74th MidWest PDE Meeting

Network Formation in Amphiphilic Polymer Materials

Oct 18-19, 2014

Keith Promislow

People

Numerics

Analysis

Shibin Dai

Noa Kraitzman

Andrew Christlieb

Zhengfu Xu

Qiliang Wu

Greg Hayrapetyan

Jaylan Jones

Brian Wetton

Role of Solvent in Cast-Driven Morphology

Mix two miscible solvents (DMF and THF) with an amphiphilic diblock co-polymer (PEO-poly vinyl pyridine) one of whose components is soluble only in DMF. Evaporating off the THF changes the "goodness" of the solvent. Then immerse in water.

K.-V. Peinemann, V. Abetz, P. F. Simon, Nature Materials (2007)

Ionomer Membranes: Selective charge transport

Ionomer Membranes: Incorporation of Solvation Energy

Ionomer Membranes: Incorporation of Solvation Energy

Diat 2004 Macro. TEM of Cs⁺-Nafion

Ionomer Membranes: Incorporation of Solvation Energy

TEM of Cu⁺²-Nafion

Salt Molarity and Solvation

Ion Size and Ion Packing

Ionic sizes vary significantly, and at high molarity, packing of ions depends significantly on solvent type, and relative sizes of counter ions.

Formulation of Solvation Energy

K. Mathew, R. Hennig et al, J. Chem. Phys.

And reussi et al take the dielectic, $\varepsilon = \varepsilon(n_{\text{solute}})$, to be a function of the solute electronic density, with electrostatic energy

$$E^{
m el} = \int arepsilon (n_{
m solute}) |
abla \phi|^2 \, dx,$$

and develop a free energy by adding "quantum surface" and "quantum volume"

$$\Delta G^{
m sol} = \Delta G^{
m el} + \eta_1 S + \eta_2 V.$$

Andreussi, Dabo, Marzari, J. Chem. Phys. 136 (2012)

Direct Quote

"As for the remaining contributions to the solvation free energy, we have decided to treat them in a simplified way, their explicit modeling being the subject of future developments. In particular, similar to other models of solvation, the thermal motion contribution has been neglected, *while we express the sum of dispersion and repulsion free energies as a term linearly proportional to the quantum surface and the quantum volume of the molecular cavity.*"

Andreussi, Dabo, Marzari, JCP 136 (2012).

Szostak: Primitive cell membranes

PNAS 2011/2012: primitive membranes had no phospholipids. (top) Mix 10% phospholipid membrane with pure oleate vesicles. (bottom) Radical mediated/photo-induced oxidation of thiols to disulfides induces pearling.

Cahn-Hilliard Expansion

Fix $\Omega \subset \mathbb{R}^3$, let $u \in H^1(\Omega)$ denote the volume fraction of one component of a binary mixture. Cahn and Hilliard (1958) expanded the free energy

$$egin{split} \mathcal{E}(u) &= \int_\Omega f(u,\epsilon^2|
abla u|^2,\epsilon^2\Delta u)\,dx, \ &= \int_\Omega f(u,0,0) + \epsilon^2A(u)|
abla u|^2 + \epsilon^2B(u)\Delta u\,dx. \end{split}$$

Integrating by parts on the B(u) term yields the Cahn-Hilliard free energy

$${\mathcal E}(u) = \int_\Omega rac{\epsilon^2}{2} |
abla u|^2 + W(u)\,dx.$$

For amphiphilic mixtures: Tuebner & Strey (1987) Gompper & Schick (1990) added higher derivatives

$$\mathcal{F}(u):=\int_\Omega f(u,0,0)+\epsilon^2 A(u)|
abla u|^2+\epsilon^2 B(u)\Delta u+\widetilde{C(u)}\,(\epsilon^2\Delta u)^2\,dx.$$

For the primitive \overline{A} of A, so that $\nabla \overline{A}(u) = A(u) \nabla u$ and integrate by parts

$$\mathcal{F}(u):=\int_\Omega f(u,0,0)+(B(u)-\overline{A}(u))\epsilon^2\Delta u+C(u)(\epsilon^2\Delta u)^2\,dx,$$

