Euro. Jnl of Applied Mathematics (2006), vol. 17, pp. 63-94. © 2006 Cambridge University Press 63
doi:10.1017/S0956792506006486 Printed in the United Kingdom

The fundamental solution of the time-dependent
system of crystal optics

R. BURRIDGE! and J. QIAN?

U Earth Resources Laboratory, Massachusetts Institute of Technology, 42 Carleton Street,
E34-450, Cambridge, MA 02142-1324, USA
email: burridge@erl.mit.edu
2 Department of Mathematics and Statistics, Wichita State University,
Wichita, KS 67260-0033, USA
email: qian@math.wichita.edu

(Received 8 March 2005; revised 16 August 2005)

We set up the electromagnetic system and its plane-wave solutions with the associated
slowness and wave surfaces. We treat the Cauchy initial-value problem for the electric vector
and make explicit the quantities necessary for numerical evaluation. We use the Herglotz-
Petrovskii representation as an integral around loops which, for each position and time form
the intersection of a plane in the space of slownesses with the slowness surface. The field and
especially its singularities are strongly dependent on the varying geometry of these loops;
we use a level set numerical technique to compute those real loops which essentially gives
us second order accuracy. We give the static term corresponding to the mode with zero
wave speed. Numerical evaluation of the solution is presented graphically followed by some
concluding remarks.

1 Introduction
1.1 General introduction

Crystal optics is similar to, but simpler than, anisotropic elasticity. For instance its slowness
surface has conical points, in common with many elasticity systems, and there are conical
points on the wave surface. It also has a third interesting feature associated with the role of
the divergence in relation to Maxwell’s equations, namely the fact that one characteristic
speed is zero (actually two coincident zeros), so that the slowness surface is quartic rather
than sextic as might be expected from the dimensionality — one quadratic sheet of the
slowness surface lies at infinity. Remarkably the wave surface is another quartic surface
of the same algebraic type, but with reciprocal parameters. See for instance Born & Wolf
(1989) for a very full and readable account of the plane-wave theory of this system and
the associated geometry.

The system of crystal optics is of great intrinsic and historical interest, the latter because
Hamilton’s prediction in 1833 of internal conical refraction, and Lloyd’s experimental
confirmation closely thereafter, led to the wide acceptance of Fresnel’s wave theory
of light. The intrinsic interest is largely centered around the remarkable geometrical
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properties of the slowness surface and wave surface, which are both of a type known as
Fresnel’s wave surface (Salmon, 1915).

We derive the fundamental solution for the time-dependent system of crystal optics
in the space-time domain. Furthermore, we illustrate numerically the analytic expression
for the fundamental solution of the system in terms of real loop integrals according to
the Herglotz-Petrovskii formula, which may also be applied readily to other constant-
coefficient hyperbolic systems. Petrovskii (1945) expressed the solution in terms of non-
real cycles in complex space. Atiyah et al. (1970, 1973) placed Petrovskii’s work on a
modern basis, and Smit & De Hoop (1995) recently elaborated this in a three-dimensional
elastodynamic setting. But following John (1955) and Gelfand & Shilov (1964), we will
stay with the representation in terms of real integrals. Burridge (1967) used it to obtain
the geometrical arrivals (see below), and the singularity due to the conical points of the
slowness surface at field points in the interior of the cone of internal conical refraction for
cubic elastic media. But that work lacked numerical illustrations and the treatment of the
conical point was not uniform near the conical surface itself. Although we still do not give
the uniform time-dependent asymptotic analysis for this region, we do present numerical
solutions close to and on this ‘cone of internal conical refraction’. The geometrical
arrivals mentioned above are singularities in the field associated with slownesses & which
are ‘stationary points’ where the plane &€ - x = t touches the slowness surface and at which
the slowness surface has finite non-zero Gaussian curvature, and such wave arrivals are
governed by the simplest form of geometrical ray theory.

For instance Moskvin et al. (1993) have derived the Green’s function in the frequency
domain and discussed various important directions and cones of directions in relation to
the field, namely in the directions of generators of the cone of internal conical refraction,
and in the directions of the bi-radials, i.e. the directions of the conical points on the
wave surface, and they obtain asymptotic approximations to the field at large distances
in the neighborhoods of these directions. Based on Moskvin et al. (1993), Warnick &
Arnold (1997) made further detailed studies of the conical refraction. Recently, Berry
(2004) applied paraxial optics to study this singularity; his findings have extended and
complemented the existing theory by providing detailed analysis of such singularity. All of
the above cited works for the internal conical refraction are based on the space-frequency
formulation.

In this paper, we study the second-order vector equation for E obtained by eliminating
the other dependent variables from Maxwell’s equations and the constitutive laws of
crystal optics. This equation is like the second-order elastodynamic equation for particle
displacement and may be obtained from that of isotropic infinitesimal elasticity by setting
the Lamé constant A = —2, and p = 1, so that A+ 2u = 0, and the density p = & (see
below).

Crystals fall under three symmetry classes which affect the optical properties. Either
three eigenvalues of the dielectric tensor are all distinct (bi-axial crystal), or two eigenvalues
are equal but unequal to the third (uni-axial crystal), or all three eigenvalues are equal
(optically isotropic crystal). In this paper we shall concentrate on the bi-axial case.

Our approach is based on the space-time formulation which can be used to further
study the internal conical refraction; the numerical analysis carried out in the current work
complements the earlier mathematical investigations done by Ludwig (1961), Melrose &
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Uhlmann (1979) and Uhlmann (1982). In particular, with modern microlocal analysis
tools Melrose & Uhlmann (1979) have constructed the microlocal parametrix for the
Cauchy problem of Maxwell’s equation in a bi-axial crystal to analyze the singularities
of the solution so that they were able to explain the appearance of the cone of conical
refraction when a ray of light hits a bi-axial crystal in a direction parallel to an optic
axis of the crystal. Furthermore, based on Melrose & Uhlmann (1979), Uhlmann (1982)
carried out a more elegant and refined analysis than the study of the singularities to
explain the so-called “double ring” phenomena; see Uhlmann (1982) for more details.

Furthermore, Taylor & Uhlmann (Taylor, 1981; Chap. 15, Sect. 5) have constructed
a microlocal parametrix to deal with the phenomenon of conical refraction. They first
perturbed the second order equation for the electric vector so that the equation behaves like
an elastic system; then they defined the so-called conical singularity via the characteristic
variety and the conic variety. Here we notice that the characteristic variety in their setting
is equivalent to the slowness surface in our setting. In particular, they constructed the
fundamental solution at a conical singular point, and it is represented as a tensor product
between a J-function and the distributional kernel of the classical wave equation in three
variables.

