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We set up the electromagnetic system and its plane-wave solutions with the associated

slowness and wave surfaces. We treat the Cauchy initial-value problem for the electric vector

and make explicit the quantities necessary for numerical evaluation. We use the Herglotz-

Petrovskii representation as an integral around loops which, for each position and time form

the intersection of a plane in the space of slownesses with the slowness surface. The field and

especially its singularities are strongly dependent on the varying geometry of these loops;

we use a level set numerical technique to compute those real loops which essentially gives

us second order accuracy. We give the static term corresponding to the mode with zero

wave speed. Numerical evaluation of the solution is presented graphically followed by some

concluding remarks.

1 Introduction

1.1 General introduction

Crystal optics is similar to, but simpler than, anisotropic elasticity. For instance its slowness

surface has conical points, in common with many elasticity systems, and there are conical

points on the wave surface. It also has a third interesting feature associated with the role of

the divergence in relation to Maxwell’s equations, namely the fact that one characteristic

speed is zero (actually two coincident zeros), so that the slowness surface is quartic rather

than sextic as might be expected from the dimensionality – one quadratic sheet of the

slowness surface lies at infinity. Remarkably the wave surface is another quartic surface

of the same algebraic type, but with reciprocal parameters. See for instance Born & Wolf

(1989) for a very full and readable account of the plane-wave theory of this system and

the associated geometry.

The system of crystal optics is of great intrinsic and historical interest, the latter because

Hamilton’s prediction in 1833 of internal conical refraction, and Lloyd’s experimental

confirmation closely thereafter, led to the wide acceptance of Fresnel’s wave theory

of light. The intrinsic interest is largely centered around the remarkable geometrical
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properties of the slowness surface and wave surface, which are both of a type known as

Fresnel’s wave surface (Salmon, 1915).

We derive the fundamental solution for the time-dependent system of crystal optics

in the space-time domain. Furthermore, we illustrate numerically the analytic expression

for the fundamental solution of the system in terms of real loop integrals according to

the Herglotz-Petrovskii formula, which may also be applied readily to other constant-

coefficient hyperbolic systems. Petrovskii (1945) expressed the solution in terms of non-

real cycles in complex space. Atiyah et al. (1970, 1973) placed Petrovskii’s work on a

modern basis, and Smit & De Hoop (1995) recently elaborated this in a three-dimensional

elastodynamic setting. But following John (1955) and Gelfand & Shilov (1964), we will

stay with the representation in terms of real integrals. Burridge (1967) used it to obtain

the geometrical arrivals (see below), and the singularity due to the conical points of the

slowness surface at field points in the interior of the cone of internal conical refraction for

cubic elastic media. But that work lacked numerical illustrations and the treatment of the

conical point was not uniform near the conical surface itself. Although we still do not give

the uniform time-dependent asymptotic analysis for this region, we do present numerical

solutions close to and on this ‘cone of internal conical refraction’. The geometrical

arrivals mentioned above are singularities in the field associated with slownesses ξ which

are ‘stationary points’ where the plane ξ · x = t touches the slowness surface and at which

the slowness surface has finite non-zero Gaussian curvature, and such wave arrivals are

governed by the simplest form of geometrical ray theory.

For instance Moskvin et al. (1993) have derived the Green’s function in the frequency

domain and discussed various important directions and cones of directions in relation to

the field, namely in the directions of generators of the cone of internal conical refraction,

and in the directions of the bi-radials, i.e. the directions of the conical points on the

wave surface, and they obtain asymptotic approximations to the field at large distances

in the neighborhoods of these directions. Based on Moskvin et al. (1993), Warnick &

Arnold (1997) made further detailed studies of the conical refraction. Recently, Berry

(2004) applied paraxial optics to study this singularity; his findings have extended and

complemented the existing theory by providing detailed analysis of such singularity. All of

the above cited works for the internal conical refraction are based on the space-frequency

formulation.

In this paper, we study the second-order vector equation for E obtained by eliminating

the other dependent variables from Maxwell’s equations and the constitutive laws of

crystal optics. This equation is like the second-order elastodynamic equation for particle

displacement and may be obtained from that of isotropic infinitesimal elasticity by setting

the Lamé constant λ = −2, and µ = 1, so that λ + 2µ = 0, and the density ρ = σ (see

below).

Crystals fall under three symmetry classes which affect the optical properties. Either

three eigenvalues of the dielectric tensor are all distinct (bi-axial crystal), or two eigenvalues

are equal but unequal to the third (uni-axial crystal), or all three eigenvalues are equal

(optically isotropic crystal). In this paper we shall concentrate on the bi-axial case.

Our approach is based on the space-time formulation which can be used to further

study the internal conical refraction; the numerical analysis carried out in the current work

complements the earlier mathematical investigations done by Ludwig (1961), Melrose &
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Uhlmann (1979) and Uhlmann (1982). In particular, with modern microlocal analysis

tools Melrose & Uhlmann (1979) have constructed the microlocal parametrix for the

Cauchy problem of Maxwell’s equation in a bi-axial crystal to analyze the singularities

of the solution so that they were able to explain the appearance of the cone of conical

refraction when a ray of light hits a bi-axial crystal in a direction parallel to an optic

axis of the crystal. Furthermore, based on Melrose & Uhlmann (1979), Uhlmann (1982)

carried out a more elegant and refined analysis than the study of the singularities to

explain the so-called “double ring” phenomena; see Uhlmann (1982) for more details.

Furthermore, Taylor & Uhlmann (Taylor, 1981; Chap. 15, Sect. 5) have constructed

a microlocal parametrix to deal with the phenomenon of conical refraction. They first

perturbed the second order equation for the electric vector so that the equation behaves like

an elastic system; then they defined the so-called conical singularity via the characteristic

variety and the conic variety. Here we notice that the characteristic variety in their setting

is equivalent to the slowness surface in our setting. In particular, they constructed the

fundamental solution at a conical singular point, and it is represented as a tensor product

between a δ-function and the distributional kernel of the classical wave equation in three

variables.

However, in this work we construct the fundamental solution for the second order

equation for the electric vector in the whole space, hence it is different from the one

constructed by Taylor and Uhlmann. On the other hand, the numerical computation of

the fundamental solution of the Cauchy problem presented here does illustrate related

singularities in the field associated with slownesses ξ which are ‘stationary points’ where

the plane ξ ·x = t touches the slowness surface and at which the slowness surface has finite

non-zero Gaussian curvature (see below). See Every (1981) for the effects of curvature of

the slowness surface near crystal symmetry axes in cubic crystal acoustics, Shuvalov &

Every (1996) for more general symmetries, and Musgrave (1970) for the general theory of

crystal acoustics.

In this work, we concentrate on the fundamental solution for the constant-coefficient

time-dependent non-dispersive system of crystal optics in the space-time formulation. For

the variable-coefficient time-dependent system of crystal optics in the space-time domain,

Braam & Duistermaat (1993) predict singularities that spiral or glance hyperbolically

in the vicinity of the so-called “double characteristic set”, and the derivatives of the

material properties are responsible for such singularities. To deal with such a case, we

may start from normal forms of real symmetric systems with multiplicity developed in

Braam & Duistermaat (1993) and go along the lines developed in Burridge (1967) to

study singularities related to the internal conical refraction of light; the related numerical

investigation is an ongoing work.

