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Vectors
A vector is a quantity that involves both magnitude (size or length) and direction,
Forinstance, the velocity of a moving object involves its speed and direction of motion,
50 is a vector. Such quantities are represented geometrically by arrows (directed line
s%ments) and are often actually identified with these arrows. For instance, the vector
B AB is an arrow with tail at the point A and head at the point B. In print, such a vector

v is usually denoted by a single letter in boldface type,
A V= ﬁ :
Figure 10.11  The vector v = AB

(See Figure 10.11.) In handwriting, an arrow over a letter (¢ = 713} can be used to
denote a yector. The magnitude of the vector v is the length of the arrow and is denoted

y ——7  MerlaB
7 ‘While vectors have magnitude and direction, they do not generally have position;

that is, they are not regarded as being in a particular place. Two vectors, u and v, are

: Y considered equal if they have the same length and the same direction, even if their
/ representative arrows do not coincide. The arrows must be parallel, have the same
X length, and point in the same direction. In Figure 10,12, for example, if ABYX isa

Figure 1012 AB = XV parallelogram, then AB =XV

For the moment, we consider plane vectars, that is, vectors whose representative
arrows lie in a plane. If we introduce a Cartesian coordinate system into the plane, we

Y can talk about the x and y components of any vector. If A = (a,byand P = (p. q),
as shown in Figure 10.13, then the x and y components of AP are, respectively, p — 4
P=(r.q) and ¢ — b. Note that if O is the origin and X is the point (p — a, g — ), then

/’qI —b
SiE ey AP =/(p— )2 + (g — b)? = |0F

slope of AP = o slope of OX.
P—a

g LT SN L

i)

X=(p—a,q-b)
_ Hence AP = OX. In general, two vectors are equal if and only if they have the same
o x x components and y components.
Figure 10.13  Components of a vector There are two important algebraic operations defined for vectors: addition and

scalar multiplication.
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Figure 10.14
l ~ (a) Vector addition

(b} Scalar multiplication

DEFINITION

:

Figure 10.15 The components of a sum

| of vectors or a scalar multiple of a vector

1s the same sum or multiple of the

. corresponding components of the vectors
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Vector addition

Given two vectors u and v, their sum u 4 v is defined as follows. If an arrow
representing v is placed with its tail at the head of an arrow representing u, then
an arrow from the tail of u to the head of v represents u + v. Equivalently, if u
and v have tails at the same point, then u + v is represented by an arrow with its
tail at that point and its head at the opposite vertex of the parallelogram spanned
by u and v. This is shown in Figure 10.14(a).

(a) (b

Scalar multiplication

If v is a vector and ¢ is a real number (also called a scalar), then the scalar
multiple ¢v is a vector with magnitude |¢| times that of v and direction the same
as vif t > 0, or opposite to that of vif ¢+ < 0. See Figure 10.14(b). If ¢t = 0,
then tv has zero length and therefore no particular direction. It is the zero vector,
denoted 0.

Suppose that u has components @ and & and that v has components x and y, Then
the components of u + v are @ + x and b + y, and those of rv are rx and ry. See
Figure 10.15.

Y y

In R? we single out two particular vectors for special attention. They are
(i) the vector i from the origin to the point (1, 0), and
(i1) the vector j from the origin to the point (0, 1).
Thus, i has components 1 and 0, and j has components 0 and 1. These vectors are

called the standard basis vectors in the plane. The vector r from the origin to the
point (x, y) has components x and y and can be expressed in the form

r=(x,y) =xi+yj.
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In the first form we specify the vector by listing its components between angle brackets.
in the second we write r as a linear combination of the standard basis vectors i ané i
J. (See Figure 10.16.) The vector r is called the position vector of the point (x.y)
A position vector has its tail at the origin and its head at the point whose position it i
specifying. The length of r is [r| = /x% + y2. ;
More generally, the vector AP from A = (a,b) to P = ( p,4g) in Figure 10.13

can also be written as a list of components or as a linear combination of the standarg
basis vectors: &

AP=(p—a,q—b)=(p—a)i+(g— b

- x Sums and scalar multiples of vectors are easily expressed in terms of components, If
i u = ui+ uyj and v = v1i + vaj, and if ¢ is a scalar (i.e., a real number), then
Figure 10.16  Any vector is a linear
combination of the basis vectors u+ v = (g + v+ (uz + v2)j,

= (tur)i + (fuz)j.

