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Motivated by fast multiscale Gaussian wavepacket transforms and multiscale Gaussian
beam methods which were originally designed for pure initial-value problems of wave
equations, we develop fast multiscale Gaussian beam methods for initial boundary value
problems of wave equations in bounded convex domains in the high frequency regime. To
compute the wave propagation in bounded convex domains, we have to take into account
reflecting multiscale Gaussian beams, which are accomplished by enforcing reflecting
boundary conditions during beam propagation and carrying out suitable reflecting beam
summation. To propagate multiscale beams efficiently, we prove that the ratio of the
squared magnitude of beam amplitude and the beam width is roughly conserved, and
accordingly we propose an effective indicator to identify significant beams. We also prove
that the resulting multiscale Gaussian beam methods converge asymptotically. Numerical
examples demonstrate the accuracy and efficiency of the method.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following initial–boundary value problem (IBVP) of the wave equation,⎧⎪⎪⎨
⎪⎪⎩

utt − V 2(x)�u = 0, x ∈ D, t > 0,

u(x, t)|t=0 = f1(x),
u(x, t)t |t=0 = f2(x),
u(x, t)|x∈∂ D = 0,

(1)

where D is a convex bounded domain in Rd , and the velocity V (x) is smooth, positive and bounded away from zero.
Compared to the slowly changing velocity function, initial conditions f1(x) ∈ H1(D) and f2(x) ∈ L2(D) are assumed to be
highly oscillatory, compactly supported functions.

Since the initial oscillations result in high-frequency waves, direct methods such as finite-difference or finite-element
methods require a large number of grid points to resolve highly oscillatory solutions, and the resulting computational cost
is overwhelmingly high. Consequently, alternative methods such as geometrical-optics based asymptotic methods are sought
to compute such high-frequency wave phenomena. One of the powerful geometrical-optics methods is the Gaussian beam
method [1,16,19,22], which is able to treat caustics automatically. In this paper, motivated by the work in [18] which
designed fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beam methods for pure initial value
problems of wave equations, we propose to develop fast multiscale Gaussian beam methods for wave equations in bounded
convex domains.
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Although Gaussian-beam based numerical methods are well developed for pure initial value problems of Schrödinger
equation and wave equations [11,22,9,21,10,17,18,14,23,20,12], it seems that no efficient numerical Gaussian beam method
has been developed for wave equations and Schrödinger equations in bounded domains. In the case of wave equations in
bounded domains, some essential difficulties arise in developing numerical Gaussian beams. The first difficulty is that one
needs to take care of reflected beams. Theoretically, how to construct reflecting beams has been first addressed in [19] and
further detailed in [3]; numerically, we propose a method-of-images based approach to superpose reflected beams so as to
enforce homogeneous Dirichlet boundary conditions.

The second one is that a bounded domain of general geometry may give rise to diffraction phenomena or gliding rays
along the boundary in the sense of geometrical optics. Since geometrical-optics based approaches including Gaussian beams
are not able to capture those effects, other theories, such as geometrical theory of diffraction, Fourier–Airy integrals, or
gliding beams, are needed. Therefore, to avoid those potential issues, we will assume that the domain is strictly convex and
non-grazing hypothesis [19] holds, and the latter will be satisfied when the initial data is compactly supported away from
the boundary.

The third one is how to decompose arbitrary non-periodic initial data into multiscale Gaussian wavepackets. Since the
original fast multiscale Gaussian wavepacket transform is designed for periodic functions, we propose to first carry out
odd periodic continuations of the initial data, then apply the multiscale Gaussian wavepacket transform to the resulting
continued data, propagate and superpose reflecting Gaussian beams in the original domain, and finally extract the beam
solution in the original bounded convex domain.

The fourth one is how to identify significant beams so that beam propagation can be carried out more efficiently.
We prove that the ratio of the squared magnitude of beam amplitude and the beam width is roughly conserved for each
individual beam, and this ratio can be used as an indicator to identify significant beams. This way the number of propagated
beams is significantly reduced.

1.1. Related work

The idea underlying Gaussian beams is simply to build asymptotic solutions to partial differential equations concentrated
on a single curve through the domain; this single curve is nothing but a ray as shown in [19]. The existence of such solutions
has been known to the pure mathematics community since sometime in the 1960s [1], and these solutions have been used
to obtain results on propagation of singularities in hyperbolic PDEs [19]. An integral superposition of these solutions can be
used to define a more general solution that is not necessarily concentrated on a single curve. Gaussian beams can be used
to treat pseudo-differential equations in a natural way, including Helmholtz and Schrödinger equations [11,22,9,21,10,17,18,
14,20,12].

Gaussian beam superpositions have been used in geophysical applications for seismic wave modeling [4] and migra-
tion [6]. The numerical implementations in these areas are based on ray-centered coordinates which prove to be compu-
tationally inefficient [4,6]. More recently, based on [19,22] the first Eulerian Gaussian beam method was proposed in [11]
which overcomes some of these difficulties; it can be easily applied to both high frequency waves and semi-classical quan-
tum mechanics [9,10]. In [22] Lagrangian Gaussian beams are successfully constructed to simulate mountain waves, a kind
of stationary gravity wave forming over mountain peaks and interfering with aviation.

Based on Ralston [19,3] analyzed a single-scale Gaussian beam method for initial boundary value problems of wave
equations, and the resulting method can handle only single-frequency data. Although our method also heavily relies on [19],
ours can handle multiple-frequency data, and we have named it the multiscale Gaussian beam method as it is based on fast
multiscale Gaussian wavepacket transforms [18].

A PDE boundary value problem seeks the solution of a PDE with given boundary data; while a PDE interface problem
can be viewed as a special boundary value problem with an interior boundary such that the solution has a specified jump
across the interior boundary. Certainly, one may also view a boundary value problem as a special case of an interface
problem. In this regard, single-scale Gaussian beam methods have been derived to take care of interface conditions; for
example, see [15,24] for wave equations and [25,7] for Schrödinger equations. On the other hand, the multiscale Gaussian
beam method proposed here is for wave equations in bounded convex domains and is able to handle multiple-frequency
data.

1.2. Contents

The rest of the paper is organized as follows. Section 2 introduces the Gaussian beam method applied to the wave
equation posed in a bounded domain. In Section 3, we briefly review the fast multiscale Gaussian wavepacket transform
and its application to the wave equation, details of which can be found in [18]. Section 4 gives the strategy on how to select
significant beams and addresses some other numerical issues related to bounded domains. Section 5 proves the asymptotic
convergence of the new method. Numerical results are provided in Section 6 to demonstrate the effectiveness of the new
method.
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2. Gaussian beam methods for the wave equation

2.1. Gaussian beams for initial value problems

We start from the initial value problem of the scalar wave equation in Rd:

utt − V 2(x)�u = 0, x ∈ Rd, t > 0, (2)

where V (x) is smooth, positive and bounded away from zero. Initial conditions u(0, x) = f1(x) ∈ H1(Rd) and ut(0, x) =
f2(x) ∈ L2(Rd) are highly oscillatory functions.

We are looking for asymptotic solutions of the wave equation in geometrical-optics form,

A(x, t)eıωτ (x,t), (3)

where τ (x, t) is the phase function, A(x, t) the amplitude function, and ı = √−1. In the ansatz (3), the frequency ω is a
large parameter, and an asymptotic solution for the wave equation is sought in the sense that the wave equation (2) and its
associated initial conditions are satisfied approximately with a small error when ω is large. Substituting the ansatz (3) into
the wave equation (2) and considering the leading orders in inverse powers of the large parameter ω, we end up with the
following eikonal and transport equations:

τ 2
t − V 2(x)

∣∣∇xτ (x, t)
∣∣2 = 0, (4)

2Atτt − 2V 2∇x A · ∇xτ + A
(
τtt − V 2 trace(τxx)

) = 0. (5)

Factorizing the eikonal equation (4) gives

τ±
t + G±(

x,∇xτ (x, t)
) = 0, (6)

where G±(x,∇xτ (x, t)) = ±V (x)|∇xτ (x, t)| correspond to two polarized wave modes in the second-order wave equation.
Accordingly, we define the Hamiltonians,

G±(x, p) = ±V (x)|p|,
where G±(x, p) is clearly homogeneous of degree one in the momentum variable p.