1.2 Outline

In § 2 we set up the electromagnetic system and its plane-wave solutions with the associated

geometrical entities such as the slowness surface, and the wave surface. In § 3 we set up

and solve the Cauchy initial-value problem for E and make explicit some quantities

with a view to numerical evaluation. In § 4 we follow the Herglotz-Petrovskii procedure

of transforming the integral representation to an integral around loops which, for each
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x, t, form the intersection of the plane ξ · x = t with the slowness surface. As x, t vary

the geometry of these loops varies; the field and especially its singularities are strongly

dependent on the geometry of these loops. In § 5 we give the static term corresponding

to the mode with zero wave speed. Numerical evaluation of the fundamental solution

is presented graphically in § 6 for a selection of points in the positive quadrant of the

13-plane. § 7 contains some concluding remarks.

Notation

Symbol Definition

t. time

x = (x1, x2, x3) spatial coordinate vector.

r = (r1, r2, r3) coordinate vector for the representation of E.

c the speed of light in vacuo.

E , H the electric and magnetic vectors.

D The electric displacement.

B The magnetic induction.

µ The magnetic permeability (scalar).

ε The dielectric tensor (symmetric).

σ, σ1, σ2, σ3 µε/c2 and its principal values.

ξ The slowness vector.

f Plane wave pulse shape.

e, h, d , b Constant polarization vectors for
E , H , D, B, related to ξ.

x̂ The unit vector in the direction of x, and similarly for other vectors.

x̂, ŷ, ẑ, x⊥ Unit vectors (§ 5 and Appendix A only).

Ω, dΩ The unit sphere and its surface element.

E The energy ellipsoid rTσ−1r = 1.

u, v Ellipsoidal coordinates on ellipsoid E (σ1 � u � σ2 � v � σ3 � 0.)

S, dS The slowness surface and its surface element.

cS A conical point on S.

ΠS One of the four special tangent planes to S.

CS One of the four circles in which a ΠS touches S.

W The wave surface (reciprocal to S).

cW A conical point on W (reciprocal to ΠS).

ΠW One of the four special tangent planes to W (reciprocal to cS).

CW One of the four circles in which ΠW touches W.

DW The disk spanning CW.

Σ±, χ± The two cones of internal conical
refraction (vertex 0, base CW), equation χ±(x) = 0.

L Loop or loops forming the intersection of plane ξ · x = t
with slowness surface S.

∇, ˙ Derivatives with respect to x and t.

Notes (1) When used in matrix calculations vectors are columns unless explicitly trans-

posed. (Thus xTx is a scalar and xxT is 3 × 3.) (2) There are four conical points cS. cS
in the singular refers to the cS in ξ1 > 0, ξ3 > 0. Similarly for some other quantities.
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2 Crystal optics equations

2.1 Maxwell’s equations and the slowness surface

We follow Born & Wolf (1991, Chap. XIV). Let x = (x1, x2, x3) = (x, y, z) be Cartesian

coordinates and t the time. Maxwell’s equations and the constitutive equations of crystal

optics are

−1

c
Ḃ = ∇ × E ,

1

c
Ḋ = ∇ × H ,

B = µH , D = εE .
(2.1)

Please refer to the Table of Notation for symbol definitions.

Since E , H , D, and B may be expressed as superpositions of plane waves we shall seek

them in a standard form for plane waves:

E = e f(t− ξ · x), H = h f(t− ξ · x),

D = d f(t− ξ · x), B = b f(t− ξ · x).
(2.2)

Substitution of (2.2) into (2.1) leads to

1

c
b =

µ

c
h = ξ × e, −1

c
d = −ε

c
e = ξ × h. (2.3)

It easily follows that

ξ×(ξ×e) =
µ

c
ξ×h = −σe, (2.4)

i.e.

σe = |ξ|2e − (ξ · e)ξ. (2.5)

Then from (2.3)

h · ξ = b · ξ = d · ξ = e · h = d · h = 0. (2.6)

Also

ξ · (e × h) = −e · (ξ × h) = h · (ξ × e) =
1

c
e · d =

1

c
h · b. (2.7)

We shall often assume that

εij = εiδij , σij = σiδij . (2.8)

No summation is implied. Then

dk = εkek, bk = µhk. (2.9)

From (2.7) we have

1

c

∑
k

εke
2
k =

1

c
µ|h|2 = ξ · (e × h). (2.10)

From (2.7), (2.8) and (2.9) we obtain

µεk

c2
ek = |ξ|2ek − (ξ · e)ξk. (2.11)

Writing

σk =
µεk

c2
(2.12)
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and rearranging (2.11) we get

ek = (ξ · e)
ξk

|ξ|2 − σk
. (2.13)

Equation (2.9) for dk and (2.13) lead to

dk = (ξ · e)
εkξk

|ξ|2 − σk
. (2.14)

Contracting (2.13) with ξk and canceling ξ · e we obtain

∑
k

ξ2
k

|ξ|2 − σk
= 1. (2.15)

Contracting (2.14) by ξk and using ξ · d = 0 we get

∑
k

σkξ
2
k

|ξ|2 − σk
= 0. (2.16)

Equations (2.15) and (2.16) may be taken as equivalent equations of the slowness surface

Sσ on which ξ is constrained to lie. Another equation for S is

det(σ − |ξ|21 + ξξT ) = 0 (2.17)

obtained from (2.5) regarded as a linear system in e. In (2.17) 1 is the identity 3 × 3 tensor

and ξT is the transpose of the column vector ξ. Equation (2.17) can be written more

explicitly as

|ξ|2 ξTσξ − [tr(adjσ)|ξ|2 − ξTadjσ ξ] + det σ = 0, (2.18)

where adj stands for the transposed matrix of cofactors, and tr for the trace; to obtain

this equation, we use the principal axes of σ as coordinates, multiply out Equation (2.17)

explicitly and identify certain combinations of quantities that are invariant and can be

expressed as in (2.18) – see Figure 1.

In the following we consider a uniform, homogeneous crystal, so that the principal

values of the permittivity are positive and the corresponding hyperbolic system has fixed

multiplicity.

2.2 The wave surface

Let us now consider the wave surface reciprocal to the slowness surface. Remarkably for

the system of crystal optics the algebraic form of the two surfaces is the same. To see this

we first consider the equation of energy conservation

∂t[
1
8π

(E · D + H · B)] = − c
4π

∇ · (E × H). (2.19)

This is easily verified from equations (2.1). The quantity 1
8π

(E · D + H · B) is the energy

density and c
4π

E × H is the Poynting vector giving the power flux density. For plane waves

E · D = H · B, and the Poynting vector is the group, or ray, velocity multiplied by the
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Figure 1. This shows the slowness surface S cut away to reveal the inner sheet. The contours

drawn on the surface are tangent everywhere to the polarization e. The thicker contours drawn in

each coordinate plane show the circle and ellipse in which that plane cuts the surface. The conical

points are clearly visible as the intersections of the ellipse and circle in the (1-3)-plane. There are

also four planes each of which touches S along a circle. The four circles (only half of one being

clearly visible) are drawn as heavy lines surrounding the conical points on the outer sheet.

energy density. It follows by using (2.3) and (2.7) in (2.19) that

1
8π

(e · d + h · b) = 1
4π

e · d = 1
4π

h · b = 1
4π
µ|h|2 = c

4π
ξ · (e × h), (2.20)

from which we may deduce that the ray velocity v is

v =
c

4π

1

µ|h|2 e × h. (2.21)
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Figure 2. This shows the inner sheet of the wave-surface W reciprocal to the outer sheet of the

slowness surface S. The four prominent ‘ears’ have negative Gaussian curvature and correspond

to four regions with negative curvature on S. The dark circles are the circles of contact CW of

the four special tangent planes ΠW. These circles correspond to conical points on S. Reciprocally

the conical points of W shown here correspond to similar circles of tangency on S. This surface

joins smoothly onto the outer sheet of W shown in the next figure along the contact circles. The

fundamental solution is weak on the circles CW, but the strongest part of the field is near the

conical points cW of W.

