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Role of Solvent in Cast-Driven Morphology

Mix two miscible solvents (DMF and THF) with an amphiphilic di-
block co-polymer (PEO-poly vinyl pyridine) one of whose compo-
nents is soluble only in DMEF. Evaporating off the THF changes the
”goodness” of the solvent. Then immerse in water.

K.-V. Peinemann, V. Abetz, P. F. Simon, Nature Materials (2007)



Ionomer Membranes: Selective charge transport
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Ionomer Membranes: Incorporation of Solvation Energy
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Ionomer Membranes: Incorporation of Solvation Energy

NAFION
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Diat 2004 Macro. TEM of Cs*-Nafion



Ionomer Membranes: Incorporation of Solvation Energy

NAFION
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Salt Molarity and Solvation

1 nm between ions
Fitting 1-2 water molecules

Field due to neighboring ions not negligible -
Water screening important Ionic field dominant
Water screening negligible



Ion Size and Ion Packing
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Ionic sizes vary significantly, and at high molarity, packing of ions depends signif-
icantly on solvent type, and relative sizes of counter 1ons.



Formulation of Solvation Energy

Solvent |

0.5 0.0

K. Mathew, R. Hennigc et al, J. Chem. Phys.

Andreussi et al take the dielectic, € = &(7solute), to be a function of the solute
electronic density, with electrostatic energy

Eel — /E:(fn/solute)lv¢|2 diB,

and develop a free energy by adding “quantum surface” and “quantum volume”
AG® = AG® + S + n. V.

Andreussi, Dabo, Marzari, J. Chem. Phys. 136 (2012)
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Direct Quote

“As for the remaining contributions to the solvation free energy, we have decided
to treat them 1n a simplified way, their explicit modeling being the subject of future
developments. In particular, similar to other models of solvation, the thermal mo-
tion contribution has been neglected, while we express the sum of dispersion and

repulsion free energies as a term linearly proportional to the quantum surface and
the quantum volume of the molecular cavity.”

Andreussi, Dabo, Marzari, JCP 136 (2012).

11



Szostak: Primitive cell membranes
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PNAS 2011/2012:  primitive
membranes had no phospho-
lipids. (top) Mix 10% phos-
pholipid membrane with pure
oleate vesicles. (bottom) Radi-
cal mediated/photo-induced ox-
1dation of thiols to disulfides in-
duces pearling.



Cahn-Hilliard Expansion

Fix Q C R?, letu € H'() denote the volume fraction of one component of a
binary mixture. Cahn and Hilliard (1958) expanded the free energy

£ (u) :/Qf(u,ez|Vu|2,ezAu) dz,

= / f(u,0,0) + €A(u)|Vu|* + €B(u)Au dzx.
Q
Integrating by parts on the B(u) term yields the Cahn-Hilliard free energy
2
€
E(u) = / E|Vu|2 + W (u) dz.
Q

For amphiphilic mixtures: Tuebner & Strey (1987) Gompper & Schick (1990)
added higher derivatives

>0

N
F(u) := / f(u,0,0) + eA(u)|Vul®* + €B(u)Au + C(u) (e?Au)’ dz.
Q
For the primitive A of A, so that VA(u) = A(u)Vwu and integrate by parts

F(u) := /Qf(u, 0,0) + (B(u) — A(u))e’Au + C(u)(e?Au)? dzx,
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Complete the square

F(u) 1= /Q C(u) (Au —

W' (u)

A—-B

2C

)2+

P(u)
_ (A-B)
£ =

When P < 1, then the energy is very degenerate, very special.

F(u) = /Q% (e?Au — W’(u))2 + 6P(u) dx.

The case 6 = 0 was proposed as a target for I'-convergence
study by De Giorgi, it transforms all critical points of the
Cahn-Hilliard free energy into global minima.
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Functionalized Cahn-Hilliard Energy

An unfolding of De Giorgi’s energy:

1 2 n2W (u)
Fcu(u) = /5 (e2Au — W'(u; T))2 — ep(EZm|Vu|2 + H(u)) dx.