The zero vector is 0 = Oi + 0j. It has length zero and no specific direction. For any
vector u we have Ou = 0. A unit vector is a vector of length 1. The standard basis: 3
vectors i and j are unit vectors. Given any nonzero vector v, we can form a unit vector
¥ in the same direction as v by multiplying v by the reciprocal of its length (a scalar);

()

EXAMPLE 1 IfA=(2,-1),B =(-1,3), and C = (0, 1), express each'o“ﬁi-
the following vectors as a linear combination of the standard basis:

e

vectors:
(@ AB ()BC (QAC (DAB+BC  (e)2AC-3CH

(f) a unit vector in the direction of AB.

Solution

(@) AB = (—1 —2)i+ 3 — (=1)j = —3i +4j

®) BC =(0- (-1)i+(1-3)j=i-2j

(©) AC = (0—2)i+ (1 — (—1)j = —2i +2j

@ AB+BC=AC = —2i+2j

(&) 240 —3CH — 2004 2 — T+ 2W)=—i—2j

(f) A unit vector in the direction of A8 is E = —gi + ij.

|AB| 5

Implicit in the above example is the fact that the operations of addition and scalai*;
multiplication obey appropriate algebraic rules, such as E

u+v=v+u,
(ut+v)+tw=u+(v+w),
u—v=u+ (—1v,
tla+v)=ra+1rv.

Vectors in 3-Space

The algebra and geometry of vectors described here extends to spaces of any num
of dimensions; we can still think of vectors as represented by arrows, and sums aif
scalar multiples are formed just as for plane vectors.
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67.5°

—100i X

Figure 10.18  Velocity diagram for the
- aircraft in Example 3
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Given a Cartesian coordinate system in 3-space, we define three standard basis
vectors, i, j, and k, represented by arrows from the origin to the points (1, 0,0),
(0,1,0), and (0, 0, 1), respectively. (See Figure 10.17.) Any vector in 3-space can be
written as a linear combination of these basis vectors; for instance, the position vector
of the point (x, y, z) is given by

r=xi+yj+zk

We say that r has components x, y, and z. The length of r is

Ie| =/ ¥%+ 32 +2%

If Py = (x1,y1,21) and P> = (x2, y2, z2) are two points in 3-space, then the vector
v = P P, from P; to P, has components x; — x1, y2 — 1, and zz — z1 and is therefore
represented in terms of the standard basis vectors by

v="PP=(xn—-x)i+ 02— yi+ G-k

Ifu=2i+j—2kandv=3i—2j—k,findu+v,u—v,3u—2v,
[u, |v|, and a unit vector 4 in the direction of u.

EXAMPLE 2

Solution
u+v=0243i+01-2j+(—2-Dk=5—j-3k
u—v=02-3i+ (1 4+2j+(-2+Dk=-i+3j—-k

—2v=(6—6)i+ B +4)j+(—6+2)k =7j— 4k
ul=+A+1+4=3  |[v|=+/0+4+1=+14

ﬁg(l)u_zi_'_l_ 2k
“\Ju/ 3 "3 37
Q

The following example illustrates the way vectors can be used to solve problems
involving relative velocities. If A moves with velocity V4 g relative to B, and B
moves with velocity v ¢ relative to C, then A moves with velocity v rel ¢ relative
to C, where

VArelC = VArelB + VBrel C.

m An aircraft cruises at a speed of 300 km/h in still air. If the wind
— —  is blowing from the east at 100 km/h, in what direction should the
aircraft head in order to fly in a straight line from city P to city Q, 400 km north
northeast of P? How long will the trip take?

Sofution The problem is two-dimensional, so we use plane vectors. Let us choose
our coordinate system so that the x- and y-axes point east and north, respectively.
Figure 10.18 illustrates the three velocities that must be considered. The velocity of
the air relative to the ground is

Vair rel ground = —100 i

If the aircraft heads in a direction making angle 6 with the positive direction of the
x-axis, then the velocity of the aircraft relative to the air is

Vaircraft rel air = 300 cos @1 + 300sind j.

Thus, the velocity of the aircraft relative to the ground is

Vaircraft rel ground = Vaircraft rel air + Vair rel ground

= (300 cos 8 — 100) i + 300sin@ j.