For future reference let us notice here that from (2.6) and (2.21) the vectors ξ, v, d , and e

all lie in the same plane orthogonal to the parallel vectors b, h.

From (2.20) and (2.21) we have

ξ · v = 1. (2.22)

We may now verify that

v × (v × d) = −σ−1 d , (2.23)

i.e.

σ−1 d = |v|2d − (v · d)v. (2.24)

Taking advantage of the fact that σ is diagonal in the current coordinate system we may
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Figure 3. This shows the outer sheet of the wave-surface W reciprocal to the inner sheet of the

slowness surface S. The dark circles are the circles of contact CW for the four multiply tangent

planes ΠW. These circles correspond to conical points on S. This surface joins smoothly onto the

inner sheet of W shown in the previous figure along the four circles CW where the signal is relatively

weak. An additional weak wave singularity (arrival) resides on the disks spanning these circles.

write (2.24) as

1

σk
dk = |v|2dk − (v · d)vk, (2.25)

leading to

∑
k

v2k

|v|2 − 1

σk

= 1,
∑
k

1

σk
v2k

|v|2 − 1

σk

= 0, (2.26)

and

det(σ−1 − |v|21 + vvT ) = 0; (2.27)

compare (2.15), (2.16), (2.17). Also

|v|2 vTadjσ v − [tr(σ)|v|2 − vTσ v] + 1 = 0, (2.28)

in analogy with the development (2.11) to (2.17). Equations (2.26) and (2.27),(2.28) may

be taken as equivalent equations of the wave surface Wσ upon which v is constrained

to lie (see Figures 2 and 3). Two cones Σ± having the origin as vertex pass through the

circles. Their equations are
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χ±(ξ) ≡ (ξc3x1 ± ξc1x3)
(ξc3x1

σ1
± ξc1x3

σ3

)
+ x2

2 = 0; (2.29)

see Appendix A for the derivation of these equations.

3 The Cauchy problem

In this section we set up and solve the Cauchy problem for the second-order system of

PDE’s obtained by eliminating B, D, H from (2.1). Later we shall evaluate the solution

numerically and present some results graphically. Our development is strongly motivated

by John (1955), the discussion of the Herglotz-Petrovskii formula in Gelfand & Shilov

(1964) and Petrovskii (1945).

3.1 The second-order equation for E

The elimination of B, D, H from (2.1) yields the single second-order equation

σË = −∇×∇×E = (∇21 − ∇∇T )E . (3.1)

Then, on writing ∂t for ∂/∂t (3.1) becomes

[σ∂2
t − P (∇)]E = 0, (3.2)

where

P (ξ) = |ξ|21 − ξξT , (3.3)

so that P (ξ̂) is the projection onto the plane normal to ξ̂. We shall generate the fun-

damental solution of (3.2) by solving the Cauchy problem for (3.2) in t > 0 with initial

conditions

E(x, 0) = 0, ∂tE(x, 0) = σ−1δ(x), (3.4)

where

δ(x) = δ(x1)δ(x2)δ(x3). (3.5)

By Duhamel’s principle this Cauchy problem is equivalent to the inhomogeneous equation

[σ∂2
t − P (∇)]E = 1δ(t)δ(x), (3.6)

with E = 0 for t < 0. We shall solve this using the following considerations, which are

motivated by John (1955, Chap. 2); in addition, we generalize that work to a matrix

formulation and consider the degenerate mode with zero wave speed.

3.2 The residue calculation

Let us write

L(v, ξ) = v2σ − P (ξ), (3.7)

regarding v as a scalar complex variable. Then for large enough |v|
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L−1(v, ξ) = v−2σ−1[1 − v−2P (ξ)σ−1]−1

= v−2σ−1

∞∑
n=0

v−2n(P (ξ)σ−1)n.
(3.8)

This is a series in inverse even powers of v, starting with v−2. On multiplying this by vq

and integrating around a large circle centered at the origin in the complex v plane we

obtain

I =
1

2πi

∮
L−1(v, ξ)vq dv =

{
0, q = 0,

σ−1, q = 1.
(3.9)

Other values of q will not concern us. Let us now evaluate I by residues at the finite

poles. When ξ� 0 there are four simple non-zero poles ±V1, ±V2 of L−1 and a double

pole at v = 0. Thus, if we write V−1 for −V1 and V−2 for −V2, and ∂v for ∂/∂v we find

on evaluating the residues at the VN that

I =
∑
N

vqadjL

∂v detL

∣∣∣∣∣
v=VN

+ {residue at v = 0}. (3.10)

We may rewrite ∂v detL|v=VN as

∂v detL|v=VN = ∂v det(v2σ − P )|v=VN = 2VNtr(σ adjL). (3.11)

To find the residue at v = 0 we expand (v2σ − P )−1 in positive powers of v. Thus using

adjP (ξ) = |ξ|2ξξT (3.12)

we find that

detL = adj(v2σ − P )

= adjP + O(|v|2)
= |ξ|2ξξT + O(|v|2).

(3.13)

Recalling that detP = 0 we see that

det(v2σ − P ) = v2tr(σadjP ) + O(|v|4)
= v2|ξ|2 ξTσξ + O(|v|4).

(3.14)

So

{det[L(v, ξ))]}−1 =
v−2

|ξ|2 ξTσξ
+ O(1). (3.15)

Thus, the residue of vqL−1 at 0 is

{residue of vqL−1at v = 0} =




0, q = 0,

ξξT

ξTσξ
, q = 1.

(3.16)

Thus, from (3.9), (3.10), (3.11) and (3.16) we find that
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∑
N

adjLN
2VNtr(σadjLN)

= 0, (3.17)

and ∑
N

adjLN
2 tr(σadjLN)

+
ξξT

ξTσξ
= σ−1. (3.18)

Here we have written LN for L evaluated at v = VN , N = ±1,±2.

3.3 The fundamental solution

Let us first seek a matrix plane-wave solution Gξ of (3.2) in the form

Gξ(x, t) =
∑
N

adjLN
2VNtr(σadjLN)

f(VNt− ξ · x) +
ξξT

ξTσξ
tf′(−ξ · x). (3.19)

This form is motivated by the plane wave decomposition of the δ-function, (3.23), and

the above results of the residue calculation, (3.18).