Q
p = 1 Strong Functionalization
p = 2 Weak Functionalization

The parameters: 777 strength of hydrophilic portion of amphiphilic
component. Pressure jump II(u) between phases — parameterize by
112. Interfacial structure parameterized by “tilt” parameter 7.

TN TN

No Tilt Slight Tilt Strong Tilt

AN
N/ Ny
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Bi-Layers: Co-Dimension One

Near a hypersurface I' C R", the Laplacian becomes
A = 83 + eHO., + €A,

where H is the mean curvature of the interface,
and A, 1s a surface diffusion.

The variational derivative can be made small
E2A ¢y, — W' (¢p) = O(e),
if co-dim 1 inner structure, @y, solves

02¢p — W' () = 0.

The residual of the squared-variational term is
(2A¢y, — W' ()" =

(020, — W'(¢w) + eH), + ...

= & (dn(2)")" H(s)".
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Single Layer # Bilayer

Bilayers can open holes, modulate their width, and naturally form end-cap defects.
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Pores: Co-Dimension Two

Fix I' C R?, a cylindrical geometry leads to
(R, 8, s) variables and the decomposition

2 A _ (k1) 0z, 2 12 ‘
a=n(3)-(3) +em (&

With angular symmetry, the co-dim 2 inner
structure satisfies

1
812%¢2 T EaR?bp — W/(Cbp)a

where (R, 0) are polar versions of (21, 22).
The squared-variational remainder is

(EA¢, — W) = & (4) Il

Loverde, Macromolecules 2010
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Morphological Competition

)2 — €P (%€2|V’U,|2 + 772W(U)> dzx.

1

Bulk-like Water

Co-dim 1

O, = W' ()

fQ W(¢b) dx > 0

Co-dim 2

=Or(ROR)p = W' ()

fﬂ W(¢p)dxr =0

Co-dim 3

=0R(R*OR) pm = W' (dm)

Jo W (¢m) dz < 0.
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Impact of Volume Term

1
[ 5 (@au=wiw) - e (LeIvul + mWw) da.

1

Bulk-like Water

Waters of
Solvation

R

For pores in Nafion, the parameter 12 could express the counter-ion’s (protons)
preference for bulk-like water verses waters of solvation.

Key Prediction:. A preter- Meor (g/mol) | 2500 =+ 40 | 5850 + 204
ence for bulk—hke. water se- bilayer 8.7+1.2 |15.8+ 2.8
lects pores over bilayers and cylinder 14.3+ 1.6 25.4 + 3.3
selects micelles over pores. sphere (nm) 18.4 + 2.6/38.8 + 10.2

Jain and Bates, Macromolecules (2004)
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Small Sample of Parameter Space 7 = —0.4, € = 0.03

d]-' (u) <0
dt CH\U) >~

Micelles - Pores Pore Network Bilayers
Co-dim2 & 3 Co-dim 2 Co-dim 1

Identical, randomly +1 initial data. | Co-dimension = choice of inner structure.
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Experimental Morphology

Blends of amphiphilic diblock copolymers with fixed lengths of hy-
drophilic block and differing lengths of hydrophobic chain. The
diblocks with the longest hydrophobic chains from coexisting mi-
celle/worm structures, while decreasing hydrophobic chain length
leads to worm only, and coexisting worm/bilayer (hollow) vesicles.
L. Ratcliffe, A. Ryan, and S. Armes, Macromolecules 46 (2013).
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Bifurcation Diagram

Vesicle

10 3
1 -
0.1 S

0 5 10 15 20 25 30 35 40 45
Bifurcation diagram for amphiphilic copolymers as function of weight percent of
copolymer (vertical log axis) and water volume fraction within water-dioxane sol-
vent blend (horizontal axis). Increasing water fraction drives bifurcations from

micelle (sphere) to pore (rod) to bilayer (vesicle), shaded regions indicate pearling
and co-existence, from D. Dicher and A. Eisenberg, Science 297 (2002).
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Merging of Dumb-bell Structures into Pore Network

