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592  CHAPTER 10 Vectors and Coordinate Geometry in 3-Space

EXERCISES 104

19. Through (1, 2, —1) and making equal angles with the

1. A single equation involving the coordinates (x, y, z) need
not always represent a two-dimensional “surface” in R3. For
example, 224y =0 represents the single point
(0. 0, 0), which has dimension zero. Give examples of single
equations in x, y, and z that represent
(a) a (one-dimensional) straight line,

(b) the whole of R,

(¢) no points at all (i.e., the empty set).
In Exercises 2-9, find equations of the planes satisfying the given
conditions,

2. Passing through (0, 2, —3) and normal to the vector
4i-j—2k

3. Passing through the origin and having normal i — j + 2k

4. Passing through (1, 2, 3) and parallel to the plane
3x+y—2z=15

5. Passing through the three points (1, 1, 0), (2, 0, 2), and
©,3,3)

6. Passing through the three points (—2, 0, 0), (0, 3, 0), and
(0,0,4)

7. Passing through (1, 1, 1) and (2, 0, 3) and perpendicular to
the plane x + 2y —3z =0

8. Passing through the line of intersection of the planes
2x +3y —z=0and x —4y + 2z = -5, and passing
through the point (=2, 0, —1)

9. Passing through the lirex + y =2, y — z = 3, and
perpendicular to the plane 2x + 3y +4z =5

10. Under what geometric condition will three distinct points in
R not determine a unique plane passing through them?
How can this condition be expressed algebraically in terms
of the position vectors. rq, 2, and r3, of the three points?

11. Give a condition on the position vectors of four points that
guarantees that the four points are coplanar, that is, all lie
on one plane.

Describe geometrically the one-parameter families of planes in

Exercises 12-14. (A is a real parameter.)

12, x+y+z=2A B3 x40y +az=2a
B14, ax+v1-2%y=1.

In Exercises 15-19, find equations of the line specified in vector

and scalar parametric forms and 1n standard form.

15. Through the point (1, 2, 3) and parallel to 2i — 3j — 4k

16. Through (—1, 0, 1) and perpendicular to the plane
x—y+T72=12

17. Through the origin and paralle] to the line of intersection of
the planes x +2y —z=2and2x —y+4z =35

18. Through (2, —1, —1) and parallel to each of the two planes
x+y=0andx —y+2z=0

In Exercises 20-22, find the equations of the given line in
standard form.

20. r=(1-20i+ (4 430§+ (9 — 4nk.

21.

positive directions of the coordinate axes

=3t 2x+3y —4z =4

P
=

[x—4—5t 2 {x—2y+3z=0

23. If Py = (x1,y1,21) and P2 = (xz, y2, 72), show that the

24,

25.

equations

x=x14+1(x —x1)
y=y1+t(y2—y)
z=z1+1t(z2 —21)

represent a line through P; and P,.
What points on the line in Exercise 23 correspond to the

parameter values t = —1,¢ = 1/2, and ¢ = 27 Describe thelr 3

locations.

Under what conditions on the position vectors of four
distinct points Py, Py, P3, and Py will the straight line

P4 at a unique peint?

Find the required distances in Exercises 26-29.

26.
27.
28.
29.

30.

From the origin to the plane x 4- 2y + 3z = 4

From (1, 2, 0) to the plane 3x — 4y — 5z =2

From the origin to the linex + y +z =0,2x —y — 5z =1
Between the lines

x+2y=3 x+y+z=6
{y+2223 md
Show that the line x — 2 = + 1 s = is parallel to the

plane2y —z = 1. What is the distance between the line and
the plane?

In Exercises 31-32, describe the one-parameter families of
straight lines represented by the given equations. (A is a real

parameter.)
B131. (1 - 26 - x0) = A = yo), 2 = z0.
E32. Sl WS e S :
M a
33. Why does the factored second-degree equation

1i5

through P and P; intersect the straight line through P; and "

L

(A1x+ Biy + Ciz — Di)(Aax + Byy + Coz — Do) =0

represent a pair of planes rather than a single straight line?

