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32. (Expressing a vector as a linear combination of two
other vectors with which it is coplanar) Suppose that u,
v, and r are position vectors of points U, V, and P,
respectively, that u is not parallel to v, and that P lies in the
plane containing the origin, U/, and V. Show that there exist
numbers A and u such thatr = Au + wv. Hint: Resolve both
v and r as sums of vectors parallel and perpendicular to u as
suggested in Exercise 31,

. Given constants r, s, and ¢, with  # O and s # 0, and given a
vector a satisfying |a|? > 4rst, solve the system of equations

weight supported by the arc L P in Figure 10.19 is 8g.x rathe;
than dgs, show that the cable assumes the shape of a
parabola rather than a catenary. Such is likely to be the cage
for the cables of a suspension bridge.

At a point P, 10 m away herizontally from its lowest point
L, a cable makes an angle 55° with the horizontal, Find the

length of the cable between L and P. K

. Calculate the length s of the arc L P of the hanging cable jn o

Figure 10.19 using the equation y = (1/a) cosh(ax) ik
obtained for the cable. Hence, verify that the magnitude y

{ rx+sy=a
Xey=1¢

for the unknown vectors X and y.
Hanging cables

34. (A suspension bridge) If a hanging cable is supporting

T = |T| of the tension in the cable at any point P = (x, y) 5 |
T =égy.

A cable 100 m long hangs between two towers 90 m apart go
that its ends are attached at the same height on the two

towers. How far below that height is the lowest point on the
cable?

weight with constant horizontal line density (so that the

The Cross Product in 3-Space

DEFINITION

5

Figure 10.22 u x v is perpendicular to
both w and v and has length equal to the
area of the shaded parallelogram

THEOREM

2

There is defined, in 3-space only, another kind of product of two vectors called a crogg
product or vector product, and denoted uxv,

For any vectors u and v in R>, the cross product uxv is the unique vector
satisfying the following three conditions:

(i) uxv)eu=0 and (uxv)ev=0,
(ii) Ju x v[ = |u|lv| sin§, where 8 is the angle between u and v, and
(iii) w, v, and u x v form a right-handed triad.

If u and v are parallel, condition (ii) says that u x v = 0, the zero vector. Otherwise, :
through any point in B? there is a unique straight line that is perpendicular to both u

and v. Condition (i) says that u x v is parallel to this line. Condition (iii) determines R |
which of the two directions along this line is the direction of u x v; a right-handed B !
screw advances in the direction of u x v if rotated in the direction from n toward v.
(This is equivalent to saying that the thumb, forefinger, and middle finger of the right
hand can be made to point in the directions of u, v, and uxv, respectively.)

If u and v have their tails at the point P, then uxv is normal (i.e., perpendicular)
to the plane through P in which u and v lie and, by condition (i), uxv has Jlength
equal to the area of the parallelogram spanned by u and v. (See Figure 10.22.) These
properties make the cross product very useful for the description of tangent planes and.
normal lines to surfaces in R E

The definition of cross product given above does not involve any coordinate system 3
and therefore does not directly show the components of the cross product with respect
to the standard basis. These components are provided by the following theorem: !

Components of the cross product

Ifu =i+ usj+ usk and v = vyi + v2j + v3k, then

f WXV = (w203 — uzvpd + (uaus — w1va)j + (102 ~ uzv K.
PROOF  First, we observe that the vector

W = (uav3 — uzva)i + (u3vr — uyv3)j + (v2 —uawk
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igure 10.19 is §gx rather 1 is perpendicular to both u and v since

;5 the ShaPC ofa \ . 1( - X 2) 2( . 1U3) 3( T 1) |
118 h'kely to be the case o uy Uav u M. v —u + u3(ugt Uat =1
81 llarh vew =0 IhHS, uxvis parai]el to w. Next, we show that w and u x v

y from its lowest point have the same length. In fact,

he horizontal. Find the : W% = (uzvs — u3v2)? + (w301 — u1v3)? + (U102 — uguy)>
) : P ) 2.2 7 ] 2.2
of the hanging cable in = u3v3 + u3vy — 2uavauavy + U3y + ujvg
2.2
Qfa) coshiez) — 2uviu1vs + uv3 + v} — 2u1vzuzvy,
' that the magnitude —_—

tany point P = (x, ¥) is ;
yP [ux v = [u?v|?sin? 0

= [u?[v]?> (1 — cos? )

= [ulIv/* - (we v)?

