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Vectors and Coordinate
Geometry in 3-Space

€€ Lord Ronald said nothing; he flung himself from the room, flung
himself upon his horse and rode madly off in all directions. ...

And who is this tall young man who draws nearer to Gertrude with
every revolution of the horse? ...

The two were destined to meet, Nearer and nearer they came. And
then still nearer. Then for one brief moment they met. As they passed
Gertrude raised her head and directed towards the young nobleman
two eyes so eye-like in their expression as to be absolutely circular,
while Lord Ronald directed towards the occupant of the dogcart a

gaze so gaze-like that nothing but 3 gazelle, or a gas-pipe, could have
emulated its intensity.

¥

Stephen Leacock 18691944 |
from Gertrude the Governess: or; Simple Seventeen

, ntrOd u Ct i 0 n A complete real-variable calculus program involves the

study of
(i) real-valued functions of a single real variable,
(ii) vector-valued functions of a single real variable,
(i) real-valued functions of a real vector variable,
(iv) vector-valued functions of real vector variable.

Chapters 1-9 are concerned with item (i). The remaining chapters deal with items ( ii)_?"
(iii), and (iv). Specifically, Chapter 11 deals with vector-valued functions of a single.
real variable. Chapters 12-14 are concerned with the differentiation and integration
of real-valued functions of several real variables, that is, of a real vector variable.

Chapters 15 and 16 present aspects of the calculus of functions whose domains and
ranges both have dimension greater than one, that is, vector-valued functions of a vector
variable. Most of the time we will imit our attention to vector functions with domains -
and ranges in the plane, or in 3-dimensional space. i

In this chapter we will lay the foundation for multivariable and vector calculus
by extending the conce

introducing vectors as
entity. We also introd
some of the concepts
algebra. We develop
proofs.
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BB Analytic Geometry in Three Dimensions
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We say that the physical world in which we live is three-dimensional because through
any point there can pass three, and no more, straight lines that are mutually perpen-
dicular; that is, each of them is perpendicular to the other two. This is equivalent to
the fact that we require three numbers to locate a point in space with respect to some
reference point (the origin). One way to use three numbers to locate a point is by
having them represent (signed) distances from the origin, measured in the directions
of three mutually perpendicular lines passing through the origin. We call such a set
of lines a Cartesian coordinate system, and each of the lines is called a coordinate
axis. We usually call these axes the x-axis, the y-axis, and the z-axis, regarding the
x- and y-axes as lying in a horizontal plane and the z-axis as vertical. Moreover,
the coordinate system should have a right-handed orientation. This means that the
thumb, forefinger, and middle finger of the right hand can be extended so as to point,
respectively, in the directions of the positive x-axis, the positive y-axis, and the positive
z-axis. For the more mechanically minded, a right-handed screw will advance in the
positive z direction if twisted in the direction of rotation from the positive x-axis toward
the positive y-axis. (See Figure 10.1(a).)

z

P=(x,52

y

Q=00
(a) (b)

With respect to such a Cartesian coordinate system, the coordinates of a point

P in 3-space constitute an ordered triple of real numbers, (x, y, z). The numbers x,

v, and z are, respectively, the signed distances of P from the origin, measured in the
directions of the x-axis, the y-axis, and the z-axis. (See Figure 10.1(b).)

Let O be the point with coordinates (x, y, 0). Then Q lies in the xy-plane (the
plane containing the x- and y-axes) directly under (or over) P. We say that Q is the
vertical projection of P onto the xy-plane. If » is the distance from the origin O to P
and s is the distance from O to @, then, using two right-angled triangles, we have

s2 = x2 P and P=242=x24y2+2

Thus, the distance from P to the origin is given by

r=q/x2+y24+ 7%

Similarly, the distance r between points Py = (x1, y1, z1) and Py = (x2, y2, z2) (see
Figure 10.2) is

r= \/(xz —x)2+ (2 — y1)* + (22 — 21)%

Show that the triangle with vertices A = (1, —1,2), B = (3,3, 8),

_EXAMPLE 1 0d ¢ = 2,0, 1 has aright angle.
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X
Figure 10.3 The first octant