(a) Random 1nitial data coarsens into micelles,
(b) over-sized micelles are unstable and grow
into dumb-bells,

(c-d) dumb-bells elongate, merge and form a
pore network.
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Spectra of Functionalized Bilayers

For strong functionalization the bilayer dressing of hypersurface I':
up() = dp(2) + €(1 + P10c(2)) + O(€?)

Stability of bilayers 1s determined by the
eigenvalues of the second variation

62.7-'
(ub)a

= (33 — W’"(¢y) + €A,)*+0(e),

whose eigenfunctions separate to O(€),

Wjn = ¥j(2)On(s) + O(e).

Instability can come from pearling (ground-
state by with A9 > 0) or meander eigenval-
ucs (1,01 = Qb;) with )\1 = 0)

Ao = (Mo — €8n)* + €[Ao(m — m2) — 7S] + O(€?).
The signof S = [, W' (¢s)9;(z) dz determines if pearling absorbs or liberates
lipids, connecting background level ~4 to the pearling bifurcation.

Ao

25



Functionalization = Swift-Hohenbergization

Recipe for Functionalized Spectra in co-dim 1:Hayrapetyan & P., ZAMP (2014)
Unstable 1D eigenvalues generate “Swift-Hohenberg” spectrum in the FCH.

1D — inner R"™ Functionalized

Lo=08—W"(¢p) = L=Lo+€A; +— L=—L*+0(e)

o(L,) l

--------

26



Pearling Spectra for Strongly Functionalized Bilayers

Theorem: (Kraitzman, K.P.) Fix v € Rand I' C R? a smooth, closed, co-dim
one interface which is far from self-intersection, and let

up(x) = Pp(2) + (71 + P1i10c(2)) + O(€Y)

be the associated quasi-steady bilayer interface with far-field values

lim wuy(z,s) = b_ + ey + O(€?).

z—100

Then the only unstable eigenvalues associated to I arise from pearling or mean-
der eigenvalues. Moreover there exists IN ~ €~ such that all O(e€) pearling
eigenvalues are approximated by the eigenvalues of the matrix M € RV X

M = 8ij | (Ao — €8n)* + €[Xo(n1 — 12) — 11 5]
—2€*(H*, ©,0;)r||yll; + O(€?).

In particular stability to pearling depends upon the far-field value, ~¢, the value
of 171 — 72, and the mean curvature H = H (s) of I'.

If H € H*(T") then curvature effects perturb diagonal terms, if H ¢ H*(T),
then curvature effects are potentially dominant — implying loss of Canham-Helfrich.
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Numerical Validation: Initial data bilayer 1s too wide.

R

Images fore = 0.1, 731 = 1, and 7o = 2 at times t = = 857, and
t = 3000. No pearling, convergence to equlhbnum on the O(e 3) time-scale.

[

(Szostak) e = 0.1, 7y = 1o = 2 attimest = 0,t = 114, and t = 804.

28



Rigorous Existence of Pearled Bilayers (with Q. Wu)

Construct small-amplitude, pearled solutions of the strong FCH equilibrium in |R?

(82 — W (u) 4+ €287 4+ emr) (0°u — W' (u) + €°0%u)+en. W' (u) = ev.

The spatial dynamics approach writes this as a first-order four-dimensional system
o,U =1LU 4+ F(U),

and projects onto the eight-dimensional center space (4-pearling/4-meander) of L.