o
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u
h_ it Identify the surfaces represented by the equations in 19. l 22 =x24y? 20. [ 2 42y24322=6
E ! Exercises 1-16 and sketch their graphs. z=1+x y=1
‘ 1. 24+ 452+ 92 =36 2. x24+y2 442 =4 21. Find two one-parameter families of straight lines that lie on
: \L 3, 252 4 2y% 4 22 — Az + 8y — 122427 =0 the hyperboloid of one sheet
E ‘,;‘ 4, 2 4+4y2+922 +4x -8y =8 2 g
¥ i il AN .
% S 5 z=x2+2)* 6. z=x2-2y° a? * B af
T ‘ 7. x2—yi—z2=4 8, x> +y2+P=4
i ‘k §, pewy 10, x2 + 472 = 4 22. Find two one-parameter families of straight lines that lie on
e 5 5 the hyperbolic paraboloid z = xy.
: 2 - = ;
b | 11 x* —4z" =4 12. y=z 23. The equation 2x2 + y% = 1 represents a cylinder with
: 13, ¥l ai 14, 52 = y? 4+ 272 e]lliptical cross-sections .in planes pe‘rpcndicula'r to the z-axis,
; | 5 2 32 Find a vector a perpendicular to which the cylinder has
e 15, z-1D°=(x— 2)2 +o- )2 circular cross-sections.
3 i % — _ _ :
fol ' 16. (z—-1)" = ) DT+ (-3 +4 E124, The equation 72 = 2x% + y? represents a cone with elliptical -
E | Describe and sketch the geometric objects represented by the cross-sections in planes perpendicular to the z-axis. Find a
il systems of equations in Exercises 17-20. vector a perpendicular to which the cone has circular
[+ : 2 2, .2 2, 2 cross-sections. Hint: Do Exercise 23 first and use its result,
. pp J7 by = 18. {" =l
B 11 x+y+z=1 z=x+Yy
E
-'

Cylindrical and Spherical Coordinates

Polar ceordinates provide a useful alternative to plane Cartesian coordinates for de-
scribing plane regions with circular symmetry or bounded by arcs of circles centred
at the origin and radial lines from the origin. Similarly, there are two commonly
: encountered alternatives to Cartesian coordinates in 3-space. They generalize plane
= ‘ polar coordinates to 3-space and are suitable for describing regions with cylindrical or
| spherical symmetry, We introduce these two coordinate systems here, but won’t make -
much use of them until the latter part of Chapter 14 when we will learn how to integrate
over such regions.

Cylindrical Coordinates

'(; ! Among the most useful alternatives to Cartesian coordinates in 3-space is the coor
] dinate systems that directly generalizes plane polar coordinates by replacing only the -
i horizontal x and y coordinates with the polar coordinates r and @, while leaving the ;
| vertical z coordinate untouched. This system is called cylindrical coordinates. Each
point in 3-space has cylindrical coordinates [r, &, z] related to its Cartesian coordinates
(x, v, ) by the transformation

| -

x =rcosf, y=rsnd, z=2z.

Figure 10.38 shows how a point P is located by its cylindrical coordinates [r, 8. z] aﬁ
well as by its Cartesian coordinates (x, y,z). Note that the distance from P to the
z-axis is r, while the distance from P to the origin is

d=vrttg? =yxt+y2 42 4
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SECTION 10.7: A Little Linear Algebra 609

THEOREM 1fet = (afj):szl is a real, symmetric matrix, then
(a) all the eigenvalues of o4 are real,
7 (b) all the eigenvalues of oA are nonzero if det(«4) 3 0,
(c) b is positive definite if all its eigenvalues are positive,
(d) oA is negative definite if all its eigenvalues are negative,
(e) oA is positive semidefinite if all its eigenvalues are nonnegative,
(f) «A is negative semidefinite if all its eigenvalues are nonpositive,

(8) A is indefinite if it has at least one positive eigenvalue and at least one negative
eigenvalue.