= (] +u + w7 + ] +3) — (11 + waws + usvs)?

= u%v% + u%v% + u%vg‘ + u%vl2 + u%v% + u%u% + u%vlz T u%v% <1 u%ug*

- u%v% - u%v‘;‘ - u%vg — 2uviuavy — 2uiviusvs — 2ugvalavs

wo towers 90 m apart so
- height on the two
; the lowest point on the

= |w|?,

Since w is parallel to, and has the same length as, u x v, we must have eitheru x v = w
oru X v = —w. It remains to be shown that the first of these is the correct choice.
o vectors called a cross To see this, suppose that the triad of vectors u, v, and w is rigidly rotated in 3-space
so that u points in the direction of the positive x-axis and v lies in the upper half of
the xy-plane. Then u = wyi, and v = vi 4 v;j, where | > 0 and vp > 0. By
| & the “right-hand rule” u x v must point in the direction of the positive z-axis. But
w = ujuzk does point in that direction, so u x v = w, as asserted.

SEag oo

s the unique vector

—iH
The formula for the cross product in terms of components may seem awkward and
ind v, and asymmetric. As we shall see, however, it can be written more easily in terms of a
determinant. We introduce determinants later in this section.
zero vector. Otherwise, (Calculating cross products)
perpendicular to both u ! __EX—AM
mi @ ixi=0iximk gxieok
:ction from u toward V. ‘: jxj=0, jx k=i, kxj=—i,
iddle finger of the right & kxk=0, kxi=], ixk=-j
espectively.) N (by (2i+j—3Kk) x (=2j + 5k)
nal(ﬁ%f-, perpﬁndllcmatflz R = (DG = D)+ (-3 — QG+ (2(-2) — DOk
on (ii), uxv has leng o ¢ :
i ! = —i — 10j — 4k.
ze Figure 10.22.) These 4 . B ®
on of tangent planes and P The cross product has some but not all of the properties we usually ascribe to products.
= We summarize its algebraic properties as follows:

‘e any coordinate system g
ass product with respect
ollowing theorem:

Properties of the cross product
If u, v, and w are any vectots in R? andtisa real number (a scalar), then

() uxu=0, i : :
, () uxXVv=-vxu, (The cross prodﬁbﬁéigntichhimutht’ive.)
o (i) (+¥) X W=uxwW+vxw, =
1)k . (V) U X (Y+W) =H X V+uxw,

(V) (u) x v =0 x (V) = r(u x v),
b o (vi) we (WX V) =Ve(ux V) =0
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Figure 10.23 Upward and downward
diagonals

Figure 10.24 WARNING: This method
does not work for 44 or higher-order
determinants!

These identities are all easily verified using the components or the definition of the
cross product or by using properties of determinants discussed below. They are left ag
exercises for the reader. Note the absence of an associative law. The cross product ig
not associative. (See Exercise 21 at the end of this section.) In general,

ux (vxw)#uxv) xw

Determinants

In order to simplify certain formulas such as the component representation of the cross
product, we introduce 2 x 2 and 3 x 3 determinants. General n X n determinants arg
normally studied in courses on linear algebra; we will encounter them in Section 10.6,

In this section we will outline enough of the properties of determinants to enable ustg

use them as shorthand in some otherwise complicated formulas.