Figure 10.4  Equation x = y defines a
vertical plane

Figure 105  The plane with equation
x+y+z=1

Solution  We calculate the lengths of the three sides of the triangle:
a=|BCl=v2-3)>+0-32+(1-82=+59
b=|ACI=vV2-12+0+12+(1—-22=+3
c=|ABl=vVB3- 12+ @B+ 1)2+(B8-22=1+56

By the cosine law, a? = b? 4 ¢ — 2be cos A. In this case a2 = 59 = 3+ 56 = b2+c2 '
so that 2b¢ cos A must be 0. Therefore, cos A = 0 and A = 90°.

Just as the x- and y-axes divide the xy-plane into four quadrants, so also the thre ;
coordinate planes in 3-space (the xy-plane, the xz-plane, and the yz- plane) dmd
3-space into eight octants. We call the octant in whichx > 0,y > 0,and z > 0 ¢ e
first octant. When drawing graphs in 3-space it is sometimes easier to draw only the

part lying in the first octant (Figure 10.3). f

An equation or inequality involving the three variables x, v, and z defines a subse}.
of points in 3-space whose coordinates satisfy the equation or inequality. A smgl
equation usually represents a surface (a two-dimensional object) in 3-space.

EXAMPLE 2 {Some equations and the surfaces they represent)

(a) The equation z = 0 represents all points with coordinates (x, y, ), that i 18, thr
xy-plane. The equation z = —2 represents all points with coordinates (x, y, ~2),
that is, the horizontal plane passing through the point (0, 0, —2) on the z-axis.

(b) The equation x = y represents all points with coordinates (x, x,z). This is 4
vertical plane containing the straight line with equation x = y in the xy-plang,
The plane also contains the z-axis. (See Figure 10.4.)

(c) The equation x +y + z = 1 represents all points the sum of whose coordin:
is 1. This set is a plane that passes through the three points (1, 0, 0), (0, 1, 0)
and (0, 0, 1). These points are not collinear (they do not li¢ on a straight line),
there is only one plane passing through all three, (See Figure 10.5.) The equation ‘
X + v+ z = O represents a plane parallel to the one with equationx +y +z=1
but passing through the origin. f

(d) The equation x2 + y2 = 4 represents all po;nts on the vertical circular cyhnd:z
containing the circle with equation x? + y? = 4 in the xy-plane. This cyhnderh
radius 2 and axis along the z-axis. (See Figure 10.6.)

(e) Theequation z = x2 represents all points with coordinates (x, v, x2). This surface
is a parabolic cyhnder tangcnt to the xy-plane along the y-axis. (See Figure 10

(f) The equation x24 y +z2 =125 represents all points (x, y, z) at distance 5 fron h
the origin. This set of points is a sphere of radius 5 centred at the origin. :

Figure 10.6  The circular cylinder Figure 10.7  The parabolic cylinder
with equation x + y? = 4 with equation z = x?
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Observe that equations in x, y, and z need not involve each variable explicitly. When
one of the variables is missing from the equation, the equation represents a surface

of the triangle:

=59 paraliel to the axis of the missing variable. Such a surface may be a plane or a cylinder.
=3 For example, if z is absent from the equation, the equation represents in 3-space a

vertical (i.e., parallel to the z-axis) surface containing the curve with the same equation
= /56 in the xy-plane.

