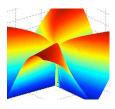


M254H HW 3 Due Monday Feb. 3



From Adams and Essex

Chapter	Page Number	Problems
11.1	592	12, 18, 20, 24, 30
11.2	634	2, 4, 5
11.3	641	9,17,18,24
11.4	649	4, 8

Non-book Exercises

1) Consider a ball starting at $\vec{r_0} \in \mathbb{R}^3$ at time t = 0 with initial velocity $\vec{v_0} \in \mathbb{R}^3$. Suppose there is a constant wind with direction \vec{w} which is orthogonal to the vertical vector \vec{k} . Using the same evolution equation as in class

$$m\frac{d\vec{v}}{dt} = -mg\vec{k} + \nu\vec{w}\frac{(\vec{w} - \vec{v})\cdot\vec{w}}{|\vec{w}|^2},$$

determine the evolution for the velocity $\vec{v} = \vec{v}(t)$. The difference with the example in class is that we do not assume that the initial projective velocity \vec{v}_0 lies in the plane formed by \vec{k} and \vec{w} . Determine the differential equations for the position $\vec{r} = \vec{r}(t)$, you do not need to solve them.

 ${f 2}$) Suppose you are given a point $ec{r_0} \in \mathbb{R}^3$ and two lines

\mathbb{L}_1	:=	$\left\{ \vec{r_1} + t\vec{v_1} \right $	$t \in \mathbb{R} \Big\},$
\mathbb{L}_2	:=	$\left\{\vec{r}_2 + s\vec{v}_2\right\}$	$s \in \mathbb{R}$.

Determine conditions on $\vec{r_0}, \vec{r_1}, \vec{r_2}$ and $\vec{v_1}, \vec{v_2}$ such that there is a single line \mathbb{L} which passes through $\vec{r_0}$ and the two lines \mathbb{L}_1 and \mathbb{L}_2 . Extra credit: determine the equation of the line \mathbb{L} .