Complete the square

$$\mathcal{F}(u):=\int_{\Omega}C(u)\Big(\epsilon^2\Delta u-ec{\overline{A-B}\over 2C}\Big)^2+ec{f(u)-rac{(\overline{A}-B)^2}{C(u)}}\,dx.$$

When $P \ll 1$, then the energy is very degenerate, very special.

$$\mathcal{F}(u) = \int_\Omega rac{1}{2} \left(\epsilon^2 \Delta u - W'(u)
ight)^2 + \delta P(u) \, dx.$$

The case $\delta = 0$ was proposed as a target for Γ -convergence study by De Giorgi, it transforms all critical points of the Cahn-Hilliard free energy into global minima.

Functionalized Cahn-Hilliard Energy

An unfolding of De Giorgi's energy:

$$\mathcal{F}_{\rm CH}(u) = \int_{\Omega} \frac{1}{2} \left(\epsilon^2 \Delta u - W'(u; \tau) \right)^2 - \left[\epsilon^p \left(\frac{\epsilon^2 \eta_1}{2} |\nabla u|^2 + \widetilde{\Pi(u)} \right) \right] dx.$$

$$p = 1 \quad \text{Strong Functionalization}$$

$$p = 2 \quad \text{Weak Functionalization}$$

The parameters: η_1 strength of hydrophilic portion of amphiphilic component. Pressure jump $\Pi(u)$ between phases – parameterize by η_2 . Interfacial structure parameterized by "tilt" parameter τ .

Bi-Layers: Co-Dimension One

Near a hypersurface $\Gamma \subset \mathbb{R}^n$, the Laplacian becomes

 $\epsilon^2 \Delta = \partial_z^2 + \epsilon H \partial_z + \epsilon^2 \Delta_s$

where H is the mean curvature of the interface, and Δ_s is a surface diffusion.

The variational derivative can be made small

$$\epsilon^2 \Delta \phi_b - W'(\phi_b) = O(\epsilon),$$

if co-dim 1 inner structure, ϕ_b , solves

$$\partial_z^2 \phi_b - W'(\phi_b) = 0.$$

The residual of the squared-variational term is

$$egin{aligned} &\left(\epsilon^2\Delta\phi_b-W'(\phi_b)
ight)^2=\ &\left(\left[\partial_z^2\phi_b-W'(\phi_b)
ight]+\epsilon H\phi_b'+\ldots
ight)^2,\ &=\epsilon^2\left(\phi_b(z)'
ight)^2H(s)^2. \end{aligned}$$

Single Layer \neq Bilayer

Bilayers can open holes, modulate their width, and naturally form end-cap defects.

Pores: Co-Dimension Two

Fix $\Gamma \subset \mathbb{R}^3$, a cylindrical geometry leads to (R, θ, s) variables and the decomposition

$$\epsilon^2 \Delta = \Delta_R - egin{pmatrix} \kappa_1 \ \kappa_2 \end{pmatrix} m{\cdot} egin{pmatrix} \partial_{m{z}_1} \ \partial_{m{z}_2} \end{pmatrix} + \epsilon^2 D_s^2.$$

With angular symmetry, the co-dim 2 inner structure satisfies

$$\partial_R^2 \phi_2 + rac{1}{R} \partial_R \phi_p = W'(\phi_p),$$

where (R, θ) are polar versions of (z_1, z_2) . The squared-variational remainder is

$$ig(\epsilon^2\Delta\phi_p-W'(\phi_p)ig)^2=\epsilon^2\left(\phi'_p
ight)^2|\kappa|^2.$$