Occasionally, a single equation may not represent a two-dimensional object (a
surface). It can represent a one-dimensional object (a line or curve), a zero-dimensional
object (one or more points), or even nothing at all.

sea’=59=3+56=p24
1A =90°

our quadrants, so also the
-plane, and the yz-plane) diy;
chx ED,yZO,andZ > 01
'metimes easier to draw only

TEyamplF 2 Identify the graphs of: (a) y?+(z—1)2 =4, (0) v2+(z— 1)2 =0,
EXAMPLE 3 (c)x2+y2+z2zO,and(d)x2+y2+22=“1-

Solution

(a) Since x is absent, the equation y2 4 (z — 1)? = 4 represents an object parallel to
the x-axis. In the yz-plane the equation represents a circle of radius 2 centred at
(y,z) = (0, 1). In 3-space it represents a horizontal circular cylinder, parallel to

T — the x-axis, with axis one unit above the x-axis. (See Figure 10.8.)

ables x, y, and z defines a subse
quation or inequality. A sin
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es they represent) (b) Since squares cannot be negative, the equation yV4+@E-12%=0 implies that
y = 0 and z = 1, so it represents points (x, 0, 1). All these points lie on the line
parallel to the x-axis and one unit above it. (See Figure 10.8.)

(c) Asin part (b), x2 + y2 + z% = 0 implies that x = 0, y = 0, and z = 0. The
equation represents only one point, the origin.
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(d) The equation x? + y? + z% = —1 is not satisfied by any real numbers x, y, and z,
so it represents no points at all.

@

A single inequality in x, v, and z typically represents points lying on one side of the

surface represented by the corresponding equatlon (together with points on the surface

if the inequality is not strict).

EXAMPLE 4 (a) The inequality z > 0 represents all points above the xy-plane.

(b) The inequality x2 + y? > 4 says that the square of the distance from (x, y, z) to
the nearest point (0, 0, z) on the z-axis is at least 4. This inequality represents all
points lying on or outside the cylinder of Example 2(d).

(¢) The inequality x4 y% 422 < 25 says that the square of the distance from (x, v, z)
to the origin is no greater than 25. It represents the solid ball of radius 5 centred at
the origin, which consists of all points lying inside or on the sphere of Example 2(f).

®

Two equations in x, y, and z normally represent a one-dimensional object, the line or

curve along which the two surfaces represented by the two equations intersect. Any

point whose coordinates satisfy both equations must lie on both the surfaces, so must
lie on their intersection.

EXAMPLE 5 What sets of points in 3-space are represented by the following
- pairs of equations?

. x+y+z=1 224y 42 =1
(a) [y_2x=0 (® [x+y=
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Figure 10.9
(a) The two planes intersect in a straight
line
(b) The plane intersects the sphere in
acircle (a)

Solution

(a) The equation x + y +z = 1 represents the oblique plane of Example 2(c), and the
equation y — 2x = 0 represents a vertical plane through the origin and the point
(1,2, 0). Together these two equations represent the line of intersection of the two
planes. This line passes through, for example, the points (0, 0, 1) and (%, %, 0).
(See Figure 10.9(a).) 2

(b) The equation x2 + y? + z* = 1 represents a sphere of radius 1 with centre at the
origin, and x + y = 1 represents a vertical plane through the points (1, 0, 0) and
(0,1, 0). The two surfaces intersect in a circle, as shown in Figure 10.9(b). The
line from (1, 0, 0) to (0, 1, 0) is a diameter of the circle, so the centre of the circle
is (. 1,0), and its radius is 4/2/2.

-0
In Sections 10.4 and 10.5 we will sce many more examples of geometric objects in
3-space represented by simple equations.

Euclidean n-Space

Mathematicians and users of mathematics frequently need to consider n-dimensional
space, where n is greater than 3 and may even be infinite. It is difficult to visualizea
space of dimension 4 or higher geometrically. The secret to dealing with these spaces
is to regard the points in n-space as being ordered n-tuples of real humbers; that is,
(x1,x2,...,Xp) is a point in n-space instead of just being the coordinates of such a
point. We stop thinking of points as existing in physical space and start thinking of
them as algebraic objects. We usually denote n-space by the symbol B” to show that
its points are n-tuples of real numbers. Thus R? and R? denote the plane and 3-space, X
respectively. Note that in passing from B> to R" we have altered the notation a bit: in
3 we called the coordinates x, ¥, and z, while in R” we called them x1, x2, ...and Xz
s0 as not to run out of letters. We could, of course, talk about coordinates (x, xz, ¥3)
in R? and (x;, x2) in the plane R2, but (x.y,2) and (x, y) are traditionally used there.
Although we think of points in R" as n-tuples rather than geometric objects, we
do not want to lose all sight of the underlying geometry. By analogy with the two- and
three-dimensional cases, we still consider the quantity :