The reversibility and structure of the FCH lead to the 1:1 resonant normal form.
Truncated to cubic order in the pearling subspace yields a 4-dim ODE
C, = C, +iC, (wo + ar|Ch|? + task]
. 5 : : :
C, = C; —KE + 0 |Ch]? + ik | 4+ 1C, [|C’1|2 + zagm} ,

0

where the conserved quantity x = C,C5 — C,C,5. The system uncouples to a
2nd order scalar system for the real r; under the transformation

Ci(s) = Ver et
C,(s) = eryet@sto),

29



Degeneracy of Circular, Pearled Bilayers

Assume 2 C R? Fix 73,172 € Rand R_ > 0. Assume that W is a non-
degenerate double well potential and that

og = —71S + Ao(m — 12) > 0.
Then, subject to a non-degeneracy condition then there exist positive constants
go > 0, kg > 0,and n_ > 0 such that, for all € € (0, g¢] and each
neZNn_/e, +o0),
the stationary FCH admits a smooth one-parameter family of circular pearled solu-
tions, parameterized by k € [—kKg, Ko].

D) = VElr]
(8 75V J]) = wn(r) + 2772 cos(uO)ho(r) + O (£(VE + VIwD))

0
where the radius of the circular bilayer

Ry, = ne [1 — v/ age + O (s(l—l— \/W))} :

depends only weakly upon k. The far-field limit of the extended pearled solution

TILI& Upn(0,7r) = rli_>r1& up(r) = u_(g),

is independent of n. [O(€?) pert to background O (4/€) pert to amp.]
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Bifurcation Analysis — Szostak

For generic bilayers (arb I', and S > 0) pearling occurs if
11 < Ap(T)(m — 12),

while spherical bilayers are unstable to meander instability (“fingering”) if

Y1 > Ap(T) (101 + 72)-

Increasing ~; (adding free lipids to back-
ground) induces fingering

Increasing 717; (photo-induced oxidation of
thiols) leads to pearling

31



Geometric Evolution of Bilayers: Meander CM reduction

OF
= A,
ou’
At t1 = e€t, for a bilayer I' we obtain the Mullins-Sekerka flow for ~;:
Av; =0, in Q\T,
v = c(t)) + H$),(0), on T,
[[Bn’ylﬂ =0 on I',

with normal velocity

Vy = Opy; — (v1 — Yp(7)) H.
However, ¢}(0) = 0 and the back-
ground Lipid level ~; 1s spatially con-
stant. Combined with conservation of
mass we obtain the coupled system

Vi = (71 — (7)) H,
v (t1) = —(7(t1) — ’Yb)/FHZ(s) ds.

The coupled system prevents singularity by driving v1 — “s.
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Coupled Geometric Evolution of Bilayers and Pores

For pores we derive the normal velocity V, of its co-dimension two curve I'p,

Vo = (11 — 7p(7))R,

[

For co-existing bilayers and pores, the common
value of the far-field lipid density, v, couples the
evolution of the two morphologies:

Vo= (n—%(7)H

—

V= (11 — B(7))R

d~y
— = =—(m—") [ HdS+
dt, T,

—e(m — ) [ IR ds.

I'p

Relative size of «,(7), v»(7), and the pearling point A,(7)(n1 — 72) is crucial

to dynamics.
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Coupled Geometric Evolution of Bilayers and Pores

V= (1 = w(r) H
V= (71— %(7))E

d~y
—=—(n—w) | H'dS+
dt; T,

—e(n—) | |RI?ds.
FP

Relative size of v,(7), v»(7), and the pearling point A,(7)(n1 — 72) is crucial

to dynamics.
Ap(T)(m — 12)

VI e

| |
e

71
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Coupled Geometric Evolution of Bilayers and Pores

Vo= (1 —w(7))H

vp = (71— 7(7))E
dvi

—— = — (7 — H?*dS
dtl ('71 '7p) r, ‘I‘

— €(v1 — ¥p) - |R|* ds.
p
Relative size of v,(7), vs(7), and the pearling point A,(7) (11 — 72) is crucial
to dynamics.