Loverde, Macromolecules 2010

Morphological Competition

$\mathcal{F}_{ ext{CH}}($	$(u) = \int \frac{1}{2}$	$rac{1}{2} \left(\epsilon^2 \Delta u - W'(u) ight)^2 - \epsilon^p \left(rac{\eta_1}{2} ight)^2$	$\epsilon^2 abla u ^2 + \eta_2 W(u) igg) \; dx.$
		W_{b} 0 $Bilayer$ 0 0 0 0 0 0 0 0 0 0	Bulk-like Water $\alpha = 3$ Waters of Solvation 5 10 15 R
	Co-dim 1	$\partial_z^2 \phi_b = W'(\phi_b)$	$\int_\Omega W(\phi_b)dx>0$
	Co-dim 2	$rac{1}{R}\partial_R(R\partial_R)\phi_p=W'(\phi_p)$	$\int_{\Omega} W(\phi_p) dx = 0$
	Co-dim 3	$rac{1}{R^2}\partial_R(R^2\partial_R)\phi_m=W'(\phi_m)$	$\int_{\Omega} W(\phi_m)dx < 0.$

Impact of Volume Term

$$\mathcal{F}_{ ext{CH}}(u) = \int \limits_{\Omega} rac{1}{2} ig(\epsilon^2 \Delta u - W'(u) ig)^2 - \epsilon^p \left(rac{\eta_1}{2} \epsilon^2 |
abla u|^2 + \eta_2 W(u)
ight) \, dx.$$

For pores in Nafion, the parameter η_2 could express the counter-ion's (protons) preference for bulk-like water verses waters of solvation.

Key Prediction: A prefer-	$M_n^{ m core}$ (g/mol)	2500 ± 40	5850 ± 204		
ence for bulk-like water se-	bilayer	8.7 ± 1.2	15.8 ± 2.8		
lects pores over bilayers and	cylinder	14.3 ± 1.6	25.4 ± 3.3		
selects micelles over pores.	sphere (nm)	18.4 ± 2.6	38.8 ± 10.2		
Lain and Rates Macromolecules (2004)					

Jain and Bates, Macromolecules (2004)

Small Sample of Parameter Space $\tau = -0.4, \epsilon = 0.03$

Identical, randomly ± 1 initial data. Co-dimension = choice of inner structure.

Experimental Morphology

Blends of amphiphilic diblock copolymers with fixed lengths of hydrophilic block and differing lengths of hydrophobic chain. The diblocks with the longest hydrophobic chains from coexisting micelle/worm structures, while decreasing hydrophobic chain length leads to worm only, and coexisting worm/bilayer (hollow) vesicles. L. Ratcliffe, A. Ryan, and S. Armes, *Macromolecules* **46** (2013).

Bifurcation Diagram

Bifurcation diagram for amphiphilic copolymers as function of weight percent of copolymer (vertical log axis) and water volume fraction within water-dioxane solvent blend (horizontal axis). Increasing water fraction drives bifurcations from micelle (sphere) to pore (rod) to bilayer (vesicle), shaded regions indicate pearling and co-existence, from D. Dicher and A. Eisenberg, *Science* **297** (2002).

Merging of Dumb-bell Structures into Pore Network

(a) Random initial data coarsens into micelles,(b) over-sized micelles are unstable and grow into dumb-bells,

(c-d) dumb-bells elongate, merge and form a pore network.

Spectra of Functionalized Bilayers

For strong functionalization the bilayer dressing of hypersurface Γ :

$$u_b(x) = \phi_b(z) + \epsilon(\gamma_1 + \phi_{1, ext{loc}}(z)) + O(\epsilon^2)$$

Stability of bilayers is determined by the eigenvalues of the second variation

$$egin{aligned} \mathbb{L} := & rac{\delta^2 \mathcal{F}}{\delta u^2}(u_b), \ &= & rac{(\partial_z^2 - W''(\phi_b) + \epsilon^2 \Delta_s)^2}{\delta u^2} + O(\epsilon), \end{aligned}$$

whose eigenfunctions separate to $O(\epsilon)$,

$$\Psi_{j,n}=\psi_j(z)\Theta_n(s)+O(\epsilon).$$

Instability can come from pearling (groundstate ψ_0 with $\lambda_0 > 0$) or meander eigenvalues ($\psi_1 = \phi'_b$ with $\lambda_1 = 0$).