To construct asymptotic solutions for the wave equation, we are going to use Gaussian beams [19,13,22]. Because the
two polarized wave modes will be treated essentially in the same way, we consider the following generic situation for the
eikonal equation:

τt + G
(
x,∇xτ (x, t)

) = 0, (7)

where G can be taken to be either G+ or G− and τ to be either τ+ or τ− . According to the Gaussian beam theory
[19,13,22], a single Gaussian beam is an asymptotic solution to the wave equation, and it is concentrated near a ray path
which is the x-projection of a certain bicharacteristic. To construct a bicharacteristic, we apply the method of characteristics
to the eikonal equation (7) to obtain the following Hamiltonian system:

ẋ = dx

dt
= G p, x|t=0 = x0, (8)

ṗ = dp

dt
= −Gx, p|t=0 = p0, (9)

where t is time parameterizing bicharacteristics. Solving this system yields the bicharacteristic{(
x(t), p(t)

)
: t � 0

}
,

which emanates from the initial point (x0, p0) in phase space at t = 0. The corresponding ray path is γ = {(x(t), t): t � 0},
which is defined in the (x, t)-space. Notice that along the ray path γ = {(x(t), t): t � 0}, we have by construction p(t) =
τx(x(t), t) due to the method of characteristics. Furthermore, the phase function τ (x(t), t) along the ray path satisfies

dτ (x(t), t)

dt
= τt

(
x(t), t

) + p(t) · G p
(
x(t), p(t)

) = τt
(
x(t), t

) + G
(
x(t), τx

(
x(t), t

)) = 0,

which implies that the phase function τ (x(t), t) does not change along γ because the Hamiltonian G is homogeneous of
degree one; we will take τ (x(t), t) = 0.

So far we have computed the phase function τ and its first-order derivative p(t) = τx(x(t), t) along the ray path γ =
{(x(t), t): t � 0}. To construct a second-order Taylor expansion for the phase function along the ray path, one needs to
compute the Hessian of the phase along the ray. Following [19,22], we differentiate the eikonal equation (7) with respect
to t and x near the ray path γ :
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τt,x(x, t) + Gx
(
x, τx(x, t)

) + τxx(x, t)G p
(
x, τx(x, t)

) = 0, (10)

τt,t(x, t) + G p
(
x, τx(x, t)

) · τx,t(x, t) = 0. (11)

Differentiating Eq. (10) further with respect to x yields the following Riccati equation for M(t) = τxx(x(t), t):

dM(t)

dt
+ Gxx + M(t)Gxp + G T

xp M(t) + M(t)G pp M(t) = 0, (12)

which is appended with an initial condition M|t=0 = M0 = ıε I , where ε is a positive number of order O (1).
Although the Riccati equation (12) does not admit a global smooth solution in general, it turns out that complexifying the

equation by specifying a complex initial value will guarantee that a global smooth solution exists because of the underlying
symplectic structure associated with the related Hamiltonian system; see [19,13,22] for theoretical justification.

Now with the Hessian of the phase function at our disposal, we may solve the transport equation (5) for the amplitude
A(t) = A(x(t), t) along the ray path γ . Since τt(x(t), t) = −G(x(t), p(t)) along the ray path, the transport equation (5) is
reduced to the following:

dA

dt
+ A(x(t), t)

2G

(
V 2(x(t)

)
trace

(
M(t)

) − Gx · G p − G T
p M(t)G p

) = 0, (13)

which is appended with a suitable initial condition A|t=0 = A0.
At this stage, we are ready to construct a single Gaussian beam along the ray path γ by defining the following two

global, smooth approximate functions for the phase and amplitude:

τ (x, t) ≡ p(t) · (x − x(t)
) + 1

2

(
x − x(t)

)T
M(t)

(
x − x(t)

)
, (14)

A(x, t) ≡ A
(
x(t), t

) = A(t), (15)

which are accurate near the ray path γ = {(x(t), t): t � 0}. These two functions allow us to construct a single-beam asymp-
totic solution

Φ(x, t) = A(x, t)exp
(
ıωτ (x, t)

)
. (16)

This beam solution is concentrated on a single smooth curve γ = {(x(t), t): t � 0}, which is the x-projection of the
bicharacteristic {(x(t), p(t)): t � 0} emanating from (x0, p0) at t = 0. Because the phase τ (x, t) has an imaginary part,
Im(τ (x, t)) = 1

2 (x − x(t))T Im(M(t))(x − x(t)), Φ(x, t) has a Gaussian profile of the form

exp

(
−ω

2

(
x − x(t)

)T
Im

(
M(t)

)(
x − x(t)

))
,

which is concentrated on the smooth ray path γ .

2.2. Incident and reflected beams for the wave equation

So far we have discussed how to apply Gaussian beam methods to the initial value problem of the wave equation, but
the domain we are interested in is bounded. The boundary of the domain requires us to construct a reflected beam when
an incident beam hits the boundary. The derivation here relies on results in [19].

Before continuing our discussion, we have to assume the non-grazing hypothesis:

ẋs(t0) · ν(
x(t0)

)
> 0, (17)

where ẋs(t0) denotes the direction of the incident ray, t0 is the time when the incident ray hits the boundary ∂ D at location
x(t0), and ν denotes the outward normal vector to ∂ D . In other words, the ray will not propagate along the boundary.

We further denote the incident and reflected beams by:

us = As(x, t)eıωτs(x,t), (18)

ur = Ar(x, t)eıωτr(x,t). (19)

In order to satisfy the homogeneous Dirichlet boundary condition, we require that

(us + ur)|(x(t0),t0) = 0. (20)

Substituting Eqs. (18) and (19) into Eq. (20) yields:

As(x, t0)eıωτs(x,t0) = −Ar(x, t0)eıωτr(x,t0). (21)

Independence of ω demands that
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τs(x, t0) = τr(x, t0), (22)

As(x, t0) = −Ar(x, t0). (23)

From Eq. (22), we impose the condition that all of their tangential and time derivatives be continuous at (x(t0), t0). There-
fore, differentiating with respect to t on both sides of Eq. (22) and using the eikonal equation (7) give us:

V
(
x(t0)

)∣∣ps
(
x(t0), t0

)∣∣ = V
(
x(t0)

)∣∣pr
(
x(t0), t0

)∣∣. (24)

In order to make the reflected beam incoming, we need pr �= ps . Hence we have

pr = (
I − 2ννT )

ps, (25)

where ν is the outward normal at the reflection point.
For example, in 1-D cases the above condition (25) implies that

pr = −ps. (26)

In 2-D cases, assuming that α is the angle between the tangential line of the boundary and the positive x2-axis with
x = (x1, x2), we have(

p1,r

p2,r

)
=

(
sin2 α − cos2 α −2 sinα cosα
−2 sinα cosα cos2 α − sin2 α

)
·
(

p1,s

p2,s

)
, (27)

where the outward normal at the reflection point is defined to be (cosβ, sin β) with β = π − α.
The second-order derivatives of the phase function for the reflected beam can be determined by differentiating twice

with respect to t in Eq. (22) and combining Eqs. (10) and (11), and it follows that

G p
(
x(t0), ps

) · Gx
(
x(t0), ps

) + G T
p

(
x(t0), ps

)
MsG p

(
x(t0), ps

)
= G p

(
x(t0), pr

) · Gx
(
x(t0), pr

) + G T
p

(
x(t0), pr

)
Mr G p

(
x(t0), pr

)
. (28)

Substituting all the related quantities into Eq. (28) and using the continuity of the tangential components of the second-
order derivatives of τ (x, t), we can determine the relation between the Hessian matrix Ms of the incident beam and the
Hessian Mr of the reflected beam. See also [15] for similar formulations.

For example, we give those relations in three cases:

• 1-D interval:

Mr = Ms + 2ps
V x

V
. (29)

• 2-D rectangular domain: let x = (x1, x2). Assume that two sides of the rectangle are parallel to the x1-axis and the other
two sides are parallel to the x2-axis:
– If the beam hits the boundary parallel to the x1-axis, then(

M11,r, M12,r

M21,r, M22,r

)
=

(
M11,s + 2

p2
1,s+p2

2,s
p1,s

V x1
V , −M12,s

−M21,s, M22,s

)
. (30)

– If the beam hits the boundary parallel to the x2-axis, then

(
M11,r, M12,r

M21,r, M22,r

)
=

(
M11,s, −M12,s

−M21,s, M22,s + 2
p2

1,s+p2
2,s

p2,s

V x2
V

)
. (31)

Here we simply ignore the situation when a beam hits a corner of the rectangle, since it causes diffraction and for-
mula (20) does not apply any more. Since the Gaussian method is asymptotic, the numerical accuracy will not be
degraded without those beams as those diffractions have exponentially small effects.