However, in this work we construct the fundamental solution for the second order
equation for the electric vector in the whole space, hence it is different from the one
constructed by Taylor and Uhlmann. On the other hand, the numerical computation of
the fundamental solution of the Cauchy problem presented here does illustrate related
singularities in the field associated with slownesses & which are ‘stationary points’ where
the plane &-x = t touches the slowness surface and at which the slowness surface has finite
non-zero Gaussian curvature (see below). See Every (1981) for the effects of curvature of
the slowness surface near crystal symmetry axes in cubic crystal acoustics, Shuvalov &
Every (1996) for more general symmetries, and Musgrave (1970) for the general theory of
crystal acoustics.

In this work, we concentrate on the fundamental solution for the constant-coefficient
time-dependent non-dispersive system of crystal optics in the space-time formulation. For
the variable-coefficient time-dependent system of crystal optics in the space-time domain,
Braam & Duistermaat (1993) predict singularities that spiral or glance hyperbolically
in the vicinity of the so-called “double characteristic set”, and the derivatives of the
material properties are responsible for such singularities. To deal with such a case, we
may start from normal forms of real symmetric systems with multiplicity developed in
Braam & Duistermaat (1993) and go along the lines developed in Burridge (1967) to
study singularities related to the internal conical refraction of light; the related numerical
investigation is an ongoing work.

1.2 Outline

In § 2 we set up the electromagnetic system and its plane-wave solutions with the associated
geometrical entities such as the slowness surface, and the wave surface. In §3 we set up
and solve the Cauchy initial-value problem for E and make explicit some quantities
with a view to numerical evaluation. In §4 we follow the Herglotz-Petrovskii procedure
of transforming the integral representation to an integral around loops which, for each
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x,t, form the intersection of the plane & - x = t with the slowness surface. As x,t vary
the geometry of these loops varies; the field and especially its singularities are strongly
dependent on the geometry of these loops. In §5 we give the static term corresponding
to the mode with zero wave speed. Numerical evaluation of the fundamental solution
is presented graphically in §6 for a selection of points in the positive quadrant of the

13-plane. § 7 contains some concluding remarks.

Symbol

Notation

Definition

‘.
X = (X1,X2,X3)

r=(r,72,713)

time

spatial coordinate vector.

coordinate vector for the representation of &.
the speed of light in vacuo.

the electric and magnetic vectors.

The electric displacement.

The magnetic induction.

The magnetic permeability (scalar).

The dielectric tensor (symmetric).

ue/c? and its principal values.

4 The slowness vector.
f Plane wave pulse shape.
e, h d, b Constant polarization vectors for
E, H, D, B, related to é&.
X The unit vector in the direction of x, and similarly for other vectors.
P2 xt Unit vectors (§5 and Appendix A only).
Q, dQ The unit sphere and its surface element.
&  The energy ellipsoid rTe~!r = 1.
u, v Ellipsoidal coordinates on ellipsoid & (o) = u =0, =2 v =03 = 0.)
&, dS The slowness surface and its surface element.
Cy A conical point on &.
Iy One of the four special tangent planes to &.
by One of the four circles in which a IT, touches &.
W The wave surface (reciprocal to 7).
Cyr A conical point on #~ (reciprocal to IT).
11, One of the four special tangent planes to %~ (reciprocal to c).
C .y One of the four circles in which IT,- touches #".
Dy The disk spanning %y .
DI The two cones of internal conical
refraction (vertex 0, base %), equation y4(x) = 0.
& Loop or loops forming the intersection of plane &-x =t
with slowness surface &.
v, Derivatives with respect to x and t.

Notes (1) When used in matrix calculations vectors are columns unless explicitly trans-
posed. (Thus x7x is a scalar and xx7 is 3 x 3.) (2) There are four conical points cy. ¢y
in the singular refers to the ¢y in & > 0, {3 > 0. Similarly for some other quantities.
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2 Crystal optics equations
2.1 Maxwell’s equations and the slowness surface

We follow Born & Wolf (1991, Chap. XIV). Let x = (x1,x2,x3) = (x,y,z) be Cartesian
coordinates and ¢ the time. Maxwell’s equations and the constitutive equations of crystal
optics are

1. 1.
—EB=V><E, ED:VXH,
B = uH, D =¢E.
Please refer to the Table of Notation for symbol definitions.

Since E, H, D, and B may be expressed as superpositions of plane waves we shall seek
them in a standard form for plane waves:

(2.1)

E=ef(t—&-x), H=hf(t—¢-x),

D=df(t—&-x). B=bflt—&-x) 22
Substitution of (2.2) into (2.1) leads to
1 1
Sh=Lh=txe ——d=-Se=¢xh. (2.3)
c c c c
It easily follows that
Ex(Exe) = géxh — —ge, (2.4)
ie.
oe=|Ele—(E-e)é. (255)
Then from (2.3)
h-é=b-l=d-E=e-h=d-h=0. (2.6)
Also
1 1
f-(exh):—e-(é><h)=h-(§><e)=ze-d=zh-b. (2.7)
We shall often assume that
6,‘]‘ = 6,‘5,‘1‘, O',‘j = O',‘é,'j. (28)
No summation is implied. Then
di = exex, b = uhy. (2.9)
From (2.7) we have
lzekeg = 1,1|h|2 =¢- (e x h). (2.10)
c c
k
From (2.7), (2.8) and (2.9) we obtain
€
Ba=gPe— (@0 (2.11)
Writing
o = Kk (2.12)
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and rearranging (2.11) we get

&k

e =(Ee)—5—. 2.13
S (2.13)
Equation (2.9) for di and (2.13) lead to
xSk
de=(E e)5—— (2.14)
1€l° —
Contracting (2.13) with &, and canceling & - ¢ we obtain
=1 2.15
2 s \5\2 . 1

Contracting (2.14) by &, and using &-d = 0 we get

kak _
Zmz—ak 0. (2.16)

Equations (2.15) and (2.16) may be taken as equivalent equations of the slowness surface
Y ¢ on which & is constrained to lie. Another equation for & is

det(e — [E*1 +&EET) =0 (2.17)

obtained from (2.5) regarded as a linear system in e. In (2.17) 1 is the identity 3 x 3 tensor
and &7 is the transpose of the column vector & Equation (2.17) can be written more
explicitly as

1E12 T 6 — [tr(adje)|€)? — ET adje €] 4+ dete = 0, (2.18)

where adj stands for the transposed matrix of cofactors, and tr for the trace; to obtain
this equation, we use the principal axes of ¢ as coordinates, multiply out Equation (2.17)
explicitly and identify certain combinations of quantities that are invariant and can be
expressed as in (2.18) — see Figure 1.

In the following we consider a uniform, homogeneous crystal, so that the principal
values of the permittivity are positive and the corresponding hyperbolic system has fixed
multiplicity.