 $\Lambda_{0,n} = (\lambda_0 - \epsilon^2 \beta_n)^2 + \epsilon [\lambda_0 (\eta_1 - \eta_2) - \gamma_1 S] + O(\epsilon^2).$ The sign of $S = \int_{\mathbb{R}} W'''(\phi_b) \psi_0^2(z) dz$ determines if pearling absorbs or liberates lipids, connecting background level γ_1 to the pearling bifurcation.

Functionalization = Swift-Hohenbergization

Recipe for Functionalized Spectra in co-dim 1:Hayrapetyan & P., ZAMP (2014) Unstable 1D eigenvalues generate "Swift-Hohenberg" spectrum in the FCH.

$$1D - \text{inner} \qquad \mathbb{R}^{n} \qquad \text{Functionalized}$$

$$L_{0} = \partial_{z}^{2} - W''(\phi_{b}) \mapsto L = L_{0} + \epsilon^{2} \Delta_{s} \qquad \mapsto \qquad \mathbb{L} = -L^{2} + O(\epsilon)$$

$$\overset{\sigma(L_{0})}{\underset{n}{\overset{\lambda_{1}}{\underset{\lambda_{0}}{\overset{\alpha(A_{1})}{\underset{\lambda_{0}}{\overset{\lambda_{0}}{\underset{\alpha(A_{1})}{\overset{\beta(A_{0})}{\underset{\lambda_{0}}{\underset{\alpha(A_{1})}{\overset{\beta(A_{0})}{\underset{\alpha(A_{1})}{\underset{\alpha(A_{0})}{\underset{\alpha(A_{1})}{\underset{\alpha(A_{0})}{\underset{\alpha(A_{1})}{\underset{\alpha(A_{0})}{\underset{\alpha(A_{1})}{\underset$$

Pearling Spectra for Strongly Functionalized Bilayers

Theorem: (Kraitzman, K.P.) Fix $\gamma_2 \in \mathbb{R}$ and $\Gamma \subset \mathbb{R}^d$ a smooth, closed, co-dim one interface which is far from self-intersection, and let

$$u_b(x) = \phi_b(z) + \epsilon(\gamma_1 + \phi_{1, ext{loc}}(z)) + O(\epsilon^2)$$

be the associated quasi-steady bilayer interface with far-field values

$$\lim_{z
ightarrow\pm\infty}u_b(z,s)=b_-+\epsilon\gamma_1+O(\epsilon^2).$$

Then the only unstable eigenvalues associated to \mathbb{L} arise from pearling or meander eigenvalues. Moreover there exists $N \sim \epsilon^{-\nu}$ such that all $O(\epsilon)$ pearling eigenvalues are approximated by the eigenvalues of the matrix $\mathbf{M} \in \mathbb{R}^{N \times N}$

$$egin{aligned} \mathrm{M}_{ij} \, = \, \delta_{ij} \Big[((\lambda_0 - \epsilon^2 eta_n)^2 + \epsilon [oldsymbol{\lambda}_0 (oldsymbol{\eta}_1 - oldsymbol{\eta}_2) - oldsymbol{\gamma}_1 oldsymbol{S}] ig] \ - 2 \epsilon^2 \langle oldsymbol{H}^2, \Theta_i \Theta_j
angle_\Gamma \| \psi_0' \|_2^2 + O(\epsilon^3). \end{aligned}$$

In particular stability to pearling depends upon the far-field value, γ_1 , the value of $\eta_1 - \eta_2$, and the mean curvature H = H(s) of Γ .

If $H \in H^4(\Gamma)$ then curvature effects perturb diagonal terms, if $H \notin H^4(\Gamma)$, then curvature effects are potentially dominant – implying loss of Canham-Helfrich.

Numerical Validation: Initial data bilayer is too wide.

Images for $\epsilon = 0.1$, $\eta_1 = 1$, and $\eta_2 = 2$ at times t = 0, t = 857, and t = 3000. No pearling, convergence to equilibrium on the $O(\epsilon^{-3})$ time-scale.