We first verify that L(∂t,∇)Gξ(x, t) = 0. Thus

L(∂t,∇)Gξ(x, t) =
∑
N

LNadjLN
2VNtr(σadjLN)

f′′(VNt−ξ · x)

=
∑
N

detLN 1

2VNtr(σadjLN)
f′′(VNt−ξ · x)

= 0,

(3.20)

since each detLN = 0. By (3.17) the initial value of Gξ is

Gξ(x, 0) =
∑
N

adjLN
2VNtr(σadjLN)

f(−ξ · x) = 0, (3.21)

and by (3.18) the initial value of ∂tGξ is

∂tGξ(x, 0) =
∑
N

adjLN
2 tr(σadjLN)

f′(−ξ · x) +
ξξT

ξTσξ
f′(−ξ · x) = σ−1f′(−ξ · x). (3.22)

We are ultimately interested in the matrix point source problem (3.2), (3.4), (3.5) or

equivalently (3.6). The link is the plane-wave expansion of the δ-function,

δ(x) = − 1

8π2

∫
Ω

δ′′(ξ̂ · x) dΩ, (3.23)

where Ω is the unit sphere |ξ| = 1, dΩ is the surface element on Ω, and δ′′ is the second

derivative of the one-dimensional δ-function. (See John (1955, Chap. II), Courant &

Hilbert (1962, Chap. VI, Sect. 11) and Gelfand & Shilov (1964, Chap. I, Sect. 3.11.) From

(3.21) and (3.22), and setting f = δ′, we see that
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G(x, t) = − 1

8π2

∫
Ω

Gξ(x, t) dS

= − 1

8π2

∑
N

∫
Ω

adjLN
2VNtr(σadjLN)

δ′(VNt−ξ̂ · x) dΩ − t

8π2

∫
Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(−ξ̂ · x) dΩ
(3.24)

satisfies (3.4) exactly.

3.4 Transformation to an integral over the slowness surface

Here we follow John (1955, Chap. II) and Gelfand & Shilov (1964, Chap. I, Sect. 6.3).

If the wave-speeds ±VN are ordered from the most negative to the most positive we

find that VN(−ξ) = V−N(ξ). This and the fact that the VN are homogeneous functions of

degree 1 imply that the integral in (3.24) for N is the same as the integral for −N. Thus,

we may combine the terms for ±N and write

G(x,t) = − 1

4π2

∑
N=1,2

∫
Ω

adjLN
2VNtr(σadjLN)

δ′(VNt−ξ̂ · x) dΩ − 1

8π2

∫
Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂
t δ′′(−ξ̂ · x) dΩ.

(3.25)

In the Nth term of (3.24) let us transform the integral over Ω to one over SN , N = 1, 2,

where SN is the sheet of the slowness surface corresponding to slowness 1

VN (ξ̂)
. We note

that

|ξ|2 dΩ = cos θ dSN =
ξ · ∇ξVN

|ξ| |∇ξVN | dSN =
1

|ξ| |∇ξVN | dSN, (3.26)

where ξ = |ξ|ξ̂, θ is the angle between ξ and v̂ the normal to SN , and dSN is the surface

element on SN and we have used the homogeneity of VN as a function of ξ. We next

use the facts that VN(ξ) = 1 on SN , δ′ is homogeneous of degree −2, and that VN(ξ) is

homogeneous of degree 1, to get

δ′(VN(ξ̂)t− ξ̂ · x)

VN(ξ̂)
= |ξ|3 δ

′(VN(ξ)t− ξ · x)

VN(ξ)
= |ξ|3δ′(t− ξ · x). (3.27)

Finally, we write

G(x, t) = − 1

8π2
∂t

∫
S

adjL(1, ξ)δ(t− ξ · x)

|∇ξVN | tr[σ adjL(1, ξ)]
dS − t

8π2

∫
Ω

ξ̂ξ̂
T
δ′′(ξ̂ · x)

ξ̂
T
σξ̂

dΩ, (3.28)

where we have combined the two terms N = 1, 2 by integrating over the whole of S which

comprises both sheets. Because of the properties of δ the integrals may be written as integ-

rals along curves of intersection of the algebraic surface S with the plane ξ ·x = t. We shall

elucidate this and make more explicit the various expressions appearing in the integrand.

One may also examine the above fundamental solution from a microlocal point of

view. For example, one may use Fourier Integral Operator theory to construct the

parametrix for the Cauchy problem to study singularities, which eventually leads to the

Herglotz–Petrovskii formula for the fundamental solution of the hyperbolic system under
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consideration (Hörmander, 1980, Chap. 12); however, here we will not pursue this line

further.

4 The loop integrals

Consider the integral expression of (3.28) repeated here for convenience

G(x, t) = − 1

8π2
∂t

∫
S

adjL(1, ξ)δ(t− ξ · x)

|∇ξv| tr[σ adjL(1, ξ)]
dS − t

8π2

∫
Ω

ξ̂ξ̂
T
δ′′(ξ̂ · x)

ξ̂
T
σξ̂

dΩ. (4.1)

The first integral reduces to an integral around a curve, the intersection of S and the

plane ξ · x = t. Let n be the outward unit normal to S and ζ ′ defined by

ζ ′ = x̂ · ξ. (4.2)

Then

sin θ dS = ds dζ ′, (4.3)

where s is arc-length along the curve and

cos θ = x̂ · n =
x̂ · ∇ξv

|∇ξv|
. (4.4)

Hence
δ(t− ξ · x) dS

|∇ξv|
=

δ(t− |x| ζ ′) ds dζ ′√
|∇ξv|2 − (x̂ · ∇ξv)2

. (4.5)

Thus ∫
S

adjL(1, ξ)δ(t− ξ · x)

|∇ξv| tr[σ adjL(1, ξ)]
dS =

1

|x|

∫
L

adjL(1, ξ) ds

tr[σ adjL(1, ξ)]
√

|∇ξv|2 − (x̂ · ∇ξv)2
. (4.6)

Here L is the complete real intersection of S with the plane ξ · x = t and ds is arc-length

along L.

4.1 Implicit computation of complete intersection L

To evaluate the integral (4.6), we have to compute the complete real intersection L of S
with the plane ξ · x = t. We use an Eulerian approach.

Since

S = {ξ ∈ R3 : det(σ − P (ξ)) = 0}, (4.7)

we define the function

Φ(ξ) ≡ det(σ − P (ξ)), (4.8)

and find its zero level set S:

S = {ξ ∈ R3 : Φ(ξ) = 0}. (4.9)

Moreover, the hyperplane ξ · x = t may also be represented implicitly by the zero level set

of function
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Ψ (ξ) ≡ ξ · x − t. (4.10)

To reduce the computational complexity, we use the fact that L always lies on the plane

ξ · x = t with a fixed normal x̂. Thus we may rotate the coordinate system first and find

L by contouring zero level sets of a 2-dimensional function. This technique is commonly

used in the level set method for dynamic implicit surfaces; see Osher & Fedkiw (2002).

In the numerical implementation, we have used linear interpolation for contouring

zero level sets and trapezoid quadrature for numerical integration so that the computed

fundamental solution has at least second-order accuracy in terms of mesh size used for

contouring zero level sets; on the other hand, we may use the Newton-Raphson method

to improve the accuracy for contouring zero level sets, which is not carried out here.

4.2 The method of evaluation

The method of numerical evaluation is as follows. We first rotate the coordinate system

so that the new 3-direction is parallel to x. Thus, defining the rotation matrix Q to have

x̂ as its third column (We chose the second column to lie in the 12-plane.), and setting

ξ = Q ξ′ (4.11)

the coordinate ξ′
3 is in the direction of x as required and ξ′

1, ξ
′
2, ξ

′
3 form a right-handed

orthogonal coordinate system. So, using

σ′ = QTσQ, ξ′ = QTξ (4.12)

we may write the determinant det{σ − P (ξ)} as

det{σ − P (ξ)} = det{σ′ − P (ξ′)}
= σ1σ2σ3 − tr{adj(σ′}|ξ′|2 + ξ′Tadj(σ′)ξ′ + |ξ′|2ξ′Tσ′ξ′ (4.13)

as a function of ξ′
1 and ξ′

2 for each fixed ξ′
3 = t/|x|. A Matlab code was written using

the contour command to find L as a curve or curves of points in the ξ′
1ξ

′
2-plane where

this determinant vanishes. The integration was performed to second order accuracy in the

mesh size on which det{σ′ − P (ξ′)} was evaluated.