Ap(T) (1 — m2)
Tp i Vb

Bilayers grow
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Coupled Geometric Evolution of Bilayers and Pores

Vo = (M — (7)) H

Vo= (1 — %(1))R

d~y
—=—(n—) | HdS+
dt; T,

—e(n—) | |RI?ds.
FP

Relative size of v,(7), v»(7), and the pearling point A,(7)(n1 — 72) is crucial

to dynamics.
Ap(T) (1 = 12)

VI e

[ |
e

1

Bilayers Pearl
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Coupled Geometric Evolution of Bilayers and Pores

Va = (1 = m(r) H
V= (71— %(7))E

d~y
—=—(n—) | HdS+
dt; T,

—e(n—) | |RI?ds.
FP

Relative size of «,(7), v»(7), and the pearling point A,(7)(n1 — 72) is crucial

to dynamics.
Ap(7)(m — m2)

Zp i Zb

=1
e

___ g Invariant under dynamics .
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Competition and Pearling in Bilayers

§8EE

7 = 0.15 7T = 0.25 T =0.3

Competition for the amphiphilic phase between spherical bilayer (beach
ball) and circular solid pore (hula hoop) as a function of the well-tilt. Well
with small tilt prefers bilayers, larger tilt prefers pores and drives bilayers
to pearl.
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Punctured Vesicle - ETD

©O00
ofofofo

T =10.0 T =150
Time evolution of a punctured Bilayer under ETD. Under convex splitting vesicle
failed to close.
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Meander induces Endocytosis

0[0]o0

Time= 0

Time= 0.8

Cross sections of a punctured vesicle with too wide initial proﬁle. Meandering
induces endocytosis.
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Intrinsic Curvature

The Canham-Helfrich sharp interface limit characterizes interfacial energy in
terms of curvatures

Ecan_sa(T) = / ao(H — a1)® + as + asK ds.

r

The term a; denotes the intrinsic curvature of the interface — and requires asym-
meftry.

LPC

M550 RTINS
S e okt

R=3.8nm monolayer,

E

|—‘\/\f\/‘

Ko = nm”]

3.

(00)
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MCFCH: Pearling and Intrinsic Curvature in Bilayers

The multicomponent FCH in densities U = (Ui, ..., Un_1) takes form

Feu(U) = /

0
where the well W : RV —1 —» R.

1 2
2 €2 DAU — VyW (U)|"—€” (m%IVUI2 + mW(U)) dz,

Bilayers solve the leading order equa-
tion

U., = D 'VyW(U),

which for a piece-wise smooth W can
be understood in a frictionless billiard

limit. It1is easy to construct asymmetric
bilayers in MC-FCH
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Pearling in amphiphilic di-block blends

D

PS I' Changes in PS-PB and PS-PEO volume
PEO fractions (A) 80:20, (B) 70:30, (C) 60:40,
drive pearling bifurcations in the internally

J\"L separated phase. Hayward et al Macro-
PB molecules (2008)
PS-b-PB PS-b-PEO
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Instrinsic Curvature = Melnikov parameter
More generic MC-FCH has non-conservative term — Vi X P(U) # 0

Fen(U) = /

Q
The persistence of asymmetric bilayer solution requires a Melnikov parameter (a)

V.. +ea,V, = D1 (VyW (V) +eP(V)),

where (asymmetry required!)

1
> |€DAU - VW (U) - eP(U)|" — €?G(U, VU) dz,

ari= [ DP(V)-V.dz £0
R
The co-dim one expansion of the square term takes the form
eDAU—-VyW (U)+€eP(U) = D(U,,+eH(s)U,)—VyW (U)—eP(U),
when evaluated at the homoclinic V' has residual
DAV — VyW (V) + eP(V)|? = €|DV,|?|H(s) — ai|* + O(€).
Integrate out the through-plane direction, remainder 1s a Canham-Helfrich energy
E(T) = (—:/ [€2||D‘/z||%2|H(S) —aq]* — ep/ G(V, VV)dz] ds
R
r
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