A determinantis an expression that involves the elements of a square array (matrix)
of numbers. The determinant of the 2x2 array of numbers

a b
¢ d

is denoted by enclosing the array between vertical bars, and its value is the number 3
ad — be:
il >
' =ad — bc.
il
This is the product of elements in the downward diagonal of the array minus the product
of elements in the upward diagonal as shown in Figure 10.23. For example,

1 2

3 4|=DH-2DG) =-2.

larly, the determinant of a 3x3 array of numbers is defined by

f| = aei +bfg +cdh — gec —hfa —idb.

Observe that each of the six products in the value of the determinant involves exactly
one element from each row and exactly one from each column of the array. As such,
each term is the product of elements in a diagonal of an extended array obtained by
repeating the first two columns of the array to the right of the third column, as shown
in Figure 10.24. The value of the determinant is the sum of products corresponding
to the three complete downward diagonals minus the sum corresponding to the three
upward diagonals. With practice you will be able to form these diagonal products
without having to write the extended array.

If we group the terms in the expansion of the determinant to factor out the elements
of the first row, we obtain

a b ¢

d e f|=alei— fh)y—b(di— fg)+c(dh—eg)
g kWi

d e

—al® Y —b‘d ‘f‘—t—c .
g i g h

h 1
The 2 x 2 determinants appearing here (called minors of the given 3 x3 determinant) are 1
obtained by deleting the row and column containing the corresponding element from
the original 3% 3 determinant. This process is called expanding the 3x3 determinant
in minors about the first row. 3
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Such expansions in minors can be carried out about any row or column. Note that
if { + j is an odd number, a minus sign appears in a term obtained by multiplying
the element in the ith row and jth column and its corresponding minor obtained by
deleting that row and column. For example, we can expand the above determinant in
minors about the second column as follows:

a b ¢
d e f
g h i

a ¢ a [

g d f
= —bdi + bfg + eai —ecg — haf + hed.

+e —h

=—b’d !
g 1

(Of course, this is the same value as the one obtained previously.)

A BT e A 1 4 =2
EXAMPLE 2 -1 =3~3 uz‘ﬂll —zi
2 2 3 =3 2 =3
=3(-8)+1=-23

We expanded about the second row; the third column would also have been a good
choice. (Why?)

@
Any row (or column) of a determinant may be regarded as the components of a vector.
Then the determinant is a linear function of that vector. For example,

a b c a b ¢ a b ¢
d e 7 =s|d e fl|+t|d e f
sx+tl sy+itm sz+tn x ¥y z I m n

because the determinant is a linear function of its third row. This and other properties of
determinants follow directly from the definition. Some other properties are summarized
below. These are stated for rows and for 3 x 3 determinants, but similar statements can
be made for columns and for determinants of any order.

Properties of determinants

(i) If two rows of a determinant are interchanged, then the determinant
changes sign:

d e f a b ¢
atabiic = — ld'S 481
g h 1 o has

(i1) If two rows of a determinant are equal, the determmnant has value 0

SRS
]
=

R | R
~ 0 o

(111) If a multiple of one row of a determinant i1s added to another row, the
value of the determinant remains unchanged:

a b c a b ¢
d+ta e+tb fiic|=|d e f|.
g h i g h
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The Cross Product as a Determinant

The elements of a determinant are usually numbers because they have to be multiplied
to get the value of the determinant. However, it is possible to use vectors as the elementg
of one row (or column) of a determinant. When expanding in minors about that row
(or column), the minor for each vector element is a number that determines the scalar
multiple of the vector. The formula for the cross product of

u=uwuji+uzj+usk and v=uwii+uvj+uvsk

presented in Theorem 2 can be expressed symbolically as a determinant with the
standard basis vectors as the elements of the first row:

UxXve=lu; Uy u - ¢ s
: bl v 3 vy U3 v 2

=_’ug- uzl., |u4 uz i+ wy U2 k
vy V2 U3
The formula for the cross product given in that theorem is just the expansion of this
determinant in minors about the first row.