2.2 The wave surface

Let us now consider the wave surface reciprocal to the slowness surface. Remarkably for
the system of crystal optics the algebraic form of the two surfaces is the same. To see this
we first consider the equation of energy conservation

a,[&(E-D—}-H'B)]Z—ﬁv'(EXH)‘ (2.19)

This is easily verified from equations (2.1). The quantity ﬁ(E -D + H - B) is the energy
density and 4 E x H is the Poynting vector giving the power flux density. For plane waves
E-D = H- B, and the Poynting vector is the group, or ray, velocity multiplied by the
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Slowness Surface with E polarization.

FiGURE 1. This shows the slowness surface % cut away to reveal the inner sheet. The contours
drawn on the surface are tangent everywhere to the polarization e. The thicker contours drawn in
each coordinate plane show the circle and ellipse in which that plane cuts the surface. The conical
points are clearly visible as the intersections of the ellipse and circle in the (1-3)-plane. There are
also four planes each of which touches & along a circle. The four circles (only half of one being
clearly visible) are drawn as heavy lines surrounding the conical points on the outer sheet.

energy density. It follows by using (2.3) and (2.7) in (2.19) that
a(ed+h-b)=jed = Lh-b=Luh>=L&(exh), (2.20)

from which we may deduce that the ray velocity v is

c 1

=————exh 2.21
v i ,u|h\2e X (2.21)
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FIGURE 2. This shows the inner sheet of the wave-surface #" reciprocal to the outer sheet of the
slowness surface .. The four prominent ‘ears’ have negative Gaussian curvature and correspond
to four regions with negative curvature on . The dark circles are the circles of contact €, of
the four special tangent planes IT,-. These circles correspond to conical points on &. Reciprocally
the conical points of ¥~ shown here correspond to similar circles of tangency on .%. This surface
joins smoothly onto the outer sheet of ¥ shown in the next figure along the contact circles. The
fundamental solution is weak on the circles %y, but the strongest part of the field is near the
conical points ¢, of #.

For future reference let us notice here that from (2.6) and (2.21) the vectors &, v, d, and e
all lie in the same plane orthogonal to the parallel vectors b, h.
From (2.20) and (2.21) we have

Ev=1 (2.22)
We may now verify that
vx(xd) = —o'd, (2.23)
ie.
o 'd=|v]’d—(v-d). (2.24)

Taking advantage of the fact that ¢ is diagonal in the current coordinate system we may
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FIGURE 3. This shows the outer sheet of the wave-surface ¥ reciprocal to the inner sheet of the
slowness surface .. The dark circles are the circles of contact - for the four multiply tangent
planes IT,-. These circles correspond to conical points on .. This surface joins smoothly onto the
inner sheet of #~ shown in the previous figure along the four circles 4, where the signal is relatively
weak. An additional weak wave singularity (arrival) resides on the disks spanning these circles.

write (2.24) as

1
—dy = v dy — (v - d)vy,
O

leading to
1
v} a—kv,f
s S D S )
o2 — — ko ——
(% Ok
and

det(e™! — [v]*1 +o0T) = 0;
compare (2.15), (2.16), (2.17). Also

lv|? vT adjo v — [tr(e)[v]* —v 6 0] +1=0,

(2.25)

(2.26)

(2.27)

(2.28)

in analogy with the development (2.11) to (2.17). Equations (2.26) and (2.27),(2.28) may
be taken as equivalent equations of the wave surface # ¢ upon which v is constrained
to lie (see Figures 2 and 3). Two cones X4 having the origin as vertex pass through the

circles. Their equations are



72 R. Burridge et al.

11 (E) = (Gt & fclm)(éi?l 4 %“) =0 (2.29)

see Appendix A for the derivation of these equations.

3 The Cauchy problem

In this section we set up and solve the Cauchy problem for the second-order system of
PDE’s obtained by eliminating B, D, H from (2.1). Later we shall evaluate the solution
numerically and present some results graphically. Our development is strongly motivated
by John (1955), the discussion of the Herglotz-Petrovskii formula in Gelfand & Shilov
(1964) and Petrovskii (1945).

3.1 The second-order equation for E

The elimination of B, D, H from (2.1) yields the single second-order equation
ok = —VxVxE = (V’1 - VVT)E. (3.1)
Then, on writing 0, for 8/0t (3.1) becomes
[60? — P(V)]E =0, (3.2)

where
P(&) = |g°1 - g, (3.3)
so that P(E) is the projection onto the plane normal to & We shall generate the fun-

damental solution of (3.2) by solving the Cauchy problem for (3.2) in ¢t > 0 with initial
conditions

E(x,00=0, 0,E(x,0)=06"15(x), (3.4)
where
0(x) = 0(x1)0(x2)0(x3). (3:5)

By Duhamel’s principle this Cauchy problem is equivalent to the inhomogeneous equation

[602 — P(V)|E = 15(£)d(x), (3.6)

with E = 0 for t < 0. We shall solve this using the following considerations, which are
motivated by John (1955, Chap. 2); in addition, we generalize that work to a matrix
formulation and consider the degenerate mode with zero wave speed.

3.2 The residue calculation

Let us write
L(v,&) = v’ — P(&), (3.7)

regarding v as a scalar complex variable. Then for large enough |v]
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L8 = v "1 —v P& ']

e )
— 0726712072n(})(€)o_71)n'

n=0

(3.8)

This is a series in inverse even powers of v, starting with v™2. On multiplying this by v?
and integrating around a large circle centered at the origin in the complex v plane we
obtain

_ 0 q=0
1 q > s
L (v,&pldv = {0__1’ g=1

Other values of g will not concern us. Let us now evaluate I by residues at the finite
poles. When & # 0 there are four simple non-zero poles +V;, +V, of L' and a double
pole at v = 0. Thus, if we write V_; for —V| and V_, for —V,, and 0, for 0/0v we find
on evaluating the residues at the Vy that

1
I =

= 5= (3.9)

dadj L )
I= gr E(lieJtL + {residue at v = 0}. (3.10)
N v=Vy
We may rewrite 0, det L|,—y, as
0, det L|,—y, = 0, det(v’s — P)|,—y, = 2Vytr(e adjL). (3.11)

To find the residue at v = 0 we expand (v>6 — P)~! in positive powers of v. Thus using

adjP (&) = |¢]¢e” (3.12)

we find that
det L = adj(v’e — P)
= adjP + O(|v?) (3.13)
= [EPEET + O(oP?).
Recalling that det P = 0 we see that

det(v’e — P) = v’tr(eadjP) + O(|v]*)

(3.14)
= 0*¢P ¢TaE + O(Iol).
So
1 2
(det[L, &N = ——— +0(1). (3.15)
b epeTes
Thus, the residue of v9L~! at 0 is
0, q=0,
{residue of vIL~"at v =0} = ¢ g¢T _ (3.16)
foe” 1T

Thus, from (3.9), (3.10), (3.11) and (3.16) we find that
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adjLy
=0 3.17
ZZVNtr(O'adJLN) ’ (3.17)

and

adjLy é‘é‘T IR
—2tr(oadiLy)  &To¢ - (3.18)

Here we have written Ly for L evaluated at v = Vy, N = +1,+2.