5 The static term

In (3.28) the final term of the fundamental solution G represents a non-propagating

disturbance, corresponding to zero velocity, which grows linearly in time and is singular

at the origin. It is

J(x, t) = − t

8π2

∫
Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂
δ′′(ξ̂ · x) dΩ. (5.1)

Let us now calculate J(x, t).

Let x̂ be the unit vector in the direction of x and let ŷ, ẑ be chosen so that x̂, ŷ, ẑ form

a right-handed orthonormal triple.

Then a general unit vector ξ̂ perpendicular to x may be written as cosφŷ + sinφẑ, and

we may write J as
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J(x, t) = − t

8π2|x|3

∫ 1

−1

∫ 2π

0

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(µ) dφ dµ, (5.2)

where

ξ̂ = µx̂ +
√

1 − µ2(cosφŷ + sinφẑ), (5.3)

and x⊥ = cosφŷ + sinφẑ. Then

J(x, t) = − t

8π2|x|3

∫ 2π

0

∂2

∂µ2

(
ξ̂ξ̂

T

ξ̂
T
σξ̂

)∣∣∣∣∣
µ=0

dφ. (5.4)

After some elementary calculations one finds that

∂2

∂µ2

(
ξ̂ξ̂

T

ξ̂
T
σξ̂

)∣∣∣∣∣
µ=0

= 2

[
x̂x̂T

x⊥Tσx⊥
− 2(x⊥Tσx̂)(x̂x⊥T + x⊥x̂T )

(x⊥Tσx⊥)2
+

4(x̂Tσx⊥)2x⊥x⊥T

(x⊥Tσx⊥)3

]
. (5.5)

Thus, we need integrals of the form

I (0) =

∫ 2π

0

dφ

D
, I (2)
pq =

∫ 2π

0

x⊥
p x

⊥
q dφ

D2
, I (4)
pqrs =

∫ 2π

0

x⊥
p x

⊥
q x

⊥
r x

⊥
s dφ

D3
, (5.6)

where D = x⊥Tσx⊥ and the superscripts indicate the ranks of the tensors. We begin with

I (0) from which the others may be derived by means of

I (2)
pq = −∂I (0)

∂σpq
, I (4)

pqrs =
1

2

∂2I (0)

∂σpq∂σrs
. (5.7)

Let us write

F = x̂Tadjσx̂. (5.8)

Then it may be shown that

I (0) =
2π

F
1
2

; (5.9)

see Appendix B. Let us further define

Zjk = εijkx̂i, w = σx̂, W = ZTσZ. (5.10)

Then, it follows after some further calculation that the static term of (3.28) is given by

− t

8π2

∫
Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(ξ̂ · x) dΩ = − t

4πF
1
2 |x|3{

2x̂x̂T − x̂Tσx̂

F
W − 2

F
(x̂wTW +Wwx̂T ) − 2

F
ZTwwTZ +

3

F2
(wTWw)W

}
,

(5.11)

with Z , w, and W given by (5.10), and F by (5.8); see Appendix B.

We now have the ingredients for evaluating the solution G given in (3.28).
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The field near the edge of the disk of tangency on the wavefront is difficult to express

uniformly in the asymptotic sense, and so is the field near the conical points on the

wavefront; however, they can be computed independently. Therefore, we have chosen

to evaluate the fundamental solution numerically. One may evaluate the fundamental

solution in the space-frequency domain based on Fourier analysis; here we prefer to

evaluate the fundamental solution in the space-time domain because this domain is much

closer to the physics and yields much simpler expressions at caustics (Burridge, 1995)).

The resulting numerical method is flexible for concentrating on the specific regions that

we are interested in.

6 The field in the 13-plane

In this section we plot the solution Gij(x, t) as functions of t for various fixed x with

|x| = 1 and x given by

x(θ) =

(sin θ

0

cos θ

)
, (6.1)

and θ = 0, π/36, π/18, . . . , π/2, i.e. θ increasing by steps of 5◦ from 0◦ to 90◦. This will give

a sampling of points on the 13-plane illustrating the various types of behavior in relation

to the geometrical configuration described at the end of the previous section. For clarity

in the graphical illustrations we set the parameters to be σ1=2.25, σ2=1.0, σ3=0.25; these

parameters do not correspond to any real crystal.

Let us first define θa, θb and θc by

tan θa =

√
σ3(σ1 − σ2)

σ1(σ2 − σ3)
,

tan θb =

√
σ1(σ1 − σ2)

σ3(σ2 − σ3)
,

tan θc =

√
σ1 − σ2

σ2 − σ3
.

(6.2)

Here θa and θb are the points at which the circle CS crosses the 13-plane, for θ = θc x

is parallel to a bi-radial and so points in the direction of the conical point CW. We find

that θa < θc < θb (see Figure 4).

To understand the sequence of arrivals for a given θ draw the ray through the origin

in the direction of x(θ) in Figure 4. Now trace along the ray from the outside of W
inward. Each crossing of the curves drawn is associated with the arrival of a singularity.

A normal to W at one of these crossings gives the direction of the associated stationary

point ξ1,2 on S. Reciprocally the normal to S at such a ξ1,2 gives the direction of the

point x to which it corresponds. Thus at both stationary points ξ1,2 corresponding to the

ray in the direction of x̂ the normals to S have the same direction making an angle θ

with the 3-axis. The inner sheet of W corresponds to the outer sheet of S, and vice-versa

as indicated in the captions to Figures 2 and 3.

For 0 < θ < θa and again for θb < θ < π/2, the singularities all correspond to points

of tangency on S with positive Gaussian curvature. These singularities are of the form
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Figure 4. This shows the 13-section of the wave surface W for fixed time t = 1. Notice the ellipse

and the circle which intersect at the conical points of W, the bi-radials, making angle θc with the

3-axis. The angles θa, θb, and θc, measured from the 3-axis, are indicated. Notice also the segments

of common tangents which represent the disks DW forming a part of the wavefront carrying a weak

singularity.

A(x̂)ê1,2êT1,2

K
1
2 (ξ1,2)|x|

δ[t− t1,2(θ)], (6.3)

except for those x having directions passing too close to θ = θa or θb, where the contact

circle CW on the wave front crosses the 13-plane. In (6.3) A is a smoothly varying function

of direction, ξ1,2 = ξ1,2(θ) is one of the two points at which the plane ξ ·x(θ) = t is tangent

to S, and t1,2(θ) the two corresponding values of t, with indexing such that t1 < t2, and

e1,2(θ) is the corresponding polarization for E . Then ξ1(θ) lies on the inner sheet of S
and ξ2(θ) lies on the outer (see Figures 4 and 5). K(ξ1,2) > 0 is the Gaussian curvature of

S at ξ1,2 (see Burridge, 1967).

For θ = θa, ξ1 = cS and ξ2 is on the outer sheet still near the 3-axis.