• 2-D circular domain: consider a unit disk with the boundary parameterized by angle θ . We have( M11,r

M12,r

M22,r

)
= K −1

r · Ks ·
( M11,s

M12,s

M22,s

)
+ K −1

r · B, (32)

where
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Kr =
( sin2 θ −2 sin θ cos θ cos2 θ

p1,r sin θ p2,r sin θ − p1,r cos θ −p2,r cos θ

p2
1,r 2p1,r p2,r p2

2,r

)
, (33)

Ks =
( sin2 θ −2 sin θ cos θ cos2 θ

p1,s sin θ p2,s sin θ − p1,s cos θ −p2,s cos θ

p2
1,s 2p1,s p2,s p2

2,s

)
, (34)

B =
(

(p1,r − p1,s) cos θ + (p2,r − p2,s) sin θ

0
(p2

1,s + p2
2,s) · ( V x1

V (p1,s − p1,r) + V x2
V (p2,s − p2,r))

)
, (35)

where p1,s , p2,s , p1,r and p2,r are defined in (27). By symmetry, M21,r = M12,r , so all the entries of the Hessian matrix Mr
are determined.

From Eqs. (29)–(32), one can prove that the imaginary part from Ms to Mr is still symmetric positive definite [19,3]. We
thus have all the initial components for the reflected beams. The propagation of theses reflected beams follows the same
equations in Section 2.1.

3. Fast multiscale Gaussian beams

In order to construct a solution for the wave equation, it is also necessary for the asymptotic solution to satisfy the initial
condition. However, since the initial condition may not have the form of a Gaussian wavepacket, we have to decompose the
general initial profile into a superposition of Gaussian wavepackets. Here we apply fast multiscale Gaussian wavepacket
transforms to initialize the beam propagation for the wave equation, resulting in fast multiscale Gaussian beams for wave
equations in bounded domains.

3.1. Basic setup

We follow [18] closely. Let N be a sufficiently large positive integer in the sense that [−N/2, N/2]d is enough to cover
the spectra of the initial conditions f1 ∈ H1(D) and f2 ∈ L2(D) in the Fourier domain. For simplicity, we assume that the
domain is D = [0,1]d . Without loss of generality, N is assumed to be the power of 2. We only consider the discrete version
of the transform here. Define the spatial grid and Fourier grid to be

X =
{

x =
(

n1

N
,

n2

N
, . . . ,

nd

N

)
: 0 � n1,n2, . . . ,nd < N, n1,n2, . . . ,nd ∈ Z

}
,

Ω =
{
ξ = (ξ1, ξ2, . . . , ξd): − N

2
� ξ1, ξ2, . . . , ξd <

N

2
, ξ1, ξ2, . . . , ξd ∈ Z

}
.

Partition the Fourier domain Ω into Cartesian coronae Cl for l � 1 as follows:

C1 = [−4,4]d,

Cl =
{
ξ = (ξ1, ξ2, . . . , ξd): max

1�s�d
|ξs| ∈

[
4l−1,4l]}, l � 2.

Each corona Cl is further partitioned into boxes:

Bl,i =
d∏

s=1

[
2l · is,2l · (is + 1)

]
,

where i = (i1, i2, . . . , id) ranges over all possible choices which satisfy Bl,i ⊂ Cl . To each box Bl,i , we associate a smooth
and compactly supported function gl,i with size Ll = 2W l , where W l = 2l is the length of box Bl,i . The window function is
approximately defined as

gl,i(ξ) ≈ e
−(

|ξ−ξl,i |
σl

)2

, ξ ∈ Ω, (36)

where σl = W l/2, and ξl,i is the center of box Bl,i . Based on gl,i(ξ), we can define the conjugate filter hl,i(ξ) for each Bl,i :

hl,i(ξ) = gl,i(ξ)∑
l,i g2

l,i(ξ)
, ξ ∈ Ω. (37)

It follows that the products of gl,i(ξ) and hl,i(ξ) form a partition of unity:∑
l,i

gl,i(ξ)hl,i(ξ) = 1.
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We now define two sets of functions ϕl,i,k(x) and ψl,i,k(x), which are both Gaussian wavepackets. Their constructions are
based on gl,i(ξ) and hl,i(ξ), respectively.

In the Fourier domain, they are defined by:

ϕ̂l,i,k(ξ) = 1

Ld/2
l

e
−2πı

k·ξ
Ll gl,i(ξ), k ∈ {0,1, . . . , Ll − 1}, (38)

ψ̂l,i,k(ξ) = 1

Ld/2
l

e
−2πı

k·ξ
Ll hl,i(ξ), k ∈ {0,1, . . . , Ll − 1}. (39)

In the spatial domain, they can be numerically evaluated by:

ϕl,i,k(x) = 1

(N Ll)
d/2

∑
ξ∈Ω

e
2πı(x− k

Ll
)ξ

gl,i(ξ), k ∈ {0,1, . . . , Ll − 1}, (40)

ψl,i,k(x) = 1

(N Ll)
d/2

∑
ξ∈Ω

e
2πı(x− k

Ll
)ξ

hl,i(ξ), k ∈ {0,1, . . . , Ll − 1}. (41)

Here the subtraction in the spatial domain is understood modulus the periodic domain [0,1]d .
The forward multiscale Gaussian wavepacket transform for a given discretized function f on X is defined by:

cl,i,k = 〈ψl,i,k, f 〉 = 〈ψ̂l,i,k, f̂ 〉 =
∑
ξ∈Ω

1

Ld/2
l

e
−2πı

k·ξ
Ll hl,i(ξ) f̂ (ξ), (42)

where f̂ (ξ) is the discretized Fourier transform of f , and 〈·, ·〉 denotes the L2 inner product. It is proved that f ∈ L2(D) can
be expressed as [18]:

f (x) =
∑
l,i,k

cl,i,kϕl,i,k(x). (43)

By the definition (40) of ϕl,i,k(x), it approximately equals,

ϕl,i,k ≈
(√

π

N Ll
σl

)d

e
2πı(x− k

Ll
)ξl,i e

−σ 2
l π2|x− k

Ll
|2
, x ∈ X, (44)

which can be taken as a Gaussian wavepacket centered at k
Ll

with frequency ξl,i . Together with Eq. (43), this allows us to

decompose a general L2(D) function into a superposition of Gaussian wavepackets. The resulting fast multiscale Gaussian
wavepacket transforms have the complexity O (Nd log N); see [18].

3.2. Initialization and propagation for the wave equation

We first assume that D is a Cartesian domain in Rd . With all the preparation above, we are now ready to employ
multiscale Gaussian wavepacket transforms to decompose functions f1 ∈ H1(D) and f2 ∈ L2(D) into Gaussian wavepackets.
Following [18], we decompose the initial data by the forward transform (42):

f1(x) =
∑
l,i,k

al,i,kϕl,i,k(x), (45)

f2(x) =
∑
l,i,k

bl,i,kϕl,i,k(x). (46)

Assume that the global asymptotic solution for Eq. (1) has the form:

uG B(x, t) =
∑
l,i,k

(
c+

l,i,kΦ
+
l,i,k(x, t) + c−

l,i,kΦ
−
l,i,k(x, t)

)
, (47)

where “+” and “−” represent two different wave modes. If we suppress the superscripts “±”, Φl,i,k(x, t) is a Gaussian
beam propagating in the space–time domain with the initial condition ϕl,i,k(x). It can be obtained by solving the following
equations:

ẋ = G p,

ṗ = −Gx,

Ṁ = −(Gxp)T M − MGxp − MG pp M − Gxx,

Ȧ = − A

2G

(
V 2(x) trace(M) − Gx · G p − G T

p MG p
)
, (48)
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with the initial conditions:

x|t=0 = k

Ll
,

p|t=0 = 2π
ξl,i

|ξl,i| ,

M|t=0 = ı · 2π2 σ 2
l

|ξl,i| I,

A|t=0 =
(√

π

N Ll
σl

)d

, (49)

where I means the identity matrix. According to Section 2.2, at a reflection point we have to set:

xr |t=t0 = xs|t=t0 ,

pr |t=t0 = r1(ps),

Mr |t=t0 = r2(Ms),

Ar |t=t0 = −As|t=t0 . (50)

Expressions of r1(·) and r2(·) depend on the geometry of the domain. In particular, the explicit form of r1(ps) is given
in (26) and (27), and the explicit form of r2(Ms) is given in (29), (30), and (32) for three special cases.

