 1 km}; the source is located
at x1= 0.0 km, x3= 0.0 km. The four elastic parameters are

α0 =
√

11.0889+ x1 + x3,

β0 =
√

3.1329+ 0.5x1 + 0.5x3,

ε = 4.3247+ x1 + x3

2(11.0889+ x1 + x3)
,

δ = (4.9477+ x1 + x3)2 − (7.9560+ 0.5x1 + 0.5x3)2

2(11.0889+ x1 + x3)(7.9560+ 0.5x1 + 0.5x3)
,

which are perturbations to Thomsen’s parameters of homoge-
neous Green River Shale. To simulate the VTI media, these
parameters necessarily satisfy the stress-strain coefficient in-
equalities (Berryman, 1979). We design this example to test
the capability of the scheme in dealing with both the vertical
and lateral variations.

The grid sampling is1x1=1x3= 0.01 km, and the maximum
phase angle is taken as θmax= 80◦ (see Figure 2). Because of ver-
tical and lateral variations of the example near the source, we
can not use the initialization technique used in the first exam-
ple; instead, we use horizontal q P sound speed (= α0

√
1+ 2ε)

and an adaptive integration method (Stoer and Bulirsch, 1992)
to obtain the traveltime at x3= 0 km. Figure 2a shows the travel-
time isochrons for the 2-D model. Because the lateral variation
is not symmetric with respect to the source, the isochrons could
not reach the same depth at x1= 0.5 km and x1=−0.5 km, the
isochron of 0.262 s, for example. Also, from the figure we can
see that the limitation on the maximum phase angle (artifi-
cial plane wave approximation) plays a role when the phase
angle is near 90◦. Figure 2b shows the calibration result for
the traveltime at bottom x3= 1.0 km from the ENO scheme
and the ray-tracing method (Cerveny, 1972). Because the ray-
tracing method can not give us the traveltime at grid point
directly and we can not guarantee that every traced ray will
pass through the bottom, we have to use a linear interpolation
method to extract the traveltime for some points (not necessar-
ily grid points) from the ray-tracing solutions. The ray-tracing
method uses the traveltime as a running parameter along the
ray; that is, (x1, x3, p1, p3) are parameterized by traveltime τ .
When a ray passes through the bottom x3= 1 km, we pick out
the nearest two points on the ray which embrace the bottom,
then we approximate by linear interpolation the x1 coordinate
and the traveltime of the intersection point between the ray and
the bottom. In the computation, the ray-tracing method traces
rays from phase angle −80◦ to 80◦ with a sampling interval of
π◦. Because the ray fan from ray tracing is rarefying quickly
away from the source, most of the intersection points are not at
the grid point, so it is not appropriate to assess the accuracy of
the ENO scheme and ray-tracing method this way. Neverthe-
less, they are perfectly consistent with each other (Figure 2b).
The effect of the lateral variations of the model is evident on
the traveltime curves at the bottom.

3-D VTI

The 3-D VTI example is the homogeneous Green River
shale, and the four Thomsen parameters are the same as in
the 2-D homogeneous case. The model occupies the cube
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{−0.5 km ≤ x1 ≤ 0.5 km, −0.5 km ≤ x2 ≤ 0.5 km, 0 ≤ x3 ≤
1.0 km}, and the source is located at the center of the surface
x3= 0.

The grid sampling is 1x1=1x2=1x3= 0.02 km, and the
maximum phase angle is taken as θmax= 65◦. We assume
that the initial layer is homogeneous above 0.1 km, and
we start the finite-difference scheme at 0.1 km. To initialize
the traveltime at 0.1 km, we use the analytic method men-
tioned above. Figure 3a shows the isochrons at the bottom
x3= 1 km; the isochrons are circles because of the transverse
isotropy. Figure 3b shows the vertical traveltime profile at
x2= 0.3 km. Figure 4 shows the traveltime comparison at grid-
line x2= 0.2 km and x3= 1.0 km between the ENO traveltime
and the analytic traveltime. The maximum absolute error is less
than 0.19 ms.