(Szostak) $\epsilon = 0.1, \eta_1 = \eta_2 = 2$ at times t = 0, t = 114, and t = 804.

Rigorous Existence of Pearled Bilayers (with Q. Wu)

Construct small-amplitude, pearled solutions of the strong FCH equilibrium in \mathbb{R}^2 $(\partial_z^2 - W''(u) + \epsilon^2 \partial_s^2 + \epsilon \eta_1) (\partial_z^2 u - W'(u) + \epsilon^2 \partial_s^2 u) + \epsilon \eta_2 W'(u) = \epsilon \gamma.$ The spatial dynamics approach writes this as a first-order four-dimensional system $\partial_s U = \mathbb{L}U + \mathbb{F}(U),$

and projects onto the eight-dimensional center space (4-pearling/4-meander) of \mathbb{L} .

The reversibility and structure of the FCH lead to the 1:1 resonant normal form. Truncated to cubic order in the pearling subspace yields a 4-dim ODE

$$egin{aligned} \dot{C}_1 &= C_2 + iC_1 \left[\omega_0 + lpha_7 |C_1|^2 + ilpha_8 \kappa
ight], \ \dot{C}_2 &= C_1 \left[-rac{\mu_5}{2\lambda_0} \epsilon + lpha_1 |C_1|^2 + ilpha_2 \kappa
ight] + iC_2 \left[|C_1|^2 + ilpha_8 \kappa
ight], \end{aligned}$$

where the conserved quantity $\kappa = C_1 \overline{C}_2 - \overline{C}_1 C_2$. The system uncouples to a 2nd order scalar system for the real r_1 under the transformation

$$C_1(s)=\sqrt{\epsilon}r_1e^{i(\omega s+ heta)},
onumber \\ C_2(s)=\epsilon r_2e^{i(\omega s+ heta)}.$$

Degeneracy of Circular, Pearled Bilayers

Assume $\Omega \subset \mathbb{R}^2$. Fix $\eta_1, \eta_2 \in \mathbb{R}$ and $R_- > 0$. Assume that W is a nondegenerate double well potential and that

$$lpha_0=-\gamma_1S+\lambda_0(\eta_1-\eta_2)>0.$$

Then, subject to a non-degeneracy condition then there exist positive constants $\varepsilon_0 > 0$, $\kappa_0 > 0$, and $n_- > 0$ such that, for all $\varepsilon \in (0, \varepsilon_0]$ and each

$$\mathrm{n}\in\mathbb{Z}^+\cap[n_-/arepsilon,+\infty),$$

the stationary FCH admits a smooth one-parameter family of circular pearled solutions, parameterized by $\kappa \in [-\kappa_0, \kappa_0]$.

$$u_{ ext{p,n}}(heta,r;\sqrt{|\kappa|}) = u_h(r) + 2rac{\sqrt{arepsilon|\kappa|}}{\sqrt[4]{lpha_0}}\cos(ext{n} heta)\psi_0(r) + \mathcal{O}\left(arepsilon(\sqrt{arepsilon}+\sqrt{|\kappa|})
ight),$$

where the radius of the circular bilayer

$$R_{0,\mathrm{n}} = \mathrm{n}arepsilon \left[1 - \sqrt{lpha_0 arepsilon} + \mathcal{O}\left(arepsilon(1 + \sqrt{|\kappa|})
ight)
ight].$$

depends only weakly upon κ . The far-field limit of the extended pearled solution

$$\lim_{r o\infty} u_{\mathrm{p,n}}(heta,r) = \lim_{r o\infty} u_h(r) = u_-(arepsilon),$$

is independent of n. $[\mathcal{O}(\epsilon^2)$ pert to background $\mathcal{O}(\sqrt{\epsilon})$ pert to amp.]