THEOREM rLett = (aij )?J.=1 be a real symmetric matrix and consider the determinants

an ap cody
a1 dzz - a4y ;
D= . : ; forl <i <n.
ail 4z e g
ay] da
Thus, Dy = a1y, Dy = |10 “120 = 41409 — apzan; = ayyamn — ﬂf'z, etc.
a1 a4
(a) If D; > 0for 1 <i < n, then + is positive definite.
(b) If D; > 0 for even numbers i in {1,2, ..., s}, and D; < 0 for odd numbers i in

{1,2,...,n}, then o is negative definite.
(c) If det(sA) = Dy # O but neither of the above conditions hold, then Q(x) is

indefinite.
(d) If det(ob) = O, then ¢4 is not positive or negative definite and may be semidefinite
; or indefinite.
—l
EXAMPLE 9 For the matrix +4 of Example 8, we have
3 1 3 -1 2
D =3>0, D;= =5>0, D3y=|-1 2 1|[=10=0,
-1 2
2 1 5
which reconfirms that the quadratic form of that exercise is positive definite.
_.

N EXERCISES 10.7

 Bvaluate the matrix products in Exercises 14,

L

5. Evaluate vhed” and % = ohoh, where
1
)

-2

1

)

1

11
11
11
0 1

coc o~
S0 -

6. Bvaluate xx”, x”x, and x7 vx, where

X a p g
x:(y) and A:(p b r).
% g r ¢

« (3D



Evaluate the determinants in Exercises 7-8.

o

10.

11.

12

H

13

14.

15.

16

2 3 -1 0 1 11 1
4 0 21 81234
1 0 -1 1 t=2 2 4
-2 0 01 3 -3 2 =2

. Show that if ¢4 = (ay;) is an n x n matrix for which g;; =0

wheneveri > j, then det(e#4) = [[}_; ax, the product of the
elements on the main diagonal of #.

Show that ch 1’=y—x,and
1 1 1
x oy z|=@-x)-x)z-y).
22 32 g2

Try to generalize this result to the n x n case.

Verify the associative law (AB)€ = o4(BE€) by direct
calculation for three arbitrary 2 x 2 matrices.

Show that det(eAT) = det(ed) for n x n matrices by
induction on ». Start with the 2 x 2 case,

Verify by direct calculation that det(,AB) = det(A)det(B)
holds for two arbitrary 2 x 2 matrices.

Let sy = $680 sng Show that
8=\ —sing cos6 J°

(e)T = (Ag) 7! = A

Verify by using matrix multiplication that the inverse of the
matrix b in the remark following Example 5 is as specified
there.

For what values of the variables x and y is the matrix

8= yyz) invertible, and what is its inverse?

Find the inverses of the matrices in Exercises 17-18.

11 1 1 0 -1
17. (D 1 1) 18. (-—1 1 0)
001 21 3

19. Use your result from Exercisel8 to solve the linear system

x—z=-2
{wx+y=1

2x+y+3z=13

20. Solve the system of Exercise 19 by using Cramer’s Rule.
x1+x+x3+x4=0
X1+x+x3—x4=4
x1+x—x3—x4=06

X1 —Xp — X3 — X4 =2.

22. Verify Theorem 5 for the special case where F and G are

linear transformations from R? to 2.

In Exercises 2328, classify the given symmetric matrices as
positive or negative definite, positive or negative semidefinite, or

indefinite.

120

23, (*} _;) 24. (z 0)
0 1

110

2. (1 0)

00 1

2 11
25. (1 2 1)
11 2
L. 0 i 2 0 1
7 (0 _1) 28, (0 i 1)
1 ~1 1 1 -1 1

21. Solve the system

[l S
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Using Maple for Vector and Matrix Calculations

The use of a computer algebra system can free us from much of the tedious calculation
needed to do calculus. This is especially true of calculations in multivariable and vector
calculus, where the calculations can quickly become unmanageable as the number of
variables increases. This author’s colleague, Dr. Robert Israel, has written an excellent
book, Calculus, the Maple Way, to show how Maple can be used effectively for doing
calculus involving both single-variable and multivariable functions.

In this book we will occasionally call on the power of Maple to carry out calcu-
lations involving functions of several variables and vector-valued functions of one or
more variables. This section illustrates some of the most basic techniques for calcu-
lating with vectors and matrices. The examples here were calculated using Maple 10,
but Maple 6 or later should give similar output.

Most of Maple’s capability to deal with vectors and matrices is not in its kernel
but is written into a package of procedures called LinearAlgebra. Therefore, it i$
customary to load this package at the beginning of a session where it will be needed:

> with{(Linearalgebra) :

One usually completes a Maple command with a semicolon rather than a colon. You

can use a colon to suppress output. Had we used a semicolon to complete the command