572 CHAPTER 10 Vectors and Coordinate Geometry in 3-Space

We want this latter velocity to be in a north-northeasterly direction, that is, in the
direction making angle 37/8 = 67.5° with the positive direction of the x-axis. Thus,
we will have

Vaireraft rel ground = ¥ [ (€08 67.5°) i + (sin 67.5°) §].

where v is the actual groundspeed of the aircraft. Comparing the two expressions for
Vaircraft rel ground We Obtain

300 cosf — 100 = v cos 67.5°
300sind = v sin 67.5°.

Eliminating v between these two equations we get

300 cos § sin67.5° — 300 siné cos67.5° = 100 sin 67.5°,
or

3 sin(67.5° — 0) = sin67.5°,

Therefore, the aircraft should head in direction 8 given by
o & 1 = o
8 = 67.5° — arcsin 3 sin 67.5° | =~ 49.56°,

that is, 49.56° north of east. The groundspeed is now seen to be
v = 300sin@/ sin 67.5° ~ 247.15 km/h.

Thus, the 400 km trip will take about 400/247.15 =~ 1.618 hours, or about 1 hour and
37 minutes.

_..
Hanging Cables and Chains

When it is suspended from both ends and allowed to hang under gravity, a heavy cable
or chain assumes the shape of a catenary curve, which is the graph of the hyperboli¢
cosine function. We will demonstrate this now, using vectors to keep track of the
various forces acting on the cable.

Suppose that the cable has line density § (units of mass per unit length) and hangs
as shown in Figure 10.19. Let us choose a coordinate system so that the lowest point:
L on the cable is at (0, yg); we will specify the value of yp later. If P = (x, y) 18
another point on the cable, there are three forces acting on the arc LP of the cable
between L and P. These are all forces that we can represent using horizontal and
vertical components.

(i) The horizontal tension H = —Hiat L. This is the force that the part of the
cable to the left of L exerts on the arc LP at L.
(i) The tangential tension T = Tyi + Toj. This is the force the part of the cable
to the right of P exerts onarc LP at P.
(i) The weight W = —8gsj of arc L P, where g is the acceleration of gravity and
s is the length of the arc LP. :
Since the cable is not moving, these three forces must balance; their vector sum mlli‘]
be zero:

T+H4+W=0
(Th — H)i+ (Ty — 8gs)j =0
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Thus Ty = H and T, = 8gs. Since T is tangent to the cable at P, the slope of the
cable there is

dy__’{}i__ags_as
d« T, H

where a = §g/H is a constant for the given cable. Differentiating with respect to x
and using the fact, from our study of arc length, that

ds dy 2
o 1+(E) s

we obtain a second-order differential equation,

d?y ds dy\?
B B I i
i o Tt (dx) '

to be solved for the equation of the curve along which the hanging cable lies. The
appropriate initial conditions are y = yp anddy/dx =0 at x = 0.

Since the differential equation depends on dy/dx rather than y, we substitute
m(x) = dy/dx and obtain a first-order equation for m:

L. =av' 1+ m2

dx

This equation is separable; we integrate it using the substitution m = sinhu:

waﬁdm=fadx

N -

fdu:[—co-%—du:ax+cl
V1 + sinh?u

sinh™'m =u =ax + C;

m = sinh(ax + C1).

Since m = dy/dx = 0at x = 0, we have 0 = sinh C1, so C; = 0 and

d
2 e sinbitand,
dx
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1

This equation is easily integrated to find y. (Had we used a tangent substitution i 1nstead $
of the hyperbolic sine substitution for m we would have had more trouble here.)

1
y= @ cosh(ax) + Ca.

If we choose yo = y(0) = 1/a, then, substituting x = 0 we will get Ca = 0. With thig '.
choice of yp, we therefore find that the equation of the curve along which the hangmg g
cable lies is the catenary

y= g cosh(ax).
a

Remark 1If a hanging cable bears loads other than its own weight, it will assumg';
a different shape. For example, a cable supporting a level suspension bridge whose:
weight per unit length is much greater than that of the cable will assume the shape of
a parabola. See Exercise 34 below. %

The Dot Product and Projections

There is another operation on vectors in any dimension by which two vectors are. :
combined to produce a number called their dot product. ;

The dot product of two vectors

Given two vectors, u = u1i + upj and v = v1i+ vj in 2, we define their dot
product u e v to be the sum of the products of their corresponding components: L

uev=ujvy + uavs.