The Gaussian Beam solution corresponding to ϕl,i,k(x) is given by

Φl,i,k(x, t) = Al,i,k(x, t)eı·|ξl,i |τl,i,k(x,t) (51)

with

τl,i,k(x, t) ≡ pl,i,k(t)
(
x − xl,i,k(t)

) + 1

2

(
x − xl,i,k(t)

)T
Ml,i,k

(
x − xl,i,k(t)

)
,

Al,i,k(x, t) ≡ Al,i,k
(
x(t), t

) = Al,i,k(t).

Now we only have to determine the coefficients c±
l,i,k to complete the construction. Letting t = 0 in Eq. (47) and using

Eq. (45) yield

c+
l,i,kϕl,i,k(x, t) + c−

l,i,kϕl,i,k(x, t) = al,i,kϕl,i,k(x). (52)

Differentiate (47) with respect to t on both sides, use Eq. (13) and let t → 0:

(
c+

l,i,k − c−
l,i,k

)( D0

2G+(x(0), p(0))
+ ı · |ξl,i|G+(

x, p(0)
))

ϕl,i,k(x) = ut |t=0 = bl,i,kϕl,i,k(x), (53)

where

D0 = V 2M(0) − G+
p

(
x(0), p(0)

)(
G+

x

(
x(0), p(0)

) + M(0)G+
p

(
x(0), p(0)

))
.

Since |ξl,i | captures the frequency information of f1 and f2, |ξl,i | is large in comparison to D0. In this sense, D0 is negligible
and G(x, p(0)) can also be approximated by G(x(0), p(0)) due to the narrow support of ϕl,i,k(x). Therefore, it is reasonable
to have from (53)(

c+
l,i,k − c−

l,i,k

)(
ı · |ξl,i|G+(

x, p(0)
))

ϕl,i,k(x) ≈ ut |t=0 = bl,i,kϕl,i,k(x). (54)

Solving Eqs. (52) and (54) for c+
l,i,k and c−

l,i,k , we get

c+
l,i,k = 1

2

(
al,i,k − bl,i,k

ı · G+( k
Ll

,2πξl,i)

)
, (55)

c−
l,i,k = 1

2

(
al,i,k + bl,i,k

ı · G+( k
Ll

,2πξl,i)

)
. (56)

Once all the coefficients c±
l,i,k and the related quantities x±

l,i,k(t), p±
l,i,k(t), M±

l,i,k(t), and A±
l,i,k(t) are available, the global

asymptotic solution can thus be determined by formula (47).
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Fig. 1. Odd periodic continuation for a circular domain.

Fig. 2. (a) Tail exceeds the boundary; (b) image principle.

4. Numerical strategies for treating bounded domains

4.1. Decomposition of initial data

Since the fast multiscale Gaussian wavepacket transform is designed for periodic functions, the initial data f1 and f2
originally defined in a bounded convex domain D need to be periodically extended to a rectangular domain. However, since
the homogeneous Dirichlet datum is specified on the boundary of D , such a continuation should allow the resulting solution
for the wave equation to satisfy the boundary condition naturally. To illustrate this, we consider three situations.

Rectangular domains. First we consider one-dimensional case. Let D = [0, L], and let the initial data be compactly supported
away from the boundary and satisfy the following conditions:

f i(0) = f ′
i (0) = 0, f i(L) = f ′

i (L) = 0, i = 1,2.

These two functions are continued as odd periodic functions of period 2L:

f i(x) = − f i(−x), for −L � x � 0; f i(x + 2L) = f i(x), i = 1,2. (57)

If the velocity function V (x) is constant, then when restricted to the original domain D the d’Alembert formula for the
pure initial-value problem of the 1-D wave equation with the periodic data (57) actually yields a solution satisfying the
homogeneous Dirichlet data for the initial–boundary value problem defined in D . This motivates us to first carry out odd
periodic continuation for the initial data and then apply the fast multiscale Gaussian wavepacket transform to decompose
the continued data into Gaussian wavepackets. To recover the initial data (and the beam solution) in the original domain, we
will only use the corresponding wavepackets with centers in the domain D and utilize the summation process as described
in Section 4.2.

Such an odd, periodic continuation process apparently can be applied to compactly supported initial data specified in
two- and three-dimensional rectangular domains, and the resulting odd periodic functions are compatible with the homo-
geneous Dirichlet data as well.

Two-dimensional circular domains. Let D be a disk centered at O with radius r, and let the initial data be compactly sup-
ported in D away from the boundary. We embed D into a rectangular domain [0, L]× [0, L] so that L � 4r and the center O
is located at the center of the rectangular domain. To continue the initial data across the disk to the rectangular domain
so as to be compatible with the homogeneous Dirichlet data on the circle ∂ D , we will first carry out odd continuation of
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Fig. 3. Example 1. Linear model in 1D. (a) Comparison between the beam solution and exact solution at ω = 620; (b) comparison between the beam
solution and exact solution at ω = 980; (c) windowed comparison between the beam solution and exact solution at ω = 620; (d) windowed comparison
between the beam solution and exact solution at ω = 980.

Fig. 4. Relative L2 errors for linear velocity in Example 1.

the initial data in the sense of geometric inversion (generalization of reflection) with respect to the circle ∂ D . As shown
in Fig. 1, given a point P ∈ [0, L]2 \ D , we may find a point Q on the line O P such that |O Q ||O P | = r2, where |O Q | is
the Euclidean distance between O and Q , and the so-defined Q is called the inverse of P with respect to the circle ∂ D;
according to the inverse Q of the point P , we continue the initial data across ∂ D by defining

f i(P ) = − f i(Q ), i = 1,2. (58)

By this odd continuation, the original initial data are continued to the rectangular domain [0, L]2. Since the fast Gaussian
wavepacket transforms consist of localized functions which are exponentially small away from the centers, the initial datum
far away from D has an exponentially small effect on the initial datum inside D in terms of recovering the initial data
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Fig. 5. Example 2. Linear model in 1D. (a) Comparison between the beam solution and exact solution at ω = 620; (b) comparison between the beam
solution and exact solution at ω = 980; (c) windowed comparison between the beam solution and exact solution at ω = 620; (d) windowed comparison
between the beam solution and exact solution at ω = 980.

Fig. 6. Relative L2 errors for linear velocity in Example 2.

inside D from the Gaussian wave packet decomposition; therefore, it is reasonable to ignore the continued initial data
beyond the domain [0, L]2 and periodize these initial data to be of period L along each coordinate direction. Consequently,
we may apply the fast multiscale Gaussian wavepacket transform to decompose the continued initial data on [0, L]2 and
recover the initial data with wavepackets centered in D by the summation method discussed in Section 4.2.

Two-dimensional bounded strictly convex domains. We may extend the above idea of odd periodic continuation to initial
data defined in arbitrary bounded strictly convex domains. Let D be a bounded strictly convex domain and let P be a point
outside of the closure of D . Due to the strict convexity of D , there exists a unique projection T ∈ ∂ D of the point P so that
the line defined by T and P is orthogonal in the Euclidean inner product to the tangent plane at T ∈ ∂ D . Since ∂ D is a
strict convex curve, the curvature at each point along the boundary is positive so that the osculating circle at the boundary
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Fig. 7. Example 3. Sinusoidal model in 1D. (a) Comparison between the beam solution and exact solution at ω = 620; (b) comparison between the beam
solution and exact solution at ω = 980; (c) windowed comparison between the beam solution and exact solution at ω = 620; (d) windowed comparison
between the beam solution and exact solution at ω = 980.