3.3 The fundamental solution

Let us first seek a matrix plane-wave solution G¢ of (3.2) in the form

adiLy S
Gelx, 1) Z2VNtr TN ALCUR S Rt A SE R L)

This form is motivated by the plane wave decomposition of the é-function, (3.23), and
the above results of the residue calculation, (3.18).
We first verify that L(0,, V)Ge(x,t) = 0. Thus

LNadJLN "
L(3;,V)Ge(x sz roadiLy)’ (Vyt—E - x)

_ detLy1 . (3.20)
Z2V tr o-adJLN)f (Vi)
= O’

since each det Ly = 0. By (3.17) the initial value of G¢ is

adjLy o
Ge(x,0) = Z2VNtraad]LN)f( g-x)=0, (3.21)

and by (3.18) the initial value of 0,G¢ is

&g’
¢log

adjLN

0,G¢(x,0) = ~ m

f(=&-x)+

(=& x)=6""f'(=&"x). (3.22)

We are ultimately interested in the matrix point source problem (3.2), (3.4), (3.5) or
equivalently (3.6). The link is the plane-wave expansion of the d-function,

- 8n2/5”¢ x) (3.23)

where Q is the unit sphere |é| = 1, dQ is the surface element on Q, and ¢” is the second
derivative of the one-dimensional J-function. (See John (1955, Chap. II), Courant &
Hilbert (1962, Chap. VI, Sect. 11) and Gelfand & Shilov (1964, Chap. I, Sect. 3.11.) From
(3.21) and (3.22), and setting f = ¢’, we see that
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G(x,t) = 812/G (x,t)dS

gt (3.24)
adiLy a0 b [ & 5 s,
nzz/ WatioadiLy) (VNFe ¥ de 8n2 o: 655( ¢ x)de

satisfies (3.4) exactly.

3.4 Transformation to an integral over the slowness surface

Here we follow John (1955, Chap. II) and Gelfand & Shilov (1964, Chap. I, Sect. 6.3).
If the wave-speeds +Vy are ordered from the most negative to the most positive we
find that Vy(—&) = V_pn(&). This and the fact that the Vy are homogeneous functions of
degree 1 imply that the integral in (3.24) for N is the same as the integral for —N. Thus,
we may combine the terms for =N and write

AAT

adjLy €€ o
= o'(Vnt— dQ — — 0"(—€ - x)dQ.
Glxt) 4n? Z/2V1\rt1r (6adjLy) (Vnt=E-x) 8 2 Q&Tgét (=9

(3.25)

In the Nth term of (3.24) let us transform the integral over Q2 to one over Sy, N = 1,2,

where Sy is the sheet of the slowness surface corresponding to slowness ‘15 We note
Vn(S)
that

SV o1
IEHVeVN] 1E11VeVnl

where & = |§|2, 0 is the angle between & and # the normal to Sy, and dSy is the surface
element on Sy and we have used the homogeneity of Vy as a function of £ We next
use the facts that V(&) = 1 on Sy, ¢’ is homogeneous of degree —2, and that V(&) is
homogeneous of degree 1, to get

E2dQ = cos 0 dSy = dSy, (3.26)

O (Vn(é)t —E&-x) S (Vn(&)t — &+ x)

- = &> = €S/ (t — € - x). 3.27
VB 14 Vn (@) [E]P0"(t— &+ x) (3.27)
Finally, we write
1 adjL(1,&)8(t — & - x) g8 5" (& x)
Glot) = —ga0 /, VoValtrlo adiLL, e 8n2/g§T,,g ae. (3.28)

where we have combined the two terms N = 1,2 by integrating over the whole of . which
comprises both sheets. Because of the properties of ¢ the integrals may be written as integ-
rals along curves of intersection of the algebraic surface & with the plane &-x = t. We shall
elucidate this and make more explicit the various expressions appearing in the integrand.

One may also examine the above fundamental solution from a microlocal point of
view. For example, one may use Fourier Integral Operator theory to construct the
parametrix for the Cauchy problem to study singularities, which eventually leads to the
Herglotz—Petrovskii formula for the fundamental solution of the hyperbolic system under
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consideration (Hormander, 1980, Chap. 12); however, here we will not pursue this line
further.

4 The loop integrals

Consider the integral expression of (3.28) repeated here for convenience

. 22T cn s
B Ry LR TS S PO L0

: >~ dQ. 4.1)
8n2 ' | |Vev| tr[o adjL(1, &)] 82 )o  3Tg¢

The first integral reduces to an integral around a curve, the intersection of ¥ and the
plane &+ x =t. Let n be the outward unit normal to % and {’ defined by

U=%-¢ (4.2)
Then
sinfdy = dsd{/, (4.3)
where s is arc-length along the curve and
x-Veo
cos=%-n= = 4.4)
Vel (
Hence
ot—¢-x)ds o(t—|x|{")dsdl’
= — . (4.5)
Vvl VIVel? — (& V)
Thus
adjL(1,&)o(t — & - x) 1 adjL(1,¢&)ds
. dv = — . = : (4.6)
o |Vev| tr[o adjL(1, &)] x| )¢ tr[e adjL(1, €)]\/[V:02 — (& - V:0)?

Here % is the complete real intersection of & with the plane é-x =t and ds is arc-length
along Z.

4.1 Implicit computation of complete intersection ¥

To evaluate the integral (4.6), we have to compute the complete real intersection ¥ of &
with the plane ¢ - x =t. We use an Eulerian approach.
Since

& ={¢ e R :det(e — P(£)) =0, 4.7)
we define the function
(&) = det(e — P(&)), (4.8)

and find its zero level set & :
S ={E€R &) =0 (4.9)

Moreover, the hyperplane &€ - x = ¢t may also be represented implicitly by the zero level set
of function
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YE)=E-x—t (4.10)
To reduce the computational complexity, we use the fact that .# always lies on the plane
¢ - x =t with a fixed normal £. Thus we may rotate the coordinate system first and find
& by contouring zero level sets of a 2-dimensional function. This technique is commonly
used in the level set method for dynamic implicit surfaces; see Osher & Fedkiw (2002).
In the numerical implementation, we have used linear interpolation for contouring
zero level sets and trapezoid quadrature for numerical integration so that the computed
fundamental solution has at least second-order accuracy in terms of mesh size used for
contouring zero level sets; on the other hand, we may use the Newton-Raphson method
to improve the accuracy for contouring zero level sets, which is not carried out here.