The terms scalar product and inner product are also used in place of dot product.
Similarly, for vectors u = u1i+ u2j + usk and v = vji + v2j + vakin B3,

ue V= 1uiv + U2+ U3U3.

The dot product has the following algebraic properties, easily checked using the defi ‘-
nition above:

Uev=veu (commutative law),
ue(V+W)=uevtuew (distributive law),
(fu)ev=ue(tv) =t(nev) (for real t),

ueu=|u

The real significance of the dot product is shown by the following result, which coul !
have been used as the definition of dot product: Y

If @ is the angle between the directionsof uand v (0 < 6 <), then

i
|

nev = [uliv(cost.

In particular, u e v = 0 if and only if u and v are perpendicular. (Of course, the z610°
vector is perpendicular to every vector.) i
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Figure 10.20  Applying the Cosine Law to
a triangle reveals the relationship between
dot the product and angle between vectors
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PROOF  Refer to Figure 10.20 and apply the Cosine Law to the triangle with the
arrows u, v, and u — v as sides:
[ul? + v/% = 2|u |v| cos® = Ju — v12 =u—v)e(u—v)
=ue(u—-v)—ve(u—v)
=UeuU—UeVY—Veu-+vev

=P+ v =2uev

Hence |u||v] cos@ = u e v, as claimed.

-3

EXAMPLE 4 ?;rfléjl}ia]?glc ¢ between the vectorsu = 2i+j— 2k and v =

Solution  Salving the formulan e v = |ujlv| cos8 for 8, we obtain

ot BEY o (0D + D)
cos o = o o
=cos™! % a2 57.69°,

@
It is sometimes useful to project one vector along another. We define both scalar and
vector projections of u in the direction of v;

Scalar and vector projections

The scalar projection s of any vector u in the direction of a nonzero vector v is
the dot product of u with a unit vector in the direction of v. Thus, it is the number

uev
§ = —— = |u] cos8,

vl

where 6 is the angle between u and v,

The vector projection, uy, of u in the direction of v (see Figure 10.21) is the
scalar multiple of a unit vector ¥ in the direction of v, by the scalar projection of
u in the direction of v; that is,

Nev , UeV
V=

vector projection of u along v = uy = —V
Ivl v|?

Note that |s| is the length of the line segment along the line of ¥ obtained by dropping
perpendiculars to that line from the tail and head of u. (See Figure 10.21.) Also, 5 is
negative if 6 > 90°.

Itis often necessary to express a vector as a sum of two other vectors parallel and
perpendicular to a given direction.

EXAMPLE 5 Express the vector 3i -+ j as a sum of vectors u < v, where u is
parallel to the vector i + j and v is perpendicular to w.

Solution
METHOD I (Using vector projection) Note that u must be the vector projection of
3i + j in the direction of i + j. Thus,

as Bitidel+i)

o e
TP (1+J)—§(1+J)—21+2J

v=3i+j—u=i-j.
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METHOD II (From basic principles) Since u is parallel to i+ j and v is perpendicular
to u, we have

u=1({i+j) ad ve(i+]) =0,

for some scalar . We want u + v = 3i + j. Take the dot product of this equation with
i+j:

vue(i+j)+ve(i+j)=0Ci+jel+]j
ti+j) e+ +0=4

Thus 2t = 4, so t = 2. Therefore,

u=2i+72j and v=3i+j—u=i-j.

Vectors in n-Space

All the above ideas make sense for vectors in spaces of any dimension. Vectors in R"
can be expressed as linear combinations of the » unit vectors

€] from the origin to the point (1,0,0,...,0)
e from the origin to the point (0, 1,0,...,0)

€y from the origin to the peint  (0,0,0,...,1).

These vectors constitute a standard basis in R*. The n-vector x with components
X1, X2, ..., Xy 18 expressed in the form %

¥y

X =xie1 + X282 + - - + Xptn.

The length of x is x| = v/x12 +x22 + -- - + x,2. The angle between two vectors X
andy is

8 =cos™! ﬂ,
[x[lyl

where

Xey=x1y+x232 4+ + XpYn-

We will not make much use of n-vectors for n > 3 but you should be aware thal
everything said up until now for 2-vectors or 3-vectors extends to n-vectors. X

EXERCISES 10.2

1. Let A= (~1,2), B=(2,0), C=(1,-3), D= (0,4). di AB + AC + AD
Express each of the following vectors as a linear combination 3 '
of the standard basis vectors i and j in R?. In Exercises 2-3, calculate the following for the given vectors i
() B, (®BA, (AC, @BD. (@ DA, iy
(a) u+v, u—-v, 2u — 3v,
() AB — BC, (g) AC - 248 +3CD, and (b) the lengths [u] and |v],
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2u — 3v,

2.
3.
4.