Fig. 8. Relative L2 errors for sinusoidal velocity in Example 3.

point T is well defined, is tangent to the tangent plane at T , and is located on the same side of the tangent plane as the
convex domain. By the separation theorem for convex sets, P is outside of the osculating circle at T . These observations
imply that we may adopt the principle of geometric inversion in a pointwise sense with respect to the osculating circle to
continue the compactly supported initial data across the convex domain. This idea is explored in an ongoing project, and
we will report on this in another paper.
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Fig. 9. Example 4. Linear model in 2D. (a) The exact solution at ω = 180; (b) the beam solution at ω = 180; (c) comparison for the slice at x = 0.25;
(d) comparison for the slice at y = 0.125; (e) windowed comparison for the slice at x = 0.25; (f) windowed comparison for the slice at y = 0.125.

4.2. Beam summation

By design, each individual Gaussian beam satisfies the wave equation asymptotically, and the initial data are satisfied
by suitable linear combinations of many beams. The question now is how to enforce the homogeneous Dirichlet boundary
condition for each individual beam. By construction, each beam is reflected at the boundary according to the geometrical-
optics ray theory, by which the homogeneous Dirichlet datum is satisfied on the central ray of each beam; however, since
the off-central parts of each beam also contribute to the overall solution, we need to make sure that the off-central parts
satisfy the homogeneous Dirichlet boundary condition as well. To see this point more clearly, we illustrate this phenomenon
in the one-dimensional case as in Fig. 2, where a part of the beam solution (“tail”) goes beyond outside the domain so that
the homogeneous Dirichlet boundary condition is violated. Therefore, we need to address such situations.
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Fig. 10. Relative L2 errors for linear velocity in Example 4.

Rectangular domains. Motivated by the method of images, the remedy here is to imagine the boundary as a mirror and the
tail of the beam is reflected back from the boundary. Intuitively, the beam can “see” itself through the boundary with an
opposite sign and the field inside the domain is the superposition of these two kinds of beams; see Fig. 2(b). This is called
the “image principle”, and it is analogous to defining geometrical-optics ingredients for constructing incident and reflected
beams in Section 2.2 so that the homogeneous Dirichlet boundary condition is satisfied. Similar to the method of images,
the beam summation in this way is exact for the wave equation with a constant velocity. Due to the high frequency, the
effective area of a beam is small compared to the whole domain, and the velocity is almost constant in such a small area,
so the algorithm still works even for a variable velocity.

Circular domains. In this case, if the effective area of any beam gets out of the computational domain, we need to reflect
it back across the circular boundary, since the homogeneous Dirichlet boundary condition on the circle has to be satisfied.
The way to do the reflection is similar to the procedure in the initialization process in a circular domain, but is done
reversely. Namely, we find the area inside the computational domain D , denoted by S∗ , that is “inverse” to the effective
area outside D , denoted by S . For any point in S∗ , the beam value at that point should be modified by adding an opposite
value from its inverse point in S .

Two-dimensional bounded strictly convex domains. For a general convex domain with a curved boundary, we apply the
idea of geometrical inversion as we do in the initialization. More specifically, for a beam centered at P in the interior of
domain D with its effective area outside the domain, a unique point T on the boundary ∂ D can be found such that P T
is orthogonal to the tangent plane at T provided P is very close to ∂ D . The assumption is reasonable as the support of
Gaussian beam is very small. Now the inversion point of P is found through the osculating circle at T . As we have done in
the circular domain, for any point affected by the beam centered at P , the value at that point should be modified by adding
a value from the inversion point of P . The implementation of this idea is ongoing.

4.3. Identifying significant beams

To develop an efficient Gaussian beam method, it is critical to control the number of launched beams. Ideally, one would
like to achieve the asymptotic accuracy by launching the least number of beams. A common wisdom is to identify significant
beams according to the amplitude function; however, the following example shows that the amplitude function alone may
not be a good indicator for choosing significant beams.

Consider the one-dimensional wave equation posed in D = [0,1] with the velocity function V (x) = 1 + bx, where
the constant b is chosen such that V (x) is positive on D = [0,1]. By the Lipschitz continuity of the Hamiltonian flow
{(x(t), p(t)): 0 � t � T }, the function p(t) has the same sign as its initial value p0 in a finite time period. Assuming that
G(x, p) = V (x)|p| and p0 > 0, we obtain that

dp

dt
= −bp, p|t=0 = p0,

dM

dt
= −2bM, M|t=0 = M0,

dA

dt
= 1

2
b A, A|t=0 = A0.

It follows that

p(t) = p0e−bt,
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Fig. 11. Example 5. Sinusoidal model in 2D. (a) The exact solution at ω = 220; (b) the beam solution at ω = 220; (c) comparison for the slice at x = 0.25;
(d) comparison for the slice at y = 0.125; (e) windowed comparison for the slice at x = 0.25; (f) windowed comparison for the slice at y = 0.125.

M(t) = M0e−2bt,

A(t) = A0e
bt
2 .

Consequently, if b �= 0, the amplitude function can be either growing or decaying exponentially, depending on the sign of b.
On the other hand, as analyzed in [17,18], the beam width is controlled by the Hessian M(t). As the above solutions indicate
that M(t) and A(t) tend to change in the opposite directions, we need to combine these two quantities into one to identify
significant beams, which is achieved by the following theorem.

For a beam Φ(x, t) given in the form of (51) without subscript, consider the following quantity:

E
(
Φ(x, t)

) = CΦ |A(x, t)|2√
det(�(M(t)))
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Fig. 12. Relative L2 errors for sinusoidal velocity in Example 5.

which combines the amplitude and the beam width; here CΦ is some scaling constant related to the weight of the current
beam. It can be shown that E(Φ(x, t)) does not change too much in the propagation in the sense of the following theorem.

Theorem 4.1. Assume that V (x) is C2(D). There exist positive constants C1 and C2 , only depending on V (x), such that E(Φ(x, t))
satisfies

C1 � E(Φ(x, t))

E(Φ(x,0))
� C2

for 0 � t � T .

Proof. By using the definition of G(x, p), the transport equation can be rewritten as:

d ln A

dt
= −(2G)−1(V 2(x(t)

)
trace

(
M(t)

) − Gx · G p − G T
p M(t)G p

)
= −1

2
trace

(
G pp M(t) + Gxp

) + G−1Gx · G p

= −1

2
trace

(
G pp M(t) + Gxp

) + d ln V (x(t))

dt
. (59)

The last step is obtained by using

d ln V (x(t))

dt
= V x

V
· ẋ = V x · p

|p| = G−1Gx · G p .

Thus, we have:

∣∣A(t)
∣∣2 = |A(0)|2|V (x(t))|2

|V (x(0))|2 exp

(
−

t∫
0

trace
(
G pp�(

M(s)
) + Gxp

)
ds

)
. (60)

The differential equation for det(�(M(t))) is:

d ln det(�(M(t)))

dt
= trace

(
d�(M(t))

dt

(�(
M(t)

))−1
)

= − trace
(
Gxp + �(

M(t)
)
G pp + �(

M(t)
)(

G T
xp + G pp�(

M(t)
))(�(

M(t)
))−1)

= −2 trace
(
Gxp + �(

M(t)
)
G pp

)
. (61)

The last equality is given by the trace invariance under similarity transformation. Hence:

det
(�(

M(t)
)) = det

(�(
M(0)

))
exp

(
−2

t∫
0

trace
(
G pp�(

M(s)
) + Gxp

)
ds

)
. (62)

Combining (60) and (62) yields the proof. �
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Fig. 13. Example 6. Sinusoidal model in 2D. (a) The exact solution at ω = 220; (b) the beam solution at ω = 220; (c) comparison for the slice at x = 0.245;
(d) comparison for the slice at y = 0.245; (e) windowed comparison for the slice at x = 0.245; (f) windowed comparison for the slice at y = 0.245.

Based on Theorem 4.1, E(Φ(x, t)) is bounded during the propagation of a beam, even at reflections, since both |A(t)|
and �(M(t)) are unchanged at a reflection point. In particular, E(Φl,i,k(x,0)) = C(d)cl,i,k|ξl,i |d/2, where C(d) only depends on
the dimension d and N . We thus use E(Φ(x, t)) as the criteria to choose the significant beams, which is better than using
amplitude only.