Bifurcation Analysis – Szostak

For generic bilayers (arb Γ_b and S > 0) pearling occurs if

$$\gamma_1 < A_p(\tau)(\eta_1 - \eta_2),$$

while spherical bilayers are unstable to meander instability ("fingering") if

$$\gamma_1 > A_m(au)(\eta_1+\eta_2).$$

Increasing γ_1 (adding free lipids to background) induces fingering

Increasing η_1 (photo-induced oxidation of thiols) leads to pearling

Geometric Evolution of Bilayers: Meander CM reduction

$$u_t = -\Delta rac{\delta \mathcal{F}}{\delta u},$$

Δμ=0

Δμ=0

At $t_1 = \epsilon t$, for a bilayer Γ we obtain the Mullins-Sekerka flow for γ_1 :

$$egin{array}{lll} \Delta \gamma_1 &= 0, & ext{in } \Omega ackslash \Gamma, \ \gamma_1 &= c(t_1) + oldsymbol{H} \phi_b^\prime(0), ext{ on } \Gamma, \ \left[egin{array}{lll} \partial_n \gamma_1
ight] &= 0 & ext{ on } \Gamma, \end{array}$$

with normal velocity

$$V_b = \partial_n \gamma_1^- - (\gamma_1 - \gamma_p(\tau))H.$$

However, $\phi'_b(0) = 0$ and the back-
ground Lipid level γ_1 is spatially con-
stant. Combined with conservation of
mass we obtain the coupled system

Combined with conservation of
we obtain the coupled system
$$V_b = (\gamma_1 - \gamma_b(\tau))H,$$

$$\gamma_1'(t_1)=-(\gamma_1(t_1)-\gamma_b)\int_{\Gamma}H^2(s)\,ds.$$

The coupled system *prevents* singularity by driving $\gamma_1 \rightarrow \gamma_b$.

For pores we derive the normal velocity \vec{V}_p of its co-dimension two curve Γ_p ,

$$ec{\mathrm{V}}_p = (\gamma_1 - \gamma_p(au))ec{\kappa},$$

For co-existing bilayers and pores, the common value of the far-field lipid density, γ , couples the evolution of the two morphologies:

 $egin{aligned} V_n &= (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p(au)) H \ ec{
end{V}}_p &= (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p(au)) ec{\kappa} \ rac{d \gamma_1}{dt_1} &= -(oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p) \int_{\Gamma_b} H^2 dS + \ - oldsymbol{\epsilon} (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p) \int_{\Gamma_p} |ec{\kappa}|^2 \, ds. \end{aligned}$

$$egin{aligned} V_n &= (oldsymbol{\gamma_1} - oldsymbol{\gamma_p}(au)) H \ ec{V}_p &= (oldsymbol{\gamma_1} - oldsymbol{\gamma_p}(au)) ec{\kappa} \ rac{d \gamma_1}{dt_1} &= -(oldsymbol{\gamma_1} - oldsymbol{\gamma_p}) \int_{\Gamma_b} H^2 dS + \ &- \epsilon (oldsymbol{\gamma_1} - oldsymbol{\gamma_p}) \int_{\Gamma_p} |ec{\kappa}|^2 \, ds. \end{aligned}$$

$$egin{aligned} V_n &= (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p(au)) H \ ec{V}_p &= (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p(au)) ec{\kappa} \ rac{d \gamma_1}{dt_1} &= -(oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p) \int_{\Gamma_b} H^2 dS + \ &- \epsilon(oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p) \int_{\Gamma_p} |ec{\kappa}|^2 \, ds \end{aligned}$$

$$egin{aligned} V_n &= (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p(au)) H \ ec{
eventsymbol{V}}_p &= (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p(au)) ec{\kappa} \ rac{d \gamma_1}{dt_1} &= -(oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p) \int_{\Gamma_b} H^2 dS + \ - oldsymbol{\epsilon} (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p) \int_{\Gamma_p} |ec{\kappa}|^2 \, ds. \end{aligned}$$

$$egin{aligned} V_n &= (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p(au)) H \ ec{V}_p &= (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p(au)) ec{\kappa} \ rac{d \gamma_1}{dt_1} &= -(oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p) \int_{\Gamma_b} H^2 dS + \ - oldsymbol{\epsilon} (oldsymbol{\gamma}_1 - oldsymbol{\gamma}_p) \int_{\Gamma_p} |ec{\kappa}|^2 \, ds. \end{aligned}$$

Competition and Pearling in Bilayers

Competition for the amphiphilic phase between spherical bilayer (beach ball) and circular solid pore (hula hoop) as a function of the well-tilt. Well with small tilt prefers bilayers, larger tilt prefers pores and drives bilayers to pearl.