5,

6.

A 7.

B 8.

9.

10.

Bi1.
|_:‘

12
v

s
£
[«

L 14,

o 1S
>

(c) unit vectors @i and ¥ in the directions of u and v,
respectively,

(d) the dot product u e v,

(e) the angle between u and v,

(f) the scalar projection of u in the direction of v,

(g) the vector projection of v along u.
u=i—jandv=j+2k
u=23i+4j—5Skandv=3i—4j -5k

Use vectors to show that the triangle with vertices (—1, 1),
(2,5), and (10, —1) is right-angled.

In Exercises 5-8, prove the stated geometric result using vectors.

The line segment joining the midpoints of two sides of a
triangle is parallel to and half as long as the third side.

If P, Q, R, and S are midpoints of sides AB, BC, CD, and
DA, respectively, of quadrilateral ABC D, then PORS is a
parallelogram.

The diagonals of any parallelogram bisect each other.

The medians of any triangle meet in a common point. (A
median is a line joining one vertex to the midpoint of the
opposite side. The common point is the centroid of the
triangle.)

A weather vane mounted on the top of a car moving due
north at 50 km/h indicates that the wind is coming from the
west. When the car doubles its speed, the weather vane
indicates that the wind is coming from the northwest. From
what direction is the wind coming, and what is its speed?

A straight river 500 m wide flows due east at a constant speed
of 3 kmv/h. If you can row your boat at a speed of 5 km/h in
still water, in what direction should you head if you wish to
row from point A on the south shore to point B on the north
shore directly north of A? How long will the trip take?

In what direction should you head to cross the river in
Exercise 10 if you can only row at 2 km/h, and you wish to
row from A to point C on the north shore, £ km downstream
from B? For what values of & is the trip not possible?

. A certain aircraft flies with an airspeed of 750 km/h. In what

direction should it head in order to make progress in a true
easterly direction if the wind is from the northeast at

100 km/h? How long will it take to complete a trip to a city
1,500 km from its starting point?

. For what value of ¢ is the vector 2¢i + 4j — (10 + )k

perpendicular to the vector i + tj + k?

Find the angle between a diagonal of a cube and one of the
edges of the cube.

. Find the angle between a diagonal of a cube and a diagonal

of one of the faces of the cube. Give all possible answers.

(Direction cosines) If a vector u in R® makes angles o, $,
and y with the coordinate axes, show that

il = cosai + cos 8j + cos yk

is a unit vector in the direction of w, so
cos? & + cos® B + cos® ¢ = 1. The numbers cos o, cos B,
and cos y are called the direction cosines of u.

. Find a unit vector that makes equal angles with the thiee

coordinate axes.
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18. Find the three angles of the triangle with vertices (1, 0, 0),
0,2, 0), and (0, 0, 3).

19. If r| and r; are the position vectors of two points, P and Ps,
and X is a real number, show that

r=0-Ar+Airp

is the position vector of a point P on the straight line joining
Py and Pp. Whereis Pif A =1/2?if A =2/32if A = —17?
ifA =27

20. Let a be a nonzero vector. Describe the set of all points in
3-space whose position vectors I satisfy ae r = 0.

21. Leta be a nonzero vector, and let b be any real number.
Describe the set of all points in 3-space whose position
vectors I satisfy aer = b.

In Exercises 22-24,u = 2i + j — 2k, v =1i + 2j — 2k, and

w=2-2j+k

22. Find two unit vectors each of which is perpendicular to both
uandv.

23. Find a vector x satisfying the system of equations X e u = 9,
Xev=4 xew=0

24,

Find two unit vectors each of which makes equal angles with
u, v, and w.

25. Find a unit vector that bisects the angle between any two
nonzere vectors u and v.

26. Given two nonparallel vectors u and v, describe the set of all

points whose position vectors r are of the form r = Au + uv,

where A and y are arbitrary real numbers.

(The triangle inequality) Let u and v be two vectors,

(2) Show that [u + v|2 = [u/2 + 2ue v + |v|%.

(b) Show thatue v < |u]]v|.

(¢) Deduce from (a) and (b) that |u + v| < [u| + |v]|.