4.2 The method of evaluation

The method of numerical evaluation is as follows. We first rotate the coordinate system
so that the new 3-direction is parallel to x. Thus, defining the rotation matrix Q to have
X as its third column (We chose the second column to lie in the 12-plane.), and setting

£=0¢ (4.11)

the coordinate & is in the direction of x as required and &j, &, &; form a right-handed
orthogonal coordinate system. So, using

o =0"6Q, &=07¢ (4.12)
we may write the determinant det{e — P(&)} as

det{e — P(£)} = det{a’ — P(&)}

= 610503 — tr{adj(¢'}| &2 + &7 adj(e")& + &2 T'E (4.13)

as a function of ¢| and & for each fixed &; = t/|x|. A Matlab code was written using
the contour command to find % as a curve or curves of points in the & &-plane where
this determinant vanishes. The integration was performed to second order accuracy in the
mesh size on which det{e¢’ — P(¢')} was evaluated.

5 The static term

In (3.28) the final term of the fundamental solution G represents a non-propagating
disturbance, corresponding to zero velocity, which grows linearly in time and is singular
at the origin. It is

AAT
J(x,t) = —8—;2 i Efggé”(f-x) dQ. (5.1)

Let us now calculate J(x,t).

Let X be the unit vector in the direction of x and let p, 2 be chosen so that £, p, 2 form
a right-handed orthonormal triple.

Then a general unit vector E perpendicular to x may be written as cos ¢ + sin ¢Z, and
we may write J as
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AAT

_ S A
s =g [ 73 046 du (52)
where
& = ut + /1= 12(cos pp + sin §2), (5.3)

and x* = cos ¢ + sin ¢£. Then

2t A2 24T
t 0 &é
J(x,t)=—273/ 2<AT A) d¢ (54)
8n |x| 0 au 5 0'.’,‘ =0
After some elementary calculations one finds that
o (& I e S W Ce sy el O
ou? 8To-2 =0 xtloxt (xt T oxt) (xtaxt) .
Thus, we need integrals of the form
10— ™ d¢ o mxrxy do 1@ XX xy dg (5.6)
, D’ ) D2’ pars D3 ’ :

where D = x* " ¢x' and the superscripts indicate the ranks of the tensors. We begin with

19 from which the others may be derived by means of

0) 27(0)
T 1O (5.7)

o=_2 B
P4 00, PATS 2 00400,

Let us write

F = 2Tadje# (5.8)
Then it may be shown that
10 2—7?, (5.9)
see Appendix B. Let us further define
Zj = €ipXi, w=6%, W= ZT6Z. (5.10)

Then, it follows after some further calculation that the static term of (3.28) is given by

AAT
t é¢ 5 t
g |50 @ xde =~
= Ja ¢ aé 4nF7|x|? (5.11)
aaT o 2 .7 oT 2 1T 3 o
288" — W—F(xw W + Wwik )—FZ ww Z—i-ﬁ(w Ww)W 5,

with Z, w, and W given by (5.10), and F by (5.8); see Appendix B.
We now have the ingredients for evaluating the solution G given in (3.28).
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The field near the edge of the disk of tangency on the wavefront is difficult to express
uniformly in the asymptotic sense, and so is the field near the conical points on the
wavefront; however, they can be computed independently. Therefore, we have chosen
to evaluate the fundamental solution numerically. One may evaluate the fundamental
solution in the space-frequency domain based on Fourier analysis; here we prefer to
evaluate the fundamental solution in the space-time domain because this domain is much
closer to the physics and yields much simpler expressions at caustics (Burridge, 1995)).
The resulting numerical method is flexible for concentrating on the specific regions that
we are interested in.

6 The field in the 13-plane

In this section we plot the solution Gjj(x,t) as functions of t for various fixed x with

|x| =1 and x given by
sin 0
x(0) = < 0 ) (6.1)
cos @

and 0 =0,n/36,m/18,...,m/2, i.e. 0 increasing by steps of 5° from 0° to 90°. This will give
a sampling of points on the 13-plane illustrating the various types of behavior in relation
to the geometrical configuration described at the end of the previous section. For clarity
in the graphical illustrations we set the parameters to be 61=2.25, 6,=1.0, 63=0.25; these
parameters do not correspond to any real crystal.

Let us first define 6,, 0, and 6. by

tan 6, = o1(01 —02) (6.2)
03(02 — 03)

tan 0, = "%
0y — 03

Here 0, and 6, are the points at which the circle ¥ crosses the 13-plane, for § = 6. x
is parallel to a bi-radial and so points in the direction of the conical point %,-. We find
that 6, < 6. < 6, (see Figure 4).

To understand the sequence of arrivals for a given 6 draw the ray through the origin
in the direction of x(6) in Figure 4. Now trace along the ray from the outside of #~
inward. Each crossing of the curves drawn is associated with the arrival of a singularity.
A normal to # at one of these crossings gives the direction of the associated stationary
point &;, on . Reciprocally the normal to . at such a &, gives the direction of the
point x to which it corresponds. Thus at both stationary points ; , corresponding to the
ray in the direction of £ the normals to % have the same direction making an angle 0
with the 3-axis. The inner sheet of #~ corresponds to the outer sheet of ., and vice-versa
as indicated in the captions to Figures 2 and 3.

For 0 < 0 < 0, and again for 0, < 0 < m/2, the singularities all correspond to points
of tangency on % with positive Gaussian curvature. These singularities are of the form
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FIGURE 4. This shows the 13-section of the wave surface # for fixed time t = 1. Notice the ellipse
and the circle which intersect at the conical points of #, the bi-radials, making angle 6, with the
3-axis. The angles 0,, 6;, and 0., measured from the 3-axis, are indicated. Notice also the segments
of common tangents which represent the disks Z,- forming a part of the wavefront carrying a weak
singularity.

A(%)2;28],

T oft —11200)], (6.3)
K2(&10)lx|

except for those x having directions passing too close to 8 = 6, or 8,, where the contact
circle €4 on the wave front crosses the 13-plane. In (6.3) 4 is a smoothly varying function
of direction, &, = & ,(0) is one of the two points at which the plane &-x(0) = t is tangent
to &, and t2(0) the two corresponding values of ¢, with indexing such that ¢; < t, and
e12(0) is the corresponding polarization for E. Then &(0) lies on the inner sheet of &
and &,(0) lies on the outer (see Figures 4 and 5). K (&) > 0 is the Gaussian curvature of
& at &, (see Burridge, 1967).

For 0 =0,, ¢, = cy and &, is on the outer sheet still near the 3-axis.