4.4. Overall algorithm

Here is a sketch for the overall algorithm for the initial boundary value problem (1) by the multiscale Gaussian beam
method:

• Decompose the initial condition into a summation of wavepackets by the multiscale Gaussian wavepacket transform (42)
and determine the coefficients c+

l,i,k and c−
l,i,k by Eqs. (55) and (56).
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Fig. 14. Relative L2 errors for sinusoidal velocity in Example 6.

• Choose ε > 0, and evaluate E(Φl,i,k(x,0)). If E(Φl,i,k(x,0)) > ε , propagate the beam by solving the system (48) with the
initial condition (49) and the reflection condition (50); otherwise the beam is dropped.

• At the time T , sum up all the beams by the image principle given in Section 4.2.

We now analyze the computational complexity of the overall algorithm, which consists of three parts. The first part is
the initialization by multiscale Gaussian wavepacket transform, which has a complexity O (Nd log N). The second part is
the propagation of all the Gaussian beams. The computation for tracing a single beam over a finite time period can be
accomplished in O (1) steps, so the total cost for this part is proportional to the total number of beams. For most of the
applications, like point sources, plane waves, and curvilinear wavefronts, the number of beams is supposed to be small
at given accuracy ε . The final part is the summation step. As the support of each Gaussian beam is of size O (N1/2) in
each dimension, each beam at time T covers about O (Nd/2) points. Overall, the computational complexity is O (Nd log N +
C · Nd/2), where C denotes the number of beams being traced. It is much more efficient compared to the O (Nd+1) cost of
standard finite difference or finite element methods.

5. Convergence results

The convergence result of Gaussian beam methods for pure initial-value problems of wave equations was discussed in
many papers; see [14,23,2]. In terms of wave equations in bounded convex domains, the convergence result for single-scale
Gaussian beam methods based on the FBI transform was provided by [3]. Inspired by the convergence results in [2] of
multiscale Gaussian beam methods for pure initial-value problems of wave equations, we prove that the multiscale Gaussian
beam method for wave equations in bounded convex domains is convergent.

The main convergence result is stated in the following theorem.

Theorem 5.1. Assume that u(x, t) is the exact solution of the wave equation (1) and uG B(x, t) is the solution based on the multiscale
Gaussian beam method. T is a given finite number. The initial conditions satisfy:

f1(x) =
∑
l,i,k

al,i,kϕl,i,k(x), (63)

f2(x) =
∑
l,i,k

bl,i,kϕl,i,k(x). (64)

Let ξmin = minl,i,k {|ξl,i |: |ξl,i | associated with ϕl,i,k} � 4. We have

sup
t∈[0,T ]

∥∥u(·, t) − uG B(·, t)
∥∥

H1(D)
+ sup

t∈[0,T ]
∥∥∂t u(·, t) − ∂t uG B(·, t)

∥∥
L2(D)

(65)

� 1

ξ
1/2
min

(‖ f1‖H1(D) + ‖ f2‖L2(D)

)
. (66)

Here “�” denotes the upper bound up to a constant multiple C , which is independent of the frequency ξmin. The as-
sumption on the initial conditions (63) and (64) is based on the fact that the error introduced by the Gaussian wavepacket
transform is negligible [2]. Since we are concerned with high frequency waves, the lower bound on the frequency is also
reasonable.

To prove the theorem, we recall some lemmas. By the construction of Gaussian beams, let e(x, t) = u(x, t) − uG B(x, t); it
follows that e(x, t) satisfies:
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Fig. 15. Example 7. Sinusoidal model in 2D. (a) The exact solution at ω = 220; (b) the beam solution at ω = 220; (c) comparison for the slice at x = 0.20;
(d) comparison for the slice at y = 0.245; (e) windowed comparison for the slice at x = 0.20; (f) windowed comparison for the slice at y = 0.245.

⎧⎪⎪⎨
⎪⎪⎩

ett − V 2(x)�e(x, t) = P uG B(x, t),
e|t=0 = 0,

et |t=0 = 0,

e|x∈∂ D = BuG B(x, t).

(67)

The two terms P uG B(x, t) and BuG B(x, t) represent the propagation error and the boundary error caused by the approxima-
tion of the Gaussian beam method, respectively. By the classical PDE theory for the initial boundary value problems of wave
equations, we have:

Lemma 5.2. Assume that u(x, t) is the exact solution of the wave equation (1) and uG B(x, t) is the solution based on the Gaussian
beam method. Define e(x, t) = u(x, t) − uG B(x, t). Then the following estimate holds,
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Fig. 16. Relative L2 errors for sinusoidal velocity in Example 7.

sup
t∈[0,T ]

∥∥e(·, t)
∥∥

H1(D)
+ sup

t∈[0,T ]
∥∥∂te(·, t)

∥∥
L2(D)

� sup
t∈[0,T ]

‖P uG B‖L2(D) + ‖BuG B‖H1([0,T ]×∂ D).

Assuming that the initial conditions are given in Eqs. (63) and (64), Bao et al. [2] essentially proved the following
convergence of the propagation error:

Theorem 5.3. (See [2].) supt∈[0,T ] ‖P uG B‖L2(D) � 1
ξ

1/2
min

(‖ f1‖H1(D) + ‖ f2‖L2(D)).

Hence, we only need to prove:

‖BuG B‖H1([0,T ]×∂ D) � 1

ξ
1/2
min

(‖ f1‖H1(D) + ‖ f2‖L2(D)

)
. (68)

Before we proceed to the proof, we need two important lemmas. The first one gives the relation between the coefficients
and the norm of the initial conditions (45) and (46).

Lemma 5.4. (See [18].) Let ξl,i , al,i,k, bl,i,k, c+
l,i,k, and c−

l,i,k be defined in (44), (45), (46), (55), and (56), respectively. Then∑
l,i,k

ξ2
l,i

(∣∣c+
l,i,k

∣∣2 + ∣∣c−
l,i,k

∣∣2) �
∑
l,i,k

(
ξ2

l,i|al,i,k|2 + |bl,i,k|2
) � ‖ f1‖H1(D) + ‖ f2‖L2(D). (69)

The proof of this lemma is based on the Fourier transform and the boundedness of the velocity V (x); see [18]. In fact,
these three quantities are equivalent under suitable assumptions. The second lemma is the following.

Lemma 5.5. (See [2].) Assume that the phase function associated to any beam Φl,i,k(x, t) in Eq. (51) satisfies the condition
that the imaginary part of the Hessian matrix Ml,i,k is symmetric and positive definite. Let dl,i,k be complex numbers such that∑

l,i,k |dl,i,k|2 < ∞, and dl,i,k = 0 for small l. Hl,i,k(x, t) is a differentiable function both in x and t. Assume that there exists an
integer n > 0 such that for each (l, i,k) we have Hl,i,k(x, t) = O (|x − xl,i,k(t)|n). Then∥∥∥∥∑

l,i,k

ξ
n
2

l,idl,i,kΦl,i,k(x, t) · Hl,i,k(x, t)

∥∥∥∥
2

L2(D)

�
∑
l,i,k

|dl,i,k|2. (70)

Its proof fully utilizes the exponential decay of Gaussian beams; details can be found in [2]. It shows that the interaction
between different beams can be controlled. Now we are ready to prove the main result.

Proof of the main theorem. Let

uG B(x, t) = u+
G B(x, t) + u−

G B(x, t),

where u+
G B(x, t) = ∑

l,i,k c+
l,i,kΦ

+
l,i,k(x, t) and u−

G B(x, t) = ∑
l,i,k c−

l,i,kΦ
−
l,i,k(x, t).