JO1 =12 4 02 =32 + -+ O - 50)?

as representing the distance between the points with coordinates (x1, X2, ..., Xn) and;
(¥1, Y25+ -, ¥n). Also, we call the (n — 1)-dimensional set of points in R” that satisfy :
the equation x, = 0 a hyperplane, by analogy with the plane z = 0 in R?. !

Descrihing Sets in the Plane, 3-Space, and #-Space

‘We conclude this section by collecting some definitions of terms used to describe sets.
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Figure 10.10 The closed disk §

consisting of points (x, y) € R? that
satisfy x2 + y? < 1. Note the shaded

neighbourhoods of the boundary
point and the interior point.
bdry(S) is the circle x2 + 3% = 1
int(8) is the open disk x% + y2 < 1
ext(S) is the open set x2 4 y? > 1
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of points in R” for n > 2. These terms belong to the branch of mathematics called
topology, and they generalize the notions of open and closed intervals and endpoints
used to describe sets on the real line R. We state the definitions for R”, but we are
most interested in the cases wheren = 2 orn = 3.

A neighbourhood of a point P in R” is a set of the form
B,(P) = {Q e R" : distance from Q to P < r}

for some r > 0.

Forn = 1,if p € R, then B, (p) is the open interval (p — #, p ++ r) centred at p.
Forn = 2, B,(P) is the open disk of radius r centred at point P.

For n = 3, B-(P) is the open ball of radius r centred at point P.

A set S is open in R" if every point of S has a neighbourhood contained in S.
Every neighbourhood is itself an open set. Other examples of open sets in R? include
the sets of points (x, y) such thatx > 0, or such that y > xZ, or even such that y # x2.
Typically, sets defined by strict inequalities (using > and <) are open, Examples in R®
include the sets of points (x, y, z) satisfying x + y+z > 2,or 1 < x < 3.

The whole space R" is an open set in itself. For technical reasons, the empty set
(containing no points) is also considered to be open. (No point in the empty set fails to
have a neighbourhood contained in the empty set.)

The complement, S¢, of a set S in R” is the set of all points in R” that do not
belong to §. For example, the complement of the set of points (x, y) in R? such that
x > O1is the set of points for which x < 0. A set is said to be closed if its complement
is open. Typically, sets defined by nonstrict inequalities (using > and <) are closed.
Closed intervals are closed sets in R. Since the whole space and the empty set are both
open in R” and are complements of each other, they are also both closed. They are the
only sets that are both open and closed.

A point P is called a boundary point of a set § if every neighbourhood of P
contains both points in § and points in §¢. The boundary, bdry(S), of a set S is the set
of all boundary points of S. For example, the boundary of the closed disk x2 + y% < 1
in R is the circle x2 4+ y2 = 1. A closed set contains all its boundary points. An open
set contains none of its boundary points.

A point P is an interior point of a set S if it belongs to S but not to the boundary
of §. P is an exterior point of § if it belongs to the complement of S but not to
the boundary of S. The interior, int(S), and exterior, ext(S$), of § consist of all the
interior points and exterior points of S, respectively. Both int(S) and ext(S) are open
sets. If § is open, then int(§) = §. If § is closed, then ext(S) = §°. See Figure 10.10.

Find the distance between the pairs of points in Exercises 1-4. 9. Find the area of the triangle with vertices (1, 1,0), (1,0, 1),
and (0, 1, 1).
1. (0,0,0)end 2,~-1,-2} 2. (-1, -1, —Dand (L1, 1) 10. What is the distance from the origin to the point (1, 1, ..., 1)
in R*?