For 0, < 0 < 0, and for 0. < 0 < 0, y(x) < 0, the Gaussian curvature is negative
at the contact point &;, which now lies on the outer sheet of . The wave singularity
corresponding to such a point has the form

AR)eis8f, 1

K| (&))x| ™= 1)

(6.4)

(S

the Hilbert transform of that in (6.3) (see Burridge, 1967). Notice that for these values
of 0 this is the first of the two ‘geometrical’ wave arrivals and it carries a two-sided
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FIGURE 5. This shows the 13-section of the slowness surface .%. Notice the ellipse and the circle
which intersect at the conical points of &, the bi normals, making angle 0, with the 3-axis. The
points &, ,(0) are indicated for 6 = 0,,0,,0.. Notice also the segments of common tangents which
represent the disks &, forming a part of the wavefront which carries a weak, early arriving,
singularity.

singularity. Hence the field must already be non-zero. Indeed, when y(x) < 0 a weak step
singularity arising from small integration loops encircling the conical point arrives first,
the associated wavefront being the disk spanning a contact circle - on # . See Burridge
(1967) for a treatment of the analogous arrival for cubic elastic media when x is not too
near the cone X, ;. For 6 near 0, the stationary point &, is close to the conical point c¢.
This raises the question of the uniform analytical treatment of the neighborhood of the
circle €, the boundary of the disk. The analysis of this approximation is not known to
the present authors for the time-dependent problem, but Borovikov (2000) has recently
given a treatment for the time-harmonic case, and the time-dependent approximation may
be derived from this by a Fourier transform, but as far as the authors are aware this has
not yet been carried out.

As 0 increases from 0, to 6., the stationary point &,(0) moves away from the conical
point on . toward the circle ¥ at the lower of &,(0.) = &,(0.), and at the same time
the stationary point &,(0) moves from &,(0,) outside of the cone X, toward the rim
of the disk nearest to the 3-axis at the upper point &,(0.) = &,(0.). Both geometrical
arrivals come in together at t = t; = ;. The direction of x now becomes bi-radial and
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passes through the conical point ¢4 on #". Then all the points of ¥ become stationary
points and to find the singularities for directions near bi-radial one needs to perform the
appropriate uniform asymptotic analysis.

To track these points as 0 passes from 6. to 6, and to keep the order of arrival times so
that t; < 1, the labeling of points must change so that &, becomes &, and vice versa. The
old &,, renamed as &;, now proceeds from the rim to the conical point €. while the old
&,, renamed as &,, proceeds beyond the rim towards the 1-axis, reaching an intermediate
position &,(6,) while &,(0,) moves to &,.

For 0 passing from 0, to n/2, & proceeds on the inner sheet of . from &, to the
direction of the 1-axis and &, also tends to the 1-direction on the outer sheet. In Figure 5
is shown the 13-section of ¥ with the points &, ,(04,) indicated. Pairs &; , corresponding
to the same 0 have parallel normals in the direction of £(0), making an angle 6 with the
3-axis, and indicated as dashed lines in the figure.

6.1 Numerical values of the G;;(x,t) for various x in the 13-plane

Since the solution is self-similar (homogeneous of degree -2 in x and t) the computation
of G was carried out as described above by taking x = (sin 6,0, cos 0), for which |x| = 1. In
Figures 11-12 the components of G are plotted as functions of ¢ for each x corresponding
to the values of 0 listed above. Let us relate these plots to the geometry of the integration
loops. Consider, for instance, the plots in these figures for 6 = 20°. The corresponding
integration loops are shown superimposed on the quarter of .% for which x; > 0 and
x3 > 0 in Figure 6.

Here 0 is near 0, so the x is near %4 and the inner stationary point marked ‘&’ lies
near the conical point. Loops are shown for representative values of ¢t. For 0 = 0, and ¢
such that the plane £ - x = t passes through the conical point, the loop corresponding to
that time has a cusp at the conical point. The loop near the outer stationary point has
the form typical for stationary points with positive Gaussian curvature.

It is clear from the coordinate lines marked on % that the polarization for the first
singularity (on the inner sheet) is in the tensor component transverse to x and lying in
the tensorial ‘direction’

0 00
01 0}, (6.5)
0 00
while the later arrival associated with the outer sheet is in the ‘direction’
cos” 0 0 —sinfcosd
0 0 0 . (6.6)
—sinfcosf O sin® 0

We can also approximately read off the amplitude since that is inversely proportional to
the square root of the Gaussian curvature of % at the corresponding stationary point.
Notice particularly that the curvature goes to infinity at the conical point, leading to
zero amplitude there (but indicating that the waveform actually has a different singularity
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The loops &- x=t for various t.
x = (0.34 0  0.94).

15 15

FIGURE 6. This shows one quarter of & with integration loops for selected values of t. The points
marked ‘®’ indicate the points of tangency where first the inner loop and later the outer loop shrink
to single points. The wave-field d-like singularities associated with these points have the polarization
indicated by the thinner lines drawn on .%.

type). On the other hand the curvature goes to zero at points of %, where the four
special tangent planes [Ty touch &.

The details of the loops for an x just outside the cone X, are shown in Figure 7.
Notice particularly the stationary point marked ‘s’, which lies on the inner sheet of . (as
do the other smaller closed loops). The conical point itself is where the loops cross below
s. The open larger loops belong to the outer sheet of &. The time sequence is such that
the outer closed loops are paired with the lower open loops at earlier times and a full
intersection of &-x =t with & consists of such pairs of loops until the upper # is reached,
when the small closed loops disappear.

The details of the loops for an x just inside the cone X, are shown in Figure 8. Now
the stationary point marked ‘s’ lies on the outer sheet of . The conical point itself is
where the small closed loops (on the inner sheet of %) converge to a point and then open
up as closed loops on the outer sheet. The open larger loops belong to the outer sheet of
<. The time sequence is that the outer closed loops and the lower open loops are paired
at earlier times, and a full intersection of & - x = ¢ with % consists of two loops until & is
reached, when the small closed loops merge with the larger loops to form one large loop
like the uppermost (and latest) of the open loops shown.
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FiGUre 7. This shows the configuration of loops near the conical point for 8 = 15°. Notice the
stationary point surrounded by the small loop on the inner sheet of .. The conical point appears
where the curves cross. The signal from the conical point is zero in all components. y(x) > 0 and
so x is (just) outside the cone through the circle of tangency %, and the singularity at & is o-like,
appropriate to positive curvature.

In Figure 9 we show the loop configuration for an x near the bi-radial direction. There
are two stationary points indicated again by ‘®’, one just outside the circle ¥ and one
just inside. Notice particularly the configuration of the loops near these points.