Vi

EXAMPLE 3 Find the area of the triangle with vertices at the three points

A=(1,1,00 A=(1,1,00,B=(3,0,2),and C = (0, -1, 1),

B =(3,0,2)
Figure 10.25 Solution Two sides of the triangle (Figure 10.25) are given by the vectors:

AB=2i—j+2k and AC=-i-2j+k

The area of the triangle is half the area of the parallelogram spanned by AB and AC,
By the definition of cross product, the area of the triangle must therefore be

i N
_EBExES=1 2 1 2l
2 2|4 21

1 1 5
=5 13— 4j -5k = V9 +16+25 = iﬂsquareunits.

®
A parallelepiped is the three-dimensional analogue of a parallelogram. It is a solid
with three pairs of parallel planar faces. Each face is in the shape of a parallelogram.
A rectangular brick is a special case of a parallelepiped in which nonparallel faces
intersect at right angles. We say that a parallelepiped is spanned by three vectors
coinciding with three of its edges that meet at one vertex. (See Figure 10.26.)

EXAMPLE 4 Find the volume of the parallelepiped spanned by the vectors u, Vs
and w

Figure 10.26 i : ; .
Solution The volume of the parallelepiped is equal to the area of one of its faces, say;

the face spanned by v and w, multiplied by the height of the parallelepiped measured =
in a direction perpendicular to that face. The area of the face is |v x w|. Since v x Wis - |
perpendicular to the face, the height h of the parallelepiped will be the absolute value
of the scalar projection of u along v x w. If @ is the angle between u and v x w, then E
the volume of the parallelepiped is given by i

Volume = |u]| v x w| |cos8| = |ue (v x w}| cubic units.

DEFINITION The quantity u e (v x w) is called the scalar triple product of the vectorsu, v, |
and w.
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The scalar triple product is easily expressed in terms of a determinant. If
u = u;i+ upj + uzk, and similar representations hold for v and w, then

ve (VX W =y RO —u ;vi v + u3 M
wy w3 wy w3 wy Wz
i U2 U3
= U v vz
wy wz w3

The volume of the parallelepiped spanned by u, v, and w is the absolute value of this
determinant.
Using the properties of the determinant, it is easily verified that

ue (Vxw)=ve(wWxu)=we (uxv)

(See Exercise 18 below.) Note that u, v, and w remain in the same cyclic order in these
three expressions. Reversing the order would introduce a factor —1:

Ue (VX W) =—ue(wXV).

Three vectors in 3-space are said to be coplanar if the parallelepiped they span has
zero volume; if their tails coincide, three such vectors must lie in the same plane.

u, v, and ware coplanar <= ue (v xw) =0

uip Uy U3
— i v v =0
wy wy» w3

Three vectors are certainly coplanar if any of them is 0, or if any pair of them is parallel.
If neither of these degenerate conditions apply, they are only coplanar if any one of
them can be expressed as a linear combination of the other two. (See Exercise 20
below.)

Applications of Cross Products

Cross products are of considerable importance in mechanics and electromagnetic the-
ory, as well as in the study of motion in general. For example:

(a) The linear velocity v of a particle located at position r in a body rotating with
angular velocity § about the origin is given by v = & x r. (See Section 11.2 for
more details.)

(b) The angular momentum of a planet of mass m moving with velocity v in its orbit
around the sun is given by h = r x mv, where r is the position vector of the planet
relative to the sun as origin. (See Section 11.6.)

(c) If a particle of electric charge g is travelling with velocity v through a magnetic
field whose strength and direction are given by vector B, then the force that the
field exerts on the particle is given by F = gv x B. The electron beam in a
television tube is controlled by magnetic fields using this principle.

(d) The torque T of a force F applied at the point P with position vector r about
another point Py with position vector ry is defined to be

T=WXF=(I‘—I‘Q)XF.