We discuss u+
G B(x, t) only since u−

G B(x, t) can be treated in the same way, and for simplicity, we drop the superscript “+”.
Each propagating beam Φl,i,k(x, t) will bounce back and forth in the domain up to finite times N0. Without loss of generality,
we assume that each beam reflects N0 times, since we can always add zero beams if it does not. Use Φ

p
l,i,k(x, t) to denote
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Fig. 17. Example 8. Constant model in 2D. (a) The exact solution at ω = 180; (b) the beam solution at ω = 180; (c) comparison for the slice at x = 0.45;
(d) comparison for the slice at y = 0.47; (e) windowed comparison for the slice at x = 0.45; (f) windowed comparison for the slice at y = 0.47.

the pth (0 � p � N0) reflection of the beam. It is easy to see that except Φ0
l,i,k(x, t) and Φ

N0
l,i,k(x, t), for any p, Φ

p
l,i,k(x, t) can

be both an incident beam and a reflected beam and we add “s” and “r” to denote the difference. Now the boundary value
can be rewritten as:

BuG B(x, t)|x∈∂ D =
∑
l,i,k

N0−1∑
p=0

(
cl,i,kΦ

p,s
l,i,k(x, t) + cl,i,kΦ

p+1,r
l,i,k (x, t)

)∣∣
x∈∂ D

=
∑
l,i,k

N0−1∑
p=0

(
cl,i,k Ap,s

l,i,k(x, t)eı·|ξl,i |τ p,s
l,i,k(x,t) + cl,i,k Ap+1,r

l,i,k (x, t)eı·|ξl,i |τ p+1,r
l,i,k (x,t))

. (71)

Let xp,s
l,i,k and t p,s

l,i,k denote the position and time that the pth reflected beam hits the boundary. By construction of reflected
beams in Eqs. (22) and (23), for each (l, i,k) we have:
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Fig. 18. Relative L2 errors for constant velocity in Example 8.

Ap,s
l,i,k(x, t)|x∈∂ D = Ap,s

l,i,k

(
xp,s

l,i,k, t p,s
l,i,k

) + O
(
x − xp,s

l,i,k, t − t p,s
l,i,k

)
,

Ap+1,r
l,i,k (x, t)|x∈∂ D = Ap+1,r

l,i,k

(
xp,s

l,i,k, t p,s
l,i,k

) + O
(
x − xp,s

l,i,k, t − t p,s
l,i,k

)
= −Ap,s

l,i,k

(
xp,s

l,i,k, t p,s
l,i,k

) + O
(
x − xp,s

l,i,k, t − t p,s
l,i,k

)
(72)

and

τ
p,s

l,i,k(x, t)|x∈∂ D = τ
p,s

l,i,k

(
xp,s

l,i,k, t p,s
l,i,k

) + (
∂xτ

p,s
l,i,k, ∂tτ

p,s
l,i,k

) · (x − xp,s
l,i,k, t − t p,s

l,i,k

)
+ (

x − xp,s
l,i,k, t − t p,s

l,i,k

) ·
(

∂xxτ
p,s

l,i,k, ∂xtτ
p,s

l,i,k

(∂xtτ
p,s

l,i,k)
T , ∂ttτ

p,s
l,i,k

)
·
(

x − xp,s
l,i,k

t − t p,s
l,i,k

)

+ O

(
x − xp,s

l,i,k

t − t p,s
l,i,k

)3

, (73)

τ
p+1,r

l,i,k (x, t)|x∈∂ D = τ
p+1,r

l,i,k

(
xp,s

l,i,k, t p,s
l,i,k

) + (
∂xτ

p+1,r
l,i,k , ∂tτ

p+1,r
l,i,k

) · (x − xp,s
l,i,k, t − t p,s

l,i,k

)
+ (

x − xp,s
l,i,k, t − t p,s

l,i,k

) ·
(

∂xxτ
p+1,r

l,i,k , ∂xtτ
p+1,r

l,i,k

(∂xtτ
p+1,r

l,i,k )T , ∂ttτ
p+1,r

l,i,k

)
·
(

x − xp,s
l,i,k

t − t p,s
l,i,k

)

+ O

(
x − xp,s

l,i,k

t − t p,s
l,i,k

)3

. (74)

Here x ∈ ∂ D and the notation ∂x means the partial derivative with respect to the tangential component of the boundary.
By the continuity of the tangential components of the phase function τ up to the second order, we get:

τ
p,s

l,i,k(x, t)|x∈∂ D − τ
p+1,r

l,i,k (x, t)|x∈∂ D = O

(
x − xp,s

l,i,k

t − t p,s
l,i,k

)3

. (75)

Now combining Eqs. (72) and (75) yields:

Ap,s
l,i,k(x, t)eı·|ξl,i |τ p,s

l,i,k(x,t) + Ap+1,r
l,i,k (x, t)eı·|ξl,i |τ p+1,r

l,i,k (x,t)∣∣
x∈∂ D

= (
Ap,s

l,i,k(x, t) + Ap+1,r
l,i,k (x, t)

)
eı·|ξl,i |τ p,s

l,i,k(x,t)∣∣
x∈∂ D

+ Ap+1,r
l,i,k (x, t)eı·|ξl,i |τ p,s

l,i,k(x,t)(eı·|ξl,i |(τ p+1,r
l,i,k (x,t)−τ

p,s
l,i,k(x,t)) − 1

)∣∣
x∈∂ D

= eı·|ξl,i |τ p,s
l,i,k(x,t) · O

(
x − xp,s

l,i,k, t − t p,s
l,i,k

)∣∣
x∈∂ D

+ Ap+1,r
l,i,k (x, t)eı|ξl,i |τ p,s

l,i,k(x,t)|ξl,i| · O
(
x − xp,s

l,i,k, t − t p,s
l,i,k

)3∣∣
x∈∂ D . (76)

Recall the fact that with the non-grazing hypothesis (17) the Hessian of the beam on the boundary [0, T ] × ∂ D still has a
symmetric positive definite imaginary part [19,3], so instead of the space domain D , we can apply Lemma 5.5 to BuG B(x, t)

on [0, T ] × ∂ D . First we multiply each term in Eq. (71) by (
|ξl,i |
ξmin

)1/2 and then use the inequality (70) so that we have

∥∥BuG B(x, t)
∥∥2

L2([0,T ]×∂ D)
� 1

ξmin

∑
l,i,k

|cl,i,k|2. (77)
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Fig. 19. Example 9. Sinusoidal model in 2D. (a) The exact solution at ω = 180; (b) the beam solution at ω = 180; (c) comparison for the slice at x = 0.45;
(d) comparison for the slice at y = 0.47; (e) windowed comparison for the slice at x = 0.45; (f) windowed comparison for the slice at y = 0.47.

Note that by differentiating BuG B(x, t), we gain an extra coefficient ξl,i for each beam and the others still keep bounded.
More importantly, the property that the beam has Gaussian decay on the boundary [0, T ] × ∂ D is unchanged, so the in-
equality (77) can be adapted to the H1 norm as follows:

∥∥BuG B(x, t)
∥∥2

H1([0,T ]×∂ D)
� 1

ξmin

∑
l,i,k

ξ2
l,i|cl,i,k|2. (78)

Now applying Lemma 5.4 and Lemma 5.3 yields the proof. �
6. Numerical results

In this section we will test our algorithm in 1-D and 2-D domains. Numerical simulations will be carried out for both
constant and variable velocities. Note that the analytic solution may not be available for variable velocities. To calibrate
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Fig. 20. Relative L2 errors for sinusoidal velocity in Example 9.

our computed beam solutions, we obtain the “exact” solution by a fourth-order finite difference method [5] with a dense
grid (up to 8192 points on each dimension) over the computational domain. The CFL condition is chosen to be CFL = 0.5,
which is small enough to control the dispersion error of the solution. To identify significant beams, we choose the cut-off
threshold ε to be 10−3. All the errors are measured in the discrete relative L2 norm.

6.1. One-dimensional domains

Let D = [0,0.5] and N = 8192. The initial conditions are given by:

f1 = 2 sin(ωπx)exp
(−40(x − 0.25)2);

f2 = 0. (79)

The velocity changes in different cases. In order to confirm the convergence rate obtained by the analysis, we vary the main
frequency ω of the initial conditions. Given the exact solution u(x) and the Gaussian beam solution uG B on the grid, the
relative L2 error is evaluated by the following formula:

ek =
√

1
N

∑N
i=1(ui − uG Bi)

2√
1
N

∑N
i=1 u2

i

. (80)

6.1.1. Case 1: Linear velocity
Example 1. Our first example is the wave equation with a linear velocity, where V (x) = 1 + 0.5x. Fig. 3 gives the result
for frequencies ω = 620 and ω = 980 at t = 0.5. The exact solution and the Gaussian beam solution are overlayed in these
figures. As we can see, the differences between the two solutions are almost negligible. Fig. 4 graphs the convergence rate
by evaluating (80) in terms of different frequencies. The rate is approximately 0.5, which is in agreement with our analysis.