In Figure 10 we show a similar loop configuration for an x just the other side of the
bi-radial direction. Again there are two stationary points indicated by ‘’, one just inside
the circle ¥+ and one just outside. Notice that the configuration of the loops near these
points is similar to the one in Figure 9 but rotated by 180°.

In Figures 11-12 are plotted the components of G which are not identically zero by
symmetry in the plane x, = 0. In these figures the G;;[x(0),t] are plotted as functions of ¢
for the fixed values of 6 indicated on the left vertical scale. The two curves cutting across
these indicate the arrival times #1(6) and t,(8). Where these (almost) meet corresponds to
. where t; = t. The plot of each G;; starts at the time ¢3(0) of the conical-point arrival.
Notice that only in the range 0, < 6 < 0, (approximately 25° < 6 < 75°) is the signal
non-zero for t; < t < t;. In the same range the arrival at t; has the Hilbert transform
pulse shape.

The components of G represented in Figures 11-12 have J-like singularities, and so
it is difficult to represent their amplitudes in relation to the smooth parts of the signal,
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FIGURE 8. This shows the configuration of loops near the conical point for § = 30°. Notice the
stationary point s in a neighborhood of negative Gaussian curvature on the outer sheet of .. The
local shape of the loops is hyperbolic. The conical point appears where the loops converge above it.
%(x) < 0 here and so x is inside the cone through the circle of tangency %4 and there is a nonzero
step-like arrival when the loops pass over the conical point. As ¢ increases near these small loops
surround the conical point on the inner sheet, shrink to the conical point, and then grow around it
on the outer sheet.

the amplitudes of the numerical §’s being inversely proportional to the time step and
therefore large and dependent upon the discretization. To give a better representation of
the smooth field together with the singularities we have plotted in Figures 13—14 the step
response obtained from the integrals in (3.28) before differentiation with respect to t, plus
the time integral of the third term.

7 Conclusions

We have developed the fundamental solution for the time-dependent system of crystal
optics using the Herglotz—Petrovskii formula. This technique represents the solution as
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The loops &- x=t for various t.
x=(0.77 0  0.64).
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FIGURE 9. This shows one quarter of .% with integration loops for selected values of t. The stationary
points marked ‘s’ indicate the points of tangency where first the inner loop and later the outer
loop shrink to single points. Notice that the upper stationary point, just outside the circle €, is
associated with positive curvature while the lower one, just inside the circle €, is associated with
negative curvature. The wave-field singularities associated with these points have the polarizations
indicated by the thinner lines drawn on . Thus the upper stationary point has polarization in the
13-plane while the lower has polarization in the 2-direction. Notice that the loops near these points
remain close to ¥ ¢.The types of singularities are appropriate to the sign of the curvature at the ‘®’.
(Compare with Figure 10.)

integrals around real loops, the intersection of a moving plane & - x = ¢ with the slowness
surface &, together with a non-propagating term, which is calculated separately. Because
of the identities stemming from the residue calculation of Section 3 and other similar
relationships it is possible to express the result in terms of Abelian integrals on non-real
cycles (Petrovskii, 1945), and possibly a more efficient computation would ensue. These are
closely related to the integrals arising in the Cagniard—De Hoop method. See, for instance,
Van der Hijden (1987) for the extension to waves in layered anisotropic elastic media.
We have not concerned ourselves with the efficiency of computation, but have used this
strikingly geometrical representation to motivate our calculation and to illustrate some
special regions of the field, namely the field near the cone of internal conical refraction,
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The loops & x=t for various t.
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Ficure 10. This is similar to Figure 9. Notice that the upper stationary point, just inside the
circle ¥+, is associated with negative curvature while the lower one, just outside the circle ¥+, is
associated with positive curvature. The wave-field singularities associated with these points have the
polarizations indicated by the thinner lines drawn on &.
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FiGure 11. This plots (a) Gyy(x,t), and (b) G3((x,t) for x having the direction (sin 6,0, cos 6) for 6

increasing by steps of 5° from 0° to 90°. See the text for further details.
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FiGURE 12. This plots (a) Gy(x,t), and (b) Gsz(x,t) for x having the direction (sin 6,0, cos 0) for
increasing by steps of 5° from 0° to 90°. See the text for further details.
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FiGure 13. This plots (a): WGyy(x,t) and (b): WGs(x,t) of the step response for x having the
direction (sin 0,0, cos 0) for 0 increasing by steps of 5° from 0° to 90°. See the text for further details.

and the field near the bi-radial directions. We found that this representation is easily
programmable in Matlab.

We have graphically displayed the geometrical entities that come into play and plotted
the signal G(x,t) as functions of ¢ for linear ‘gathers’ of positions x in the style used in
seismic exploration. Since it is not straightforward to represent graphically the amplitude
of the Dirac ¢ we have in one or two places plotted the step response. It is an easy matter
to calculate the field to any degree of accuracy in any region using our method. The same
method may be used for the fundamental solution for infinitesimal anisotropic elasticity.

We have left for future study the analysis of the uniform asymptotics for field points
near the bi-radial directions associated with the conical points ¢ on the wave-surface
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FIGURE 14. This plots (a) WGa(x,t), and (b) W Gss(x,t) of the step response for x having the
direction (sin 6,0, cos 0) for 0 increasing by steps of 5° from 0° to 90°. See the text for further details.

W and near (the surface of) the cones of internal conical refraction ~,. We note that
Borovikov (2000) has obtained related time-harmonic results where the cone is strictly
conical in that it has straight generators but with a nonlinear phase function.

We plan to apply the same method to develop the fundamental solution for the
time-dependent system of anisotropic elasticity in the future.

Appendix A The cones of internal conical refraction

Here we will derive equation (2.29) for the cones of internal conical refraction. For easy
reference we repeat the equation here

Eaaxy

£(8) = Eoxi £ L) (2

+ é““) +3=o0. (A1)
03

Let us first indicate why the planes of multiple tangency I, to the wave surface #", and
dual to the conical points &, on &, touch the wave surface in circles. First we notice that
the existence of the conical points &, and the fact that #" is of the fourth degree show
that the tangency is along a repeated conic. But the fourth-degree terms in the quartic
equation of the wave front %" are (x? +x3+x3)(x?/a1 +x3/02+x3/03). After a rotation of
coordinates so that the the new 3-axis is normal to the plane of tangency, and on setting
the new coordinate x; = 1/ \/07 for the plane of tangency, we find that the equation for
the curve of tangency is > = 0, where @ is a quadratic expression in x; and x}, whose
second-degree part is a constant multiple of x> + x5 and hence represents one of the
circles on %" which we have called €.