(a) Why is the inequality in Exercise 27(c) called a triangle
inequality?

(b) What conditions on u and v imply that
lu+v| = a| + |v|?

(Orthonormal bases) Letu = i+ #j, v= %i — 2j, and

w=Kk

(a) Show that Ju] = |v|] = |w| =1 and
uev=uew=vew=0. The vectors u, v, and w are

mutually perpendicular unit vectors and as such are said
to constitute an orthonormal basis for B3,

(b) If r = xi + yj + zk, show by direct calculation that

2
o

28.

29

r=rewu+ (rev)v+4 (reww.

30. Show thatif w, v, and w are any three mutually
perpendicular unit vectors in B> and r = au + bv + cw, then
a=reu, b=rev,andc=rew.

31. (Resolving a vector in perpendicular directions) If a
is a nonzero vector and W is any vector, find vectors u and v
such that w = u+ v, u is parallel to a, and v is perpendicular
toa.
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32. (Expressing a vector as a linear combination of two

other vectors with which it is coplanar) Suppose that u,
¥, and r are position vectors of points U, V, and P,
respectively, that u is not parallel to v, and that P lies in the
plane containing the origin, U, and V. Show that there exist
numbers A and p such that r = Au + wv. Hint: Resolve both

weight supported by the arc L P in Figure 10.19 is §gx rather
than dgs, show that the cable assumes the shape of a
parabola rather than a catenary. Such is likely to be the cage
for the cables of a suspension bridge.

. Atapoint P, 10 m away horizontally from its lowest point

L, a cable makes an angle 55° with the horizontal. Find the

v and r as sums of vectors parallel and perpendicular to u as

length of the cable between L and P.
suggested in Exercise 3L

Calculate the length s of the arc L P of the hanging cable iy
Figure 10.19 using the equation y = (1/a) cosh(ax)
obtained for the cable. Hence, verify that the magnitude .
rx+sy=a = |T| of the tension in the cable at any point P = (x, y) js -
{ Xey=1 T =dgy.
for the unknown vectors X and y. A calble 100 m long hangs between two towers 90 m apart g
. that its ends are attached at the same height on the two
Hanging cables towers. How far below that height is the lowest point on the
34. (A suspension bridge) If a hanging cable is supporting cable?
weight with constant horizontal line density (so that the

. Given constants r, 5, and ¢, with » # O and s # 0, and given a
vector a satisfying |a|? > 4rsr, solve the system of equations

The Cross Product in 3-Space

There is defined, in 3-space only, another kind of product of two vectors called a crogs
product or vector product, and denoted uxv.

DEFINITION

For any vectors u and v in B>, the cross product uxv is the unique vector
satisfying the following three conditions:

5 (i uxv)eu=0 and (uxv)ev=0,
(1) Jux v| = |u||v| sind, where ¢ is the angle between u and v, and
(iii) w, v, and u x v form a right-handed triad.

If u and v are parallel, condition (ii) says that u x v = 0, the zero vector. Otherwise,
through any point in R? there is a unique straight line that is perpendicular to both u
and v. Condition (i) says that u x v is paralle] to this line. Condition (iii) determines :
which of the two directions along this line is the direction of w x v; a right-handed
screw advances in the direction of u x v if rotated in the direction from u toward v.
(This is equivalent to saying that the thumb, forefinger, and middle finger of the right
hand can be made to point in the directions of u, v, and uxv, respectively.)

If u and v have their tails at the point P, then wxv is normal (i.e., perpendicular)
to the plane through P in which u and v lie and, by condition (ii), uxv has length
equal to the area of the parallelogram spanned by u and v. (See Figure 10.22.) These
properties make the cross product very useful for the description of tangent planes aud

Figure 10.22 u x v is perpendicular to normal lines to surfaces in .

both u and v and has length equal to the
area of the shaded parallelogram

The definition of cross product given above does not involve any coordinate system
and therefore does not directly show the components of the cross product with ICSPSCt
to the standard basis. These components are provided by the following theorem:

THEOREM Components of the cross product

Ifu=uji+usj+uskand v = vii+ vj+ v3k then

,

L {-X Y»n« (a3 — uava)i 4+ (um — uu3)j + (ul uz *uavl)k

PROOF  First, we observe that the vector

= (u2v3 —uzv)i + (u3v1 — wyv3)j + (u1v2 — upv)k




