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We employ a multiscale analysis to derive a sharp interface limit for the dynamics
of bilayer structures of the Functionalized Cahn-Hilliard equation. In contrast to
analysis based upon single-layer interfaces, we show that the Stefan and Mullins-
Sekerka problems derived for the evolution of single-layer interfaces for the Cahn-
Hilliard equation, [Pego (1989)] are trivial in this context, and the sharp interface
limit yields a quenched mean-curvature driven normal velocity at O(ε−1) while on
the longer O(ε−2) time scale it leads to a total-surface-area preserving Willmore
flow. In particular, for space dimension n= 2, the constrained Willmore flow drives
collections of spherically symmetric vesicles to a common radius, while for n= 3
the radii are constant, and for n≥ 4 the largest vesicle dominates.

1. Introduction

The Functionalized Cahn-Hilliard (FCH) equation has been proposed as
a model for interfacial energy in phase separated mixtures with an
amphiphilic structure [Gompper and Schick (1990)]. Of particular interest
are polymer-electrolyte membranes in which hydrophobic polymers are
functionalized by the addition of acid-tipped side chains which greatly
modify their solubility, [Promislow & Wetton (2009), Gavish et al. (2011),
Gavish et al (2012)]. In particular the solvation energy of the tethered acid groups
drives the mixture to increase surface area so as to facilitate the access of
the side-chains to the solvent phase whose screening effect serves to lower the
overall electrostatic energy, [Gompper and Schick (1990)]. In addition, there is
considerable interest in the properties of bilayer structures within the biological
community, where issues such as endocytosis, vesicle budding, and the opening of
pores are of interest, [Budin & Szostak (2011), Zhu et al (2012)].

The FCH energy is a natural test-bed for the study of bilayer structures.
In contrast to models based upon single layer or heteroclinic interfaces with no
intrinsic bending energy, the FCH naturally produces stable bilayer, or homoclinic,
interfaces with an intrinsic width which is resistant to external forces. Moreover,
unlike sharp interface approximations such as the Canham-Helfrich energy,
[Canham (1970), Helfrich (1973)], the FCH naturally accommodates merging and
pinch-off events which are dominant mechanisms for formation of networks.

The Cahn-Hilliard (CH) energy, introduced in [Cahn & Hilliard (1958)],
characterizes a binary mixture by a phase field function u which maps Ω⊂Rn into
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mixture values [−1, 1]. It models the free energy as a balance between entropic
effects, which seek to homogenize the species, and the mixture potential,W , which
assigns energies to blendss

E(u) =

∫
Ω

ε

2
|∇u|2 + ε−1W (u) dx, (1.1)

where the parameter ε� 1 controls the width of the inner structures. Motivated
by the study [Gavish et al. (2011)], we consider a class of double-well potentials,
W , which describes the energy of the mixture u, with two unequal depth local
minima at b− < b+, for which W (b−) = 0>W (b+), and W ′ has precisely three
zeros, at b− < b0 < b+. The phase u= b− with the higher self-energy is the majority
phase, while the u= b+ phase is the minority phase (amphiphilic surfactant
or lipid). The well-tilt, or difference in self-energies W (b−)−W (b+)> 0, is a
significant bifurcation parameter for network morphologies, [Gavish et al (2012)].

The single layer interfaces of the Cahn-Hilliard free energy are natural
minimizers of E for untilted wells W , i.e. W (b−) =W (b+). Solutions generated
from single layer interfaces are well-known to Γ-converge to interfacial surface
area as ε→ 0, [Modica (1987), Sternberg (1988)]. That is, for ε� 1, minimizing
sequences uε which converge to a limit in L1(Ω) localize their gradients on
an interface Γ⊂Rn while E(uε) tends to a value which is proportional to the
interfacial surface area. The FCH remaps this paradigm, balancing the square of
the variational derivative of the CH energy against a small multiple of itself,

F(u) :=

∫
Ω

1

2

(
δE
δu

)2

dx− εη2E(u). (1.2)