Isotropic and VTI Marmousi model

Because the Marmousi model is well known as a complex ve-
locity model, we test the ENO scheme to see its robustness and

FIG. 2. (a) Traveltime isochrons for the 2-D model with vertical and lateral variations. Effects of anisotropy and lateral heterogeneity
on the wave propagation are evident. (b) Traveltime comparison at x3= 1.0 km for the model with vertical and lateral variations.
ENO traveltime (*) and ray-tracing traveltime (–) are consistent with each other.

FIG. 3. 3-D homogeneous VTI model. The source is located at x1= x2= x3= 0.0. (a) Horizontal traveltime slice at x3= 1.0 km.
Isochrons are circles because of the transverse isotropy. (b) Vertical traveltime slice at x2= 0.30 km.

stability on the original isotropic and the anisotropic Marmousi
model (Alkhalifah, 1997). We take portions of these two mod-
els to test our method; that is, the sampling domain is {4.5 km≤
x1 ≤ 7.5 km, 0 ≤ x3 ≤ 2.9875 km}, and the lateral and depth
samples are 241 and 240, respectively, with the sampling inter-
vals equal to 12.5 m.

In the computation, the maximum phase angle is taken as
θmax= 75◦. The source is located at x1= 6.0 km, x3= 0.0 km.
For the isotropic Marmousi model, we initialize the travel-
time at x3= 0.0 km by using the constant surface velocity. For
the VTI Marmousi model, the traveltime is initialized by us-
ing the horizontal sound velocity. The final results are shown
for windowed portions of the two models, corresponding to
{5.4 km ≤ x1 ≤ 6.8 km, 1.5 km ≤ x3 ≤ 2.9875 km} (Figure 5).
Because the vertical velocity in the VTI Marmousi model is
the same as the isotropic Marmousi model, the portion of the
wavefront corresponding to vertical wave propagation is sim-
ilar (Alkhalifah, 1997), which we can see by subtracting the
two traveltime fields, with results shown in Figure 6. However,
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FIG. 4. Traveltime comparison at gridline x2= 0.2 km, x3=
1.0 km for 3-D homogeneous VTI model: ENO traveltime (*)
and analytic traveltime (–). ENO traveltime has almost the
same accuracy as the analytic traveltime.

FIG. 5. Traveltime contours overlaying the model. The source is positioned at x1= 6.0 km, x3= 0.0 km. (a) Isotropic Marmousi
velocity model. (b) Anisotropic Marmousi η model.

FIG. 6. Anisotropic effects on the wave propagation. (a) Nonzero contours of traveltime differences between the two Marmousi
models concentrate on the region where η is larger. (b) Contours of traveltime differences overlaying η model; the maximum
traveltime difference is 5.9 ms. See text for explanation of these differences.

there are still some differences between the two models, espe-
cially near the upper-right corner where η is larger than other
places, and the maximum traveltime difference is 5.9 ms. There
are three possible reasons for these traveltime differences:
the anisotropic effects, the upwind treatment of shocks in the
numerical methods, or the cutoff for phase angles≥θmax. Which
one is responsible for the difference will be investigated else-
where. These computations show that our scheme can deal with
complex geological models.

CONCLUSIONS

We have formulated, for heterogeneous anisotropic solids,
the paraxial eikonal equation satisfied by the first-arrival
traveltime associated with the q P-wave propagation. We have
presented some implementation details for computing the
paraxial Hamiltonian and illustrated the application to trans-
versely isotropic solids (for complete implementation details,
see Qian, 2000). We have constructed a second-order scheme
by using a first-order scheme (Qian, 2000) as a building block.
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Higher order schemes may be constructed by further use of this
method (Qian et al., 1999). These schemes solve the q P parax-
ial eikonal equation in O(N) floating point operations (where
N is the number of grid points). Extensive numerical results
have shown that our scheme is accurate and efficient, and can
deal with complex models and models with both lateral and
vertical variations. The chief shortcoming is that the paraxial
assumption permits us to compute traveltimes along downgo-
ing rays only. For example, we do not compute the overturning
wavefronts; therefore, the velocity structure is limited to be of
mild lateral heterogeneity.

The scheme can be used in many geophysical applications
requiring modeling anisotropic wave propagation, such as
3-D Kirchhoff migration and modeling, tomography, and 3-D
controlled illumination modeling.
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