This torque measures the effectiveness of the force F in causing rotation about Pp.
The direction of T is along the axis through Pp about which F acts to rotate P.
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Figure 10.27 The force on the handle is
500 N 1n a direction directly toward you

TEXAMPLE 5 An automobile wheel has centre at the origin and axle along the b
——— y-axis. One of the retaining nuts holding the wheel is at position
Py = (0,0, 10). (Distances are measured in centimetres.) A bent tire wrench with arm
25 cm long and inclined at an angle of 60° to the direction of its handle is fitted to the
nut in an upright direction, as shown in Figure 10.27. If a horizontal force F = 500j
newtons (N) is applied to the handle of the wrench, what is its torque on the nut?
What part (component) of this torque is effective in trying to rotate the nut about ity
horizontal axis? What is the effective torque trying to rotate the wheel?

Solution The nut is at position rp = 10k, and the handle of the wrench is at position
r = 2505 60°j 4 (10 + 25 sin 60°)k ~ 12.5§ + 31.65k.
The torque of the force F on the nut is

T={r—-r) xF
a2 (12.5j + 21.65k) x 500i ~ 10,825j — 6,250k,
which is at right angles to F and to the arm of the wrench. Only the horizonta] 3
component of this torque is effective in turning the nut. This componentis 10,825 N-cm
or 108.25 N-m in magnitude. For the effective torque on the wheel itself, we haveto

replace rg by 0, the position of the centre of the wheel. In this case the horizontal
torque is 1

31.65k x 500i =~ 15,825j,

that 1s, about 158.25 N-m.

. Calculateu X vifu=i—2j+3kandv = 3i+ j— 4k.
2. Calculaten x vifu=j+2kandv=—i—j+k.
. Find the area of the triangle with vertices (1, 2, 0, (1, 0, 2),

and (0, 3, 1). \

. Find a umt vector perpendicular to the plane containing the
points (@, 0,0}, (0. b, 0), and (0, 0, ¢). What is the area of

the triangle with these vertices?

Find a unit vector perpendicular to the vectors i + j and

i+ 2k

6. Find a unit vector with positive k component that 1s

0 <o« - B <m. Hint: Regard u and ¥ as position vectors,
What is the area of the parallelogram they span?

IHfu+v+w=0showthatu X v=vyXw=wXuw

. (Volume of a tetrahedron) A tetrahedron is a pyramid
with a triangular base and three other triangular faces. It has
four vertices and six edges. Like any pyramid or cone, its
volume is equal to %Ah, where A is the area of the base and
h 1s the height measured perpendicular to the base. If u, ¥,
and W are vectors coinciding with the three edges of a
tetrahedron that meet at one vertex, show that the tetrahedron
has volume given by

perpendicular to both 2i — j — 2k and 2i — 3j + k.

Verify the 1dentities in Exercises 7-11, either by using the
definition of cross product or the properties of determinants.

T.uxu=0
9. 4+ vVIXW=uxXwt+VvXw
10 (W) xv=ux (tv) =tu xv)
11. ue(uxVv)=ve(uxv)=10

12. Obtain the addition formula

sin(e — B) =sinwcos f — cosa sin B

1 1w w2 o
Volumc::glu-(vxw)l:—l vy vz vl

S,uxv=-vyxu wr w2 w3

Thus, the volume of a tetrahedron spanned by three vectors 15
one-sixth of the volume of the parallelepiped spanned by the
same vectors. ]
Find the volume of the tetrahedron with vertices (1, 0, 0},
(1,2,0), (2,2,2),and (0, 3, 2).