Punctured Vesicle - ETD

Time evolution of a punctured Bilayer under ETD. Under convex splitting vesicle failed to close.

Meander induces Endocytosis

Cross sections of a punctured vesicle with too wide initial profile. Meandering induces endocytosis.

Intrinsic Curvature

The Canham-Helfrich sharp interface limit characterizes interfacial energy in terms of curvatures

$$E_{ ext{Can-Hel}}(\Gamma) = \int\limits_{\Gamma} a_0 (H-a_1)^2 + a_2 + a_3 K \, ds.$$

The term a_1 denotes the intrinsic curvature of the interface – and requires asymmetry.

MCFCH: Pearling and Intrinsic Curvature in Bilayers The multicomponent FCH in densities $U = (U_1, \ldots, U_{N-1})$ takes form $\mathcal{F}_{ ext{CH}}(U) = \int_{\Omega} rac{1}{2} \left| \epsilon^2 D \Delta U -
abla_U W(U)
ight|^2 - \epsilon^p \left(\eta_1 rac{\epsilon^2}{2} |
abla U|^2 + \eta_2 W(U)
ight) \, dx,$ where the well $W : \mathbb{R}^{N-1} \mapsto \mathbb{R}$. $\partial \mathcal{P}$ Bilayers solve the leading order equation $U_{zz} = D^{-1}
abla_U W(U),$ which for a piece-wise smooth W can be understood in a frictionless billiard $\partial \mathcal{N}$ limit. It is easy to construct asymmetric $W(U) = W_0$ bilayers in MC-FCH W(U)

Pearling in amphiphilic di-block blends

Changes in PS-PB and PS-PEO volume fractions (A) 80:20, (B) 70:30, (C) 60:40, drive pearling bifurcations in the internally separated phase. Hayward et al *Macromolecules* (2008)

Instrinsic Curvature = Melnikov parameter

More generic MC-FCH has non-conservative term – $\nabla_U \times P(U) \neq 0$

$$\mathcal{F}_{ ext{CH}}(U) = \int_{\Omega} rac{1}{2} \left| \epsilon^2 D \Delta U -
abla_U W(U) - \epsilon oldsymbol{P}(U)
ight|^2 - \epsilon^p G(U,
abla U) \, dx,$$

The persistence of asymmetric bilayer solution requires a Melnikov parameter (a_1)

$$V_{zz} + \epsilon oldsymbol{a}_1 V_z = D^{-1} \left(
abla_U W(V) + \epsilon oldsymbol{P}(V)
ight),$$

where (asymmetry required!)

$$a_1:=\int_{\mathbb{R}} D^{-1}P(V)\cdot V_z\,dz
eq 0.$$

The co-dim one expansion of the square term takes the form

 $\epsilon^2 D \Delta U - \nabla_U W(U) + \epsilon P(U) = D(U_{zz} + \epsilon H(s)U_z) - \nabla_U W(U) - \epsilon P(U),$ when evaluated at the homoclinic V has residual

$$\epsilon^2 D\Delta V -
abla_U W(V) + \epsilon P(V)|^2 = \epsilon^2 |DV_z|^2 |H(s) - a_1|^2 + O(\epsilon^3).$$

Integrate out the through-plane direction, remainder is a Canham-Helfrich energy

$$E(\Gamma) = \epsilon \int\limits_{\Gamma} \left[\epsilon^2 \| DV_z \|_{L^2}^2 |H(s) - a_1|^2 - \epsilon^p \int_{\mathbb{R}} G(V,
abla V) dz
ight] \, ds$$

Acknowledgments

NSF-DMS 0934568 (Solar) NSF-DMS 0929189 (IGMS) NSF-DMS 1109127 NSF-DMS 1409940