3. (1,1,0) and (0, 2, —-2)

(3, 6, 4) has a right angle.

7. Find the angle A in the triangle with vertices
e el T Bl =B & = £ 10,

4. (3,8, —1)and (-2, 3, —6)

5. What is the shortest distance from the point (x, ¥, z) to
(a) the xy-plane? (b) the x-axis?

6. Show that the triangle with vertices (1, 2, 3), (4, 0, 5), and

11. What is the distance from the point (1, 1, ..., 1) in n-space
to the closest point on the xj-axis?

In Exercises 12-23, describe (and sketch if possible) the set of
points in R? that satisfy the given equation or inequality.

12, 5= T8 e <
14, z=x 15. x+y=1

8. Show that the triangle with vertices (1,2, 3), (1, 3, 4), and

(0, 3, 3) is equilateral.

16. x* +y2+72=4
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17 =12+ 3+ 22 +(z —3)2 = 4

18. x2 +y2 4+ 2 =122 19. 2+ <4

20, x2 472 =4 21, z=y2

22, 7> P+ y? 23, x+2y+32=6

In Exercises 24-32, describe (and sketch if possible) the set of

points in R? that satisfy the given pair of equations or inequalities.

x=1 x=1
24.{y=2 2. { -!
26, |2+ 422 =4 x +y +z =4
“lz= x4y 422 =4x
28, [x2+y2+z2=4 [ 24y =1
2t=1 z=1x
y=x x24+y2<i1
30, [zsy 31.[22

¥ 2 g8

32 {x +y +z8 =1
Vit+y? <z

In Exercises 33-36, specify the boundary and the interior of the
plane sets S whose points (x, y) satisfy the given conditions. Ig Ky
open, closed, or neither?
33.0<x?4+y2 <1 M. x>0, y<0
35. x+y=1 36. (x| +1yl <1
In Exercises 3740, specify the boundary and the interior of the
sets § in 3-space whose points (x, y, z) satisfy the given
conditions. Is § open, closed, or neither?
38. x>0, z2<2

I 1<x?+y2+22<4 y>1,

39 -2 +(-27=0 40. x4y’ <1, y+z>2

Vectors

A veetor is a quantity that involves both magnitude (size or length) and direction,

For instance, the velocity of a moving object involves its speed and direction of motion,
50 is a vector. Such quantities are represented geometrically by arrows (directed line
se ments) and are often actually identified with these arrows. For instance, the vector
B is an arrow with tail at the point A and head at the point B. In print, such a vector
v is usually denoted by a single letter in boldface type,

4 V=fﬁ.

Figure 1011 The vector v = A%

(See Figure 10.11.) In handwriting, an arrow over a letter (v
denote a vector. The magnitude of the vector v is the length of the arrow and is denoted

Iv|or |AB].

= ﬁ) can be used to

While vectors have magnitude and direction, they do not generally have position;
that is, they are not regarded as being in a particular place. Two vectors, u and v, are
considered equal if they have the same length and the same direction, even if their
representative arrows do not coincide. The arrows must be parallel, have the same

X length, and point in the same direction. In Figure 10.12, for example, if ABYX isa

Figure 10.12 AR = XV

parallelogram, then E =

XY.

For the moment, we consider plane vectors, that is, vectors whose representative
arrows lic in a plane. If we introduce a Cartesian coordinate system into the plane, we

b

p——a:

A=(a )

X=(p—a,q—-b)

0 x

Figure 10.13  Components of a vector

can talk about the x and y components of any vector. If A =
as shown in Figure 10.13, then the x and y components of A P are, respectively, p — 4
and g — b. Note that if O is the origin and X is the point (p — a, g — b), then

IAP| = /(p — a)* + (g — b)2 = |OX|

—b
slope of AP = f:__ = slope of OX.
- a

(a,b)and P = (p, q),

Hence AP = OX. In general, two vectors are equal if and only if they have the same
x components and y components.

There are two important algebraic operations defined for vectors: addition and
scalar multiplication.

b
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