The term functionalization is borrowed from synthetic chemistry where it refers
to the addition of hydrophilic (functional) groups to a hydrophobic polymer
to modify its solubility. Mathematically, “functionalization” is a systematic
reformulation of the original energy. Indeed for the η2 = 0 problem, all critical
points of E , that is the solutions of δEδu = 0, render F(u) = 0 and hence are global
minimizers of F . The parameter η2 unfolds this highly degenerate situation:
crucially, for η2 > 0, the unfolding term favors the critical points of E with more
surface area. For the particular form of the CH energy, the FCH takes the form,

F(u) = ε−2

∫
Ω

1

2

(
−ε2∆u+W ′(u)

)2 − ε2η2

(
ε2

2
|∇u|2 +W (u)

)
dx. (1.3)

There is an extensive literature which employs single-layer interfaces to
describe a wide range of physical phenomena including image segmentation, phase
transitions, multi-phase flows, crystallization, and other phase transitions. Higher
order energies, which resemble the FCH with η2 < 0 and an untilted well W , have
been proposed, see in particular equations (1.5) of [Loreti & March (2000)] and
(3.16) of [Torabi et al (2009)]. Indeed, the De Giorgi conjecture, which concerns
the Γ limit of the FCH energy for η2 < 0 with an untilted well has been established,
[Roger & Schatzle (2006)]. Extensions of these models to address deformations of
elastic vesicles subject to volume constraints, [Du et al (2004)], [Du et al (2006)],
and multicomponent models which incorporate a variable intrinsic curvature have
been investigated, [Wang and Du (2008)], [Lowengrub et al (2009)]. However, the
single-layer interface forms the essential underpinning of each of these models.
Conversely, it is easy to see that for η2 > 0 the FCH energy does not have an
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ε independent lower bound over configurations with prescribed volume fraction.
In this regime the FCH has no traditional Γ-limit, and the natural tendency to
view the FCH energy as a diffuse interface regularization of a Canham-Helfrich,
[Canham (1970), Helfrich (1973)] sharp interface energy of the form

ECH(Γ) :=

∫
Γ
a1H

2 − a2 dS, (1.4)

is potentially misleading. The identification of the FCH with a Canham-Helfrich
type sharp interface energy is predicated on the assumption that the underlying
structures are of co-dimension 1 and free of defects, such as end-caps and
junctions. Over R3 the FCH free energy supports co-dimension one bilayer
interfaces, whose evolution we study here, as well as and a wide range of stable co-
dimension 2 and co-dimension 3 morphologies, [Doelman and Promislow (2013),
Gavish et al (2012)], described below, in addition to many locally stable defect
structures. The structure of the problem, and the physically motivating examples,
change fundamentally and dramatically with the sign of η2. For these reasons the
FCH merits a distinct name, see [Promislow & Wetton (2009)], which evokes the
amphiphilic nature of functionalized polymers.

It is crucial to emphasize the distinction between single-layer interfaces,
which separate two dissimilar phases across a co-dimension one interface, and
bilayers which separate two identical phases by a thin region of a second
phase. Significantly, the single-layer framework cannot support perforation of the
interface. In many biological processes it is essential to understand the opening
and closing of pores within a vesicle, or the roll-up of a bicelle into a closed
vesicle, [Shinoda et al (2011)]. Single layer models treat the inside and outside
of a vesicle as distinct phases: they cannot be merged. In contrast, the η2 > 0
unfolding of the tilted-well FCH model supports stable, strongly incompressible
bilayers which admit not only the opening of perforations, but the roll-up of
the bilayer into a solid filament or a solid micelle, in a manner which naturally
accounts for the competition between these morphologically distinct structures
for a scarce surfactant phase. We do not fully address this competition within the
current work, rather we demonstrate that the sharp interface limit of the FCH
energy for bilayer structures has fundamental distinctions with the sharp interface
limit derived for single layers, see (1.8) and the following discussion.

The essential feature of functionalization is that it greatly increases the
possible collection of stable interfacial structures. For the CH energy, the quasi-
stable structures are dominated by non-self-intersecting, smooth, co-dimension
one, closed interfaces, Γ⊂Ω. The normal and tangential spaces of Γ form a
coordinate system in a neighborhood about Γ, in which at leading order the
cartesian Laplacian becomes ε2∆ = ∂2

z +O(ε) where z = z(x) is the inner variable,
often presented as the ε−scaled, signed distance to the interface. Subject to a
total mass constraint, the co-dimension one