For θa < θ < θc and for θc < θ < θb χ(x) < 0, the Gaussian curvature is negative

at the contact point ξ1, which now lies on the outer sheet of S. The wave singularity

corresponding to such a point has the form

A(x̂)ê1,2êT1,2

|K|
1
2 (ξ1)|x|

−1

π(t− t1)
, (6.4)

the Hilbert transform of that in (6.3) (see Burridge, 1967). Notice that for these values

of θ this is the first of the two ‘geometrical’ wave arrivals and it carries a two-sided
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Figure 5. This shows the 13-section of the slowness surface S. Notice the ellipse and the circle

which intersect at the conical points of S, the bi normals, making angle θc with the 3-axis. The

points ξ1,2(θ) are indicated for θ = θa, θb, θc. Notice also the segments of common tangents which

represent the disks DW forming a part of the wavefront which carries a weak, early arriving,

singularity.

singularity. Hence the field must already be non-zero. Indeed, when χ(x) < 0 a weak step

singularity arising from small integration loops encircling the conical point arrives first,

the associated wavefront being the disk spanning a contact circle CW on W. See Burridge

(1967) for a treatment of the analogous arrival for cubic elastic media when x is not too

near the cone Σ++. For θ near θa the stationary point ξ1 is close to the conical point cS.

This raises the question of the uniform analytical treatment of the neighborhood of the

circle CW, the boundary of the disk. The analysis of this approximation is not known to

the present authors for the time-dependent problem, but Borovikov (2000) has recently

given a treatment for the time-harmonic case, and the time-dependent approximation may

be derived from this by a Fourier transform, but as far as the authors are aware this has

not yet been carried out.

As θ increases from θa to θc, the stationary point ξ1(θ) moves away from the conical

point on S toward the circle CS at the lower of ξ1(θc) = ξ1(θc), and at the same time

the stationary point ξ2(θ) moves from ξ2(θa) outside of the cone Σ++ toward the rim

of the disk nearest to the 3-axis at the upper point ξ1(θc) = ξ1(θc). Both geometrical

arrivals come in together at t = t1 = t2. The direction of x now becomes bi-radial and
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passes through the conical point cW on W. Then all the points of CS become stationary

points and to find the singularities for directions near bi-radial one needs to perform the

appropriate uniform asymptotic analysis.

To track these points as θ passes from θc to θb and to keep the order of arrival times so

that t1 � t2 the labeling of points must change so that ξ1 becomes ξ2 and vice versa. The

old ξ2, renamed as ξ1, now proceeds from the rim to the conical point ξc while the old

ξ1, renamed as ξ2, proceeds beyond the rim towards the 1-axis, reaching an intermediate

position ξ2(θb) while ξ1(θb) moves to ξc.

For θ passing from θb to π/2, ξ1 proceeds on the inner sheet of S from ξc to the

direction of the 1-axis and ξ2 also tends to the 1-direction on the outer sheet. In Figure 5

is shown the 13-section of S with the points ξ1,2(θa,b,c) indicated. Pairs ξ1,2 corresponding

to the same θ have parallel normals in the direction of ξ(θ), making an angle θ with the

3-axis, and indicated as dashed lines in the figure.

6.1 Numerical values of the Gij(x, t) for various x in the 13-plane

Since the solution is self-similar (homogeneous of degree -2 in x and t) the computation

of G was carried out as described above by taking x = (sin θ, 0, cos θ), for which |x| = 1. In

Figures 11–12 the components of G are plotted as functions of t for each x corresponding

to the values of θ listed above. Let us relate these plots to the geometry of the integration

loops. Consider, for instance, the plots in these figures for θ = 20◦. The corresponding

integration loops are shown superimposed on the quarter of S for which x1 > 0 and

x3 > 0 in Figure 6.

Here θ is near θa so the x is near CW and the inner stationary point marked ‘◦∗’ lies

near the conical point. Loops are shown for representative values of t. For θ = θa and t

such that the plane ξ · x = t passes through the conical point, the loop corresponding to

that time has a cusp at the conical point. The loop near the outer stationary point has

the form typical for stationary points with positive Gaussian curvature.

It is clear from the coordinate lines marked on S that the polarization for the first

singularity (on the inner sheet) is in the tensor component transverse to x and lying in

the tensorial ‘direction’ 
0 0 0

0 1 0

0 0 0


 , (6.5)

while the later arrival associated with the outer sheet is in the ‘direction’


 cos2 θ 0 − sin θ cos θ

0 0 0

− sin θ cos θ 0 sin2 θ


 . (6.6)

We can also approximately read off the amplitude since that is inversely proportional to

the square root of the Gaussian curvature of S at the corresponding stationary point.

Notice particularly that the curvature goes to infinity at the conical point, leading to

zero amplitude there (but indicating that the waveform actually has a different singularity
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Figure 6. This shows one quarter of S with integration loops for selected values of t. The points

marked ‘◦∗’ indicate the points of tangency where first the inner loop and later the outer loop shrink

to single points. The wave-field δ-like singularities associated with these points have the polarization

indicated by the thinner lines drawn on S.

type). On the other hand the curvature goes to zero at points of CW where the four

special tangent planes ΠS touch S.

The details of the loops for an x just outside the cone Σ++ are shown in Figure 7.

Notice particularly the stationary point marked ‘◦∗’, which lies on the inner sheet of S (as

do the other smaller closed loops). The conical point itself is where the loops cross below

◦∗. The open larger loops belong to the outer sheet of S. The time sequence is such that

the outer closed loops are paired with the lower open loops at earlier times and a full

intersection of ξ · x = t with S consists of such pairs of loops until the upper ◦∗ is reached,

when the small closed loops disappear.

The details of the loops for an x just inside the cone Σ++ are shown in Figure 8. Now

the stationary point marked ‘◦∗’ lies on the outer sheet of S. The conical point itself is

where the small closed loops (on the inner sheet of S) converge to a point and then open

up as closed loops on the outer sheet. The open larger loops belong to the outer sheet of

S. The time sequence is that the outer closed loops and the lower open loops are paired

at earlier times, and a full intersection of ξ · x = t with S consists of two loops until ◦∗ is

reached, when the small closed loops merge with the larger loops to form one large loop

like the uppermost (and latest) of the open loops shown.
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Figure 7. This shows the configuration of loops near the conical point for θ = 15◦. Notice the

stationary point surrounded by the small loop on the inner sheet of S. The conical point appears

where the curves cross. The signal from the conical point is zero in all components. χ(x) > 0 and

so x is (just) outside the cone through the circle of tangency CW and the singularity at ◦∗ is δ-like,

appropriate to positive curvature.

In Figure 9 we show the loop configuration for an x near the bi-radial direction. There

are two stationary points indicated again by ‘◦∗’, one just outside the circle CS and one

just inside. Notice particularly the configuration of the loops near these points.

In Figure 10 we show a similar loop configuration for an x just the other side of the

bi-radial direction. Again there are two stationary points indicated by ‘◦∗’, one just inside

the circle CS and one just outside. Notice that the configuration of the loops near these

points is similar to the one in Figure 9 but rotated by 180◦.

In Figures 11–12 are plotted the components of G which are not identically zero by

symmetry in the plane x2 = 0. In these figures the Gij[x(θ), t] are plotted as functions of t

for the fixed values of θ indicated on the left vertical scale. The two curves cutting across

these indicate the arrival times t1(θ) and t2(θ). Where these (almost) meet corresponds to

θc where t1 = t2. The plot of each Gij starts at the time t3(θ) of the conical-point arrival.