The two double cones of internal conical refraction are the cones with origin O as
vertex and passing through the circles -, or alternatively the cones of normals to & at
the conical points &, Recall for reference that the plane x; = 0 cuts . and #  each in
an intersecting circle and ellipse, & in & + &2 = g5 and & /o3 + &2 /oy = 1, and ¥ in
x} 4+ x3 =1/0; and o3x3/ + a1x3 = 1.
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Since (A 1) is homogeneous of degree 2 in (xy, X2, x3), it will be true for any x on the
double cones with origin as vertex and passing through a circle € if it is satisfied for all
x on %4 So, first consider a general point x on the circle €. For definiteness we assume
%y to lie in the first quadrant x; > 0, x3 > 0, in which case the negative signs should be
taken in (A 1) as also for the third quadrant. The positive signs should be taken for the
second and fourth quadrants.

Draw the chord through x perpendicular to the diameter on which x, = 0. It is bisected
by this diameter at the point x' = (x1,0, x3), say, and each half is of length x,. Let s be
the extremity of the diameter where it touches the circle x? +x3 = 1/, and ¢ be the other
extremity where it touches the ellipse o3x} + o1x3 = 1. Then, from an elementary theorem
on intersecting chords of a circle, we know that

|s — X'||t — x| = x,. (A2)

We shall show that (Ei3x; — &cx3) is a (positive) scalar multiple of |s — x|, and that
—(&ax1 /a1 — Ecx3/a3) 1s a (positive) scalar multiple of |t — x|, the scalar multiples being
the reciprocals \/07 and 1/ ﬁ.

First notice that s is normal to the circle 5% + é% = 03, & = 0 at the conical point &,
on .%, and so

s=&./0, (A3)
since |€,| = Jo2 and |s| = 1/\/07. Similarly, # is a normal to the ellipse £7/a3 + 3 /01 = 1,
&, = 0 at the same conical point &, and so it is a multiple of (£.1/a3,0, &c3/a1). But it lies

on the ellipse O'3t% + aﬂ% =1, and if we take the scalar multiplier to be 1 we easily verify
that

0383 + 0183 = 63(6a1/03) + 01(Ees/01)>

= éc21/0'3 + 553/0'1 (A4d)
=1
Thus we find that
t = (&1/03,0,¢3/01) (AS)

precisely.

We may express |s — x'| and |t — x'| as twice the areas of the triangles Osx’ and Otx’
divided by the perpendicular distance 1/ Jo2 from O to the line containing s, x', t. Twice
the area of triangle Osx’ is s3x; — syx3, and so

’ 3X1 — Ge1 X
5= x| = Jaalsaxs — s = SEH el (A6)

NG

and twice the area of triangle Otx’ is —(t3x; — t;x3), and so

_@)

03

(A7)

Eeaxg
t—xX|=—_Jo2(tsx1 —t1x =—O’(
| | Joa(t3xy —t1x3) NG o

On using (A 6) and (A7) in (A 2) we obtain (A 1) with negative signs as required. Then by
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taking the circle % to lie in the second or fourth quadrants we account for the positive
signs in (A 1).

Appendix B The integrals ¥, [®), [ and the static term

As stated in § 5 we need integrals of the form

2 2 1.1 2 S
,«»z/“@ I(z)z/“wqw @ z/xdqb (B1)
D > rq D2 > pqrs D3 >

0 0 0

where D = x*"gx! and the superscript indicates the rank of the tensor. We begin with

1 from which the others may be derived by means of

) 27(0)
o A 1 oY (B2)
Pq aa,,q ©P T 2080,,00

Let us further suppose that the triad £, p, £ is chosen so that  and £ are principal axes
of the section of the ellipsoid &"6~'¢ = 1 by the plane & - x = 0. Then

1<0):/2nd¢
o D

_/27[ d¢
o acos? ¢+ bsin’ ¢

_af do
N 4/0 a(1 + cos2¢) + b(1 — cos 2¢)

(B3)

_ 2n le
- 2/0 (a+b)+ (a—b)cosyp)’

where a = 7o, b = 2762, and we have changed integration variable to y = 2¢. Setting,
in the usual way, z = ¢', dyp = dz/iz, we obtain

dz
0) — _9;
' 217{7—1 Ha—b)z22+(a+b)z+ $(a—b))
(B4)
_ _ 41 ]{ dz
(@a=b)Jozi(z + )z + )
where
wt =0t of =1 (BS)
a—b>b

Evaluating (B4) by residues at o where || < 1 we get
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8n
(a—Db)(—o+p)

2n

Jab’

where we have used the obvious identity (—a + B)> = (x + f)*> — 4aB. But ab is the
determinant of

10 =

(B6)

N
y PO
()0 2) (®7)
which is the cofactor of 6% in
.QT
det { (yT> o j 2) } (BS)
AT
b4
ie. it is the 11 component of
%7 &7
adi! (37 ] & (x $ 2) = (57 adja(f $ 2) — F, say, (B9)
fT fT

where we have made use of the fact that the adjoint of a product is the product of the
adjoints in the reverse order and that the adjoint of an orthogonal matrix is its transpose.
The 3 x 3 component of this is

F = 2Tadjoz. (B10)

Further, to facilitate differentiation with respect to g, we write

F =zt"adjot = 1Z4Z,,0;404. (B11)
where
Zj = €jiXi, (B12)
and we are assuming 6’ = ¢. Thus writing
oF o*F
ﬁ = ijquO'jq, aak,ajq = ijZq,A, (B 13)
from which we obtain
10 — 21,
F2
O T, B 14
ja = E( 6Z)jg; ( )

2n 3n
@ _
Liglr = —EijZq,ﬁ + F(ZTO'Z)M(ZTO'Z)M-

5
2
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It is now straightforward to write the integral of (5.5), call it K. Then

k- [E &y
"o o\ Ea

=2[1O%&T — (2T6R) I} — 2otN(il),) +11'%)) + 4% (0%) Turip).

do
k=0 (B15)

Hence, using (B 14) in (B 15) we get
1
Ky =2n{2F 2 %3] — (2Te2) F3(2"6Z);,

—2F 3 (6N [Xi(Z 6 Z )y + (2T 621k,

(B16)
—2F 3 (62)(0%), Z1iZsy
+3F 2 (6f(6R)(ZT6Z )i /(ZT6Z);p).
Or, in subscript-free notation
2 tTok 2
K=" {mﬂ 1t ;xW — ZEWTW o W)
F2 (B17)
—EZTWWTZ + i(wT Www)W
F F2 ’
where we have written
w=o%, W=2ZTeZ. (B18)

Thus we may write the static term of (3.28) as

T L ¢ 7ok 2
—— | 7= 0"¢ xdQ = ———F— 282" — W — Z(hwT W + WwiT)
8 Jo & gt 4nF? [x]3 F

2 T 3T
_fZ wW Z—I—ﬁ(w Ww)W 5,

(B19)
with w and W given by (B 18), and F and Z by (B11) and (B 12).
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