. Find the volume of the parallelepiped spanned by the

by examining the cross product of the two unit vectors
u = cos $i -+ sin Bj and v = cos ai + sinj. Assume

diagonals of the three faces of a cube of side @ that meet at
one vertex of the cube.




he origin and axle along the
{ding the wheel is at position
) A bent tire wrench with arm
n of its handle is fitted to the
"a horizontal force F = 500i
hat is its torque on the nut?
ng to rotate the nut about its
ate the wheel?

le of the wrench is at position

65k.

rench, Only the horizontal
is componentis 10,825 N-cm
1 the wheel itself, we have to
. In this case the horizontal

d u and v as position vectors.
:logram they span?
IXV=VXW=WX1L

) A tetrahedron is a pyramid
ze other triangular faces. It has
ike any pyramid or cone, its

re A is the area of the base and
endicular to the base. If u, v,
with the three edges of a

ertex, show that the tetrahedron

123} U2 U3
m vz v3
wh w2 w3

iron spanned by three vectors is
> parallelepiped spanned by the

=dron with vertices (1, 0, 0),
.

zlepiped spanned by the

f a cube of side a that meet at

-

=y

17.

18.

19

20

21

22.

For what value of k do the four points (1, 1, —1), (0, 3, =2),

(=2, 1,0, and (k, 0, 2) all lie in a plane?
(The scalar triple product) Verify the identities

ue (¥ X W) =ve(wxu) =we (1 XV).

Ifue (v x w) # 0 and X is an arbitrary 3-vector, find the
numbers A, u, and v such that

X =Ju+ uv+vw,

Ifue (vxw)=0butv x w3 0, show that there are
constants A and p such that

u=Av+ puw.

Hint: Use the result of Exercise 19 with u in place of X and
v X w in place of u.

Calculate u x (v x w) and (u X v) x w, given that
u=i+2j+ 3k, v=2i - 3j, and w = j — k. Why would
you not expect these to be equal?

Does the notation u e v X w make sense? Why? How about
the notation u x v x w?
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23. (The vector triple product) The product u x (v x w) is

24.

25

26.

27.

28.

called a vector triple product. Since it is perpendicular to
v X W, it must lie in the plane of v and w. Show that

ux (VXW) =(uewv— (LeV)W

Hint: This can be done by direct calculation of the
components of both sides of the equation, but the job is much
easier if you choose coordinate axes so that v lies along the
x-axis and w lies in the xy-plane.

If u, v, and W are mutually perpendicular vectors, show that
u X (vx w) =0. Whatis u e (v X W) in this case?

Show thatu X (v X W) +v X (wxu) +wx (uxv) =0
Find all vectors X that satisfy the equation

(-i+2j+3k) xx =i+ 5j -3k

Show that the equation
(—i+2j+3k) xx=i+5j

has no solutions for the unknown vector X,

‘What condition must be satisfied by the nonzero vectors a
and b to guarantee that the equation a X x = b has a solution
for x? Is the solution unique?

Planes and Lines

A single equation in the three variables, x, y, and z, constitutes a single constraint on
the freedom of the point P = (x, y, z) to lie anywhere in 3-space. Such a constraint
usually results in the loss of exactly one degree of freedom and so forces P to lie on a
two-dimensional surface. For example, the equation

Z+yr =4

states that the point (x, y, z) is at distance 2 from the origin. All points satisfying this
condition lie on a sphere (i.e., the surface of a ball) of radius 2 centred at the origin.
The equation above therefore represents that sphere, and the sphere is the graph of the
equation. In this section we will investigate the graphs of linear equations in three
variables.

Planes in 3-Space
Let Py = (xg, Y0, zo) be a point in R? with position vector

ro = xoi + yoj + zok.

If n = Ai+ Bj + Ck is any given nonzero vector, then there exists exactly one plane
(flat surface) passing through Py and perpendicular to n. We say that n is a normal
vector to the plane. The plane is the set of all points P for which ngs is perpendicular
to n. (See Figure 10.28.)

If P = (x,y,z) has position vector r, then W = r — rp. This vector is
perpendicular to n if and only if n e (r — rg) = 0. This is the equation of the plane
in vector form. We can rewrite it in terms of coordinates to obtain the corresponding
scalar equation.