Notice that only in the range θa < θ < θb (approximately 25◦ < θ < 75◦) is the signal

non-zero for t3 < t < t1. In the same range the arrival at t1 has the Hilbert transform

pulse shape.

The components of G represented in Figures 11–12 have δ-like singularities, and so

it is difficult to represent their amplitudes in relation to the smooth parts of the signal,
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Figure 8. This shows the configuration of loops near the conical point for θ = 30◦. Notice the

stationary point ◦∗ in a neighborhood of negative Gaussian curvature on the outer sheet of S. The

local shape of the loops is hyperbolic. The conical point appears where the loops converge above it.

χ(x) < 0 here and so x is inside the cone through the circle of tangency CW and there is a nonzero

step-like arrival when the loops pass over the conical point. As t increases near these small loops

surround the conical point on the inner sheet, shrink to the conical point, and then grow around it

on the outer sheet.

the amplitudes of the numerical δ’s being inversely proportional to the time step and

therefore large and dependent upon the discretization. To give a better representation of

the smooth field together with the singularities we have plotted in Figures 13–14 the step

response obtained from the integrals in (3.28) before differentiation with respect to t, plus

the time integral of the third term.

7 Conclusions

We have developed the fundamental solution for the time-dependent system of crystal

optics using the Herglotz–Petrovskii formula. This technique represents the solution as
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Figure 9. This shows one quarter of S with integration loops for selected values of t. The stationary

points marked ‘◦∗’ indicate the points of tangency where first the inner loop and later the outer

loop shrink to single points. Notice that the upper stationary point, just outside the circle CS, is

associated with positive curvature while the lower one, just inside the circle CS, is associated with

negative curvature. The wave-field singularities associated with these points have the polarizations

indicated by the thinner lines drawn on S. Thus the upper stationary point has polarization in the

13-plane while the lower has polarization in the 2-direction. Notice that the loops near these points

remain close to CS.The types of singularities are appropriate to the sign of the curvature at the ‘◦∗’.

(Compare with Figure 10.)

integrals around real loops, the intersection of a moving plane ξ · x = t with the slowness

surface S, together with a non-propagating term, which is calculated separately. Because

of the identities stemming from the residue calculation of Section 3 and other similar

relationships it is possible to express the result in terms of Abelian integrals on non-real

cycles (Petrovskii, 1945), and possibly a more efficient computation would ensue. These are

closely related to the integrals arising in the Cagniard–De Hoop method. See, for instance,

Van der Hijden (1987) for the extension to waves in layered anisotropic elastic media.

We have not concerned ourselves with the efficiency of computation, but have used this

strikingly geometrical representation to motivate our calculation and to illustrate some

special regions of the field, namely the field near the cone of internal conical refraction,
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Figure 10. This is similar to Figure 9. Notice that the upper stationary point, just inside the

circle CS, is associated with negative curvature while the lower one, just outside the circle CS, is

associated with positive curvature. The wave-field singularities associated with these points have the

polarizations indicated by the thinner lines drawn on S.
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Figure 11. This plots (a) G11(x, t), and (b) G31(x, t) for x having the direction (sin θ, 0, cos θ) for θ

increasing by steps of 5◦ from 0◦ to 90◦. See the text for further details.
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Figure 12. This plots (a) G22(x, t), and (b) G33(x, t) for x having the direction (sin θ, 0, cos θ) for θ

increasing by steps of 5◦ from 0◦ to 90◦. See the text for further details.
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Figure 13. This plots (a): WG11(x, t) and (b): WG31(x, t) of the step response for x having the

direction (sin θ, 0, cos θ) for θ increasing by steps of 5◦ from 0◦ to 90◦. See the text for further details.

and the field near the bi-radial directions. We found that this representation is easily

programmable in Matlab.

We have graphically displayed the geometrical entities that come into play and plotted

the signal G(x, t) as functions of t for linear ‘gathers’ of positions x in the style used in

seismic exploration. Since it is not straightforward to represent graphically the amplitude

of the Dirac δ we have in one or two places plotted the step response. It is an easy matter

to calculate the field to any degree of accuracy in any region using our method. The same

method may be used for the fundamental solution for infinitesimal anisotropic elasticity.

We have left for future study the analysis of the uniform asymptotics for field points

near the bi-radial directions associated with the conical points cW on the wave-surface
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Figure 14. This plots (a) WG22(x, t), and (b) WG33(x, t) of the step response for x having the

direction (sin θ, 0, cos θ) for θ increasing by steps of 5◦ from 0◦ to 90◦. See the text for further details.

W and near (the surface of) the cones of internal conical refraction Σ±. We note that

Borovikov (2000) has obtained related time-harmonic results where the cone is strictly

conical in that it has straight generators but with a nonlinear phase function.

We plan to apply the same method to develop the fundamental solution for the

time-dependent system of anisotropic elasticity in the future.

Appendix A The cones of internal conical refraction

Here we will derive equation (2.29) for the cones of internal conical refraction. For easy

reference we repeat the equation here

χ±(ξ) ≡ (ξc3x1 ± ξc1x3)
(ξc3x1

σ1
± ξc1x3

σ3

)
+ x2

2 = 0. (A 1)

Let us first indicate why the planes of multiple tangency ΠW to the wave surface W, and

dual to the conical points ξc on S, touch the wave surface in circles. First we notice that

the existence of the conical points ξc and the fact that W is of the fourth degree show

that the tangency is along a repeated conic. But the fourth-degree terms in the quartic

equation of the wave front W are (x2
1 +x2

2 +x2
3)(x

2
1/σ1 +x2

2/σ2 +x2
3/σ3). After a rotation of

coordinates so that the the new 3-axis is normal to the plane of tangency, and on setting

the new coordinate x′
3 = 1/

√
σ2 for the plane of tangency, we find that the equation for

the curve of tangency is Φ2 = 0, where Φ is a quadratic expression in x′
1 and x′

2 whose

second-degree part is a constant multiple of x′2
1 + x′2

2 and hence represents one of the

circles on W which we have called CW.

The two double cones of internal conical refraction are the cones with origin O as

vertex and passing through the circles CW, or alternatively the cones of normals to S at

the conical points ξc. Recall for reference that the plane x2 = 0 cuts S and W each in

an intersecting circle and ellipse, S in ξ2
1 + ξ2

3 = σ2 and ξ2
1/σ3 + ξ2

3/σ1 = 1, and W in

x2
1 + x2

3 = 1/σ2 and σ3x
2
1/+ σ1x

2
3 = 1.
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Since (A 1) is homogeneous of degree 2 in (x1, x2, x3), it will be true for any x on the

double cones with origin as vertex and passing through a circle CW if it is satisfied for all

x on CW. So, first consider a general point x on the circle CW. For definiteness we assume

CW to lie in the first quadrant x1 > 0, x3 > 0, in which case the negative signs should be

taken in (A 1) as also for the third quadrant. The positive signs should be taken for the

second and fourth quadrants.

Draw the chord through x perpendicular to the diameter on which x2 = 0. It is bisected

by this diameter at the point x′ = (x1, 0, x3), say, and each half is of length x2. Let s be

the extremity of the diameter where it touches the circle x2
1 +x2

3 = 1/σ2 and t be the other

extremity where it touches the ellipse σ3x
2
1 + σ1x

2
3 = 1. Then, from an elementary theorem

on intersecting chords of a circle, we know that

|s − x′||t − x′| = x2. (A 2)

We shall show that (ξc3x1 − ξc1x3) is a (positive) scalar multiple of |s − x|, and that

−(ξc3x1/σ1 − ξc1x3/σ3) is a (positive) scalar multiple of |t − x|, the scalar multiples being

the reciprocals
√
σ2 and 1/

√
σ2.