Example 2. The second example has the same velocity and initial profile as Example 1, but the initial time derivative is
nonzero, which is defined as:

f2 = ω sin(ωπx).

Fig. 5 gives the result for frequencies ω = 620 and ω = 980 at t = 0.5. The two solution are almost identical to each other.
Fig. 6 shows the convergence rate, which agrees with the analysis as well.

6.1.2. Case 2: Sinusoidal velocity
Example 3. The velocity in this example is V (x) = 1 + 0.5 cos(2πx). The initial conditions are given by Eqs. (79). Fig. 7 is the
comparison between the Gaussian beam solution and the finite-difference solution at time t = 0.5 for frequencies ω = 620
and ω = 980, respectively. Fig. 8 shows the convergence rate, and it agrees with the theoretical result.

The number of beams that has been launched in all these 1-D examples is around 1200. For instance, 1156 beams are
launched for ω = 980 in the sinusoid case, which accounts for approximately 28% of the total number of beams.

6.2. Two-dimensional rectangular domains

Consider the wave equation in the domain [0,0.5] × [0,0.5] for different velocities. Reflection condition for the Hessian
is given by Eq. (30) when the beam hits the boundary. The domain is uniformly discretized by N × N = 2048 × 2048. Initial
conditions for the first three of the following examples are given by:
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Fig. 21. Example 10. Sinusoidal model in 2D. (a) The exact solution at ω = 180; (b) the beam solution at ω = 180; (c) comparison for the slice at x = 0.45;
(d) comparison for the slice at y = 0.45; (e) windowed comparison for the slice at x = 0.45; (f) windowed comparison for the slice at y = 0.45.

f1 = 2 sin
(
ωπ(x + y)

)
exp

(−40
(
(x − 0.25)2 + (y − 0.25)2)),

f2 = 0, (81)

where ω will vary in order to verify the convergence rate. In particular, ω increases by 20 from 60 to 240. The computation
stops at t = 0.5.

6.2.1. Case 1: Linear velocity
Example 4. The velocity is given by V (x, y) = 1 + 0.5(x + y). Figs. 9(a) and 9(b) show the exact solution and the Gaussian
beam solution for ω = 180, respectively. Figs. 9(c) and 9(e) show the comparison for the slice at x = 0.25. Figs. 9(d) and 9(f)
show the comparison for the slice at y = 0.125. Fig. 10 demonstrates the relative L2 convergence rate, which agrees with
the analysis. There are 36 736 beams propagating in the computational domain at ω = 180, which only accounts for 0.4% of
the total number of beams.
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Fig. 22. Relative L2 errors for sinusoidal velocity in Example 10.

6.2.2. Case 2: Sinusoidal velocity
Example 5. Consider V (x, y) = 1 + 0.25 sin(2π(x + y)). Fig. 11(a) shows the exact solution for ω = 220. The Gaussian beam
solution for ω = 220 is shown in Fig. 11(b). Figs. 11(c), 11(d), 11(e) and 11(f) compare the solutions for different slices.
Fig. 12 shows the convergence result based on the different frequencies, and it matches with the analysis very well.

6.2.3. Case 3: Sinusoidal velocity
Example 6. Consider V (x, y) = 1 + 0.25 sin(2πx) cos(2π y). Fig. 13(a) shows the exact solution for ω = 220. The multiscale
Gaussian beam solution for ω = 220 is shown in Fig. 13(b). Figs. 13(c), 13(d), 13(e) and 13(f) compare the solutions for
different slices. Fig. 14 shows the convergence result based on different frequencies.

6.2.4. Case 4: Sinusoidal velocity
Example 7. Consider V (x, y) = 1 + 0.25 sin(2πx) cos(2π y) with the following initial data:

f1 = 2 sin
(
ωπ(x + y)

)
x(0.5 − x)y(0.5 − y),

f2 = ω cos
(
ωπ(x + y)

)
x(0.5 − x)y(0.5 − y).

Fig. 15(a) shows the exact solution for ω = 220. The multiscale Gaussian beam solution for ω = 220 is shown in
Fig. 15(b). Figs. 15(c), 15(d), 15(e) and 15(f) compare the solutions for different slices. Fig. 16 shows the convergence result
based on the different frequencies. It asymptotically satisfies the theoretical convergence rate.

6.3. Two-dimensional circular domains

We proceed to consider a circular domain which is centered at (0.5,0.5) with radius 0.25, and we embed this circular
domain into the unit square. We discretize the unit square uniformly by the grid of N × N = 2048 × 2048 mesh points. The
computation stops at t = 0.5. For the first three cases, we choose the initial conditions to be

f1 = 2 sin
(
ωπ(x − 0.5)

)
sin

(
(ω + 20)π(y − 0.5)

)
exp

(−40|x − 0.5, y − 0.5|),
f2 = 0,

where |x, y| denote the length of vector (x, y). To check the convergence rate, we evaluate ω at every 20 between 60 to 180.
In order to get an accurate solution to compare with, we use a second-order accurate embedded boundary finite-difference
method [8] to generate the “exact” solution.

6.3.1. Case 1: Constant velocity
Example 8. Let V (x, y) = 1. Fig. 17(a) gives the exact solution for ω = 180. The Gaussian beam solution for ω = 180 is given
in Fig. 17(b). Figs. 17(c) and 17(e) and Figs. 17(d) and 17(f) show the comparisons for the slices at x = 0.45 and y = 0.47,
respectively. Fig. 18 demonstrates the relative L2 convergence rate.

6.3.2. Case 2: Sinusoidal velocity
Example 9. Let V (x, y) = 1 + 0.25 sin(2π(x + y)). The result is shown in Fig. 19. Figs. 19(a) and 19(b) show the exact
solution and the Gaussian Beam solution for ω = 180, respectively. Figs. 19(c) and 19(e) and Figs. 19(d) and 19(f) compare
the solutions for the slices at x = 0.45 and y = 0.47, respectively. Fig. 20 plots the convergence result based on the four
frequencies, and the convergence rate matches with the analysis result.
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Fig. 23. Example 11. Sinusoidal model in 2D. (a) The exact solution at ω = 180; (b) the beam solution at ω = 180; (c) comparison for the slice at x = 0.45;
(d) comparison for the slice at y = 0.45; (e) windowed comparison for the slice at x = 0.45; (f) windowed comparison for the slice at y = 0.45.

6.3.3. Case 3: Sinusoidal velocity
Example 10. Let V (x, y) = 1 + 0.25 sin(2πx) cos(2π y). The result is shown in Fig. 21. Figs. 21(a) and 21(b) show the exact
solution and the Gaussian Beam solution for ω = 180, respectively. Figs. 21(c) and 21(e) and Figs. 21(d) and 21(f) compare
the solutions for the slices at x = 0.45 and y = 0.47, respectively. Fig. 22 plots the convergence result based on the four
frequencies, and the convergence rate matches with the analysis result.

6.3.4. Case 4: Sinusoidal velocity
Example 11. Consider V (x, y) = 1 + 0.25 sin(2πx) cos(2π y), and the initial conditions are given by:

f1 = 2 sin
(
ωπ(x − 0.5)

)
sin

(
(ω + 20)π(y − 0.5)

)
exp

(−40|x − 0.5, y − 0.5|),
f2 = ω cos

(
ωπ(x − 0.5)

)
cos

(
(ω + 20)π(y − 0.5)

)
exp

(−40|x − 0.5, y − 0.5|).
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Fig. 24. Relative L2 errors for sinusoidal velocity in Example 11.

The result is shown in Fig. 23. Figs. 23(a) and 23(b) show the exact solution and Gaussian Beam solution for ω = 180
respectively. Figs. 23(c) and 23(d) provide the comparison for the slices. Fig. 24 plots the convergence result based on the
different frequencies.

7. Conclusion

In this paper, we discuss how to construct global Gaussian Beam solutions in a bounded domain with multiple reflections.
The initialization process is accomplished by the fast multiscale Gaussian wavepacket transform, which is fast and accurate
in decomposing initial data. The theoretical analysis shows the convergence rate of the method. Numerical examples validate
our algorithm. The convergence rate is verified in numerical examples.
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