First notice that s is normal to the circle ξ2
1 + ξ2

3 = σ2, ξ2 = 0 at the conical point ξc
on S, and so

s = ξc/σ2, (A 3)

since |ξc| =
√
σ2 and |s| = 1/

√
σ2. Similarly, t is a normal to the ellipse ξ2

1/σ3 + ξ2
3/σ1 = 1,

ξ2 = 0 at the same conical point ξc, and so it is a multiple of (ξc1/σ3, 0, ξc3/σ1). But it lies

on the ellipse σ3t
2
1 + σ1t

2
3 = 1, and if we take the scalar multiplier to be 1 we easily verify

that

σ3t
2
1 + σ1t

2
3 = σ3(ξc1/σ3)

2 + σ1(ξc3/σ1)
2

= ξ2
c1/σ3 + ξ2

c3/σ1

= 1.

(A 4)

Thus we find that

t = (ξc1/σ3, 0, ξc3/σ1) (A 5)

precisely.

We may express |s − x′| and |t − x′| as twice the areas of the triangles Osx′ and Otx′

divided by the perpendicular distance 1/
√
σ2 from O to the line containing s, x′, t. Twice

the area of triangle Osx′ is s3x1 − s1x3, and so

|s − x′| =
√
σ2(s3x1 − s1x3) =

ξc3x1 − ξc1x3√
σ2

(A 6)

and twice the area of triangle Otx′ is −(t3x1 − t1x3), and so

|t − x′| = −√
σ2(t3x1 − t1x3) = −√

σ2

(ξc3x1

σ1
− ξc1x3

σ3

)
(A 7)

On using (A 6) and (A 7) in (A 2) we obtain (A 1) with negative signs as required. Then by
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taking the circle CW to lie in the second or fourth quadrants we account for the positive

signs in (A 1).

Appendix B The integrals I (0), I (2), I (4) and the static term

As stated in § 5 we need integrals of the form

I (0) =

∫ 2π

0

dφ

D
, I (2)

pq =

∫ 2π

0

x⊥
p x

⊥
q dφ

D2
, I (4)

pqrs =

∫ 2π

0

x⊥
p x

⊥
q x

⊥
r x

⊥
s dφ

D3
, (B 1)

where D = x⊥Tσx⊥ and the superscript indicates the rank of the tensor. We begin with

I (0) from which the others may be derived by means of

I (2)
pq = −∂I (0)

∂σpq
, I (4)

pqrs =
1

2

∂2I (0)

∂σpq∂σrs
. (B 2)

Let us further suppose that the triad x̂, ŷ, ẑ is chosen so that ŷ and ẑ are principal axes

of the section of the ellipsoid ξTσ−1ξ = 1 by the plane ξ · x = 0. Then

I (0) =

∫ 2π

0

dφ

D

=

∫ 2π

0

dφ

a cos2 φ+ b sin2 φ

= 4

∫ π

0

dφ

a(1 + cos 2φ) + b(1 − cos 2φ)

= 2

∫ 2π

0

dψ

(a+ b) + (a− b) cosψ)
,

(B 3)

where a = ŷTσŷ, b = ẑTσẑ, and we have changed integration variable to ψ = 2φ. Setting,

in the usual way, z = eiψ , dψ = dz/iz, we obtain

I (0) = −2i

∮
|z|=1

dz
1
2
(a− b)z2 + (a+ b)z + 1

2
(a− b))

= − 4 i

(a− b)

∮
|z|=1

dz

(z + α)(z + β)
,

(B 4)

where

α+ β =
2(a+ b)

a− b
, αβ = 1 (B 5)

Evaluating (B 4) by residues at α where |α| < 1 we get



92 R. Burridge et al.

I (0) =
8π

(a− b)(−α+ β)

= − 2π√
ab
,

(B 6)

where we have used the obvious identity (−α + β)2 = (α + β)2 − 4αβ. But ab is the

determinant of (ŷT

ẑT

)
σ

(
ŷ ẑ

)
(B 7)

which is the cofactor of x̂Tσx̂ in

det

{(x̂T

ŷT

ẑT

)
σ

(
x̂ ŷ ẑ

)}
, (B 8)

i.e. it is the 11 component of

adj

{(x̂T

ŷT

ẑT

)
σ

(
x̂ ŷ ẑ

)}
=

(x̂T

ŷT

ẑT

)
adjσ

(
x̂ ŷ ẑ

)
= F, say, (B 9)

where we have made use of the fact that the adjoint of a product is the product of the

adjoints in the reverse order and that the adjoint of an orthogonal matrix is its transpose.

The 3 × 3 component of this is

F = x̂Tadjσx̂. (B 10)

Further, to facilitate differentiation with respect to σjq we write

F = x̂Tadjσx̂ = 1
2
ZjkZqrσjqσkr, (B 11)

where

Zjk = εijkx̂i, (B 12)

and we are assuming σT = σ. Thus writing

∂F

∂σkr
= ZjkZqrσjq,

∂2F

∂σkrσjq
= ZjkZqr, (B 13)

from which we obtain

I (0) =
2π

F
1
2

,

I
(2)
jq =

2π

F
3
2

(ZTσZ)jq,

I
(4)
jqkr = − 2π

F
3
2

ZjkZqr +
3π

2F
5
2

(ZTσZ)jq(Z
TσZ)kr.

(B 14)
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It is now straightforward to write the integral of (5.5), call it K . Then

Kip =

∫ 2π

0

∂2

∂µ2

(
ξ̂iξ̂

T
p

ξ̂
T
σξ̂

)∣∣∣∣∣
µ=0

dφ

= 2 [I (0) x̂ix̂
T
p − (x̂Tσx̂) I (2)

ip − 2(σx̂)k(x̂iI
(2)
kp + I

(2)
ik x̂p) + 4(σx̂)k(σx̂)�Ik�ip].

(B 15)

Hence, using (B 14) in (B 15) we get

Kip = 2π {2F− 1
2 x̂ix̂

T
p − (x̂Tσx̂)F− 3

2 (ZTσZ)ip

−2F− 3
2 (σx̂)k[x̂i(Z

TσZ)kp + (ZTσZ)ikx̂p]

−2F− 3
2 (σx̂)k(σx̂)�ZkiZ�p

+3F− 5
2 (σx̂)k(σx̂)�(Z

TσZ)k�(Z
TσZ)ip}.

(B 16)

Or, in subscript-free notation

K =
2π

F
1
2

{
2x̂x̂T − x̂Tσx̂

F
W − 2

F
(x̂wTW +Wwx̂T )

− 2

F
ZTwwTZ +

3

F2
(wTWw)W

}
,

(B 17)

where we have written

w = σx̂, W = ZTσZ. (B 18)

Thus we may write the static term of (3.28) as

− t

8π2

∫
Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(ξ̂ · x) dΩ = − t

4πF
1
2 |x|3

{
2x̂x̂T − x̂Tσx̂

F
W − 2

F
(hwTW +Wwx̂T )

− 2

F
ZTwwTZ +

3

F2
(wTWw)W

}
,

(B 19)

with w and W given by (B 18), and F and Z by (B 11) and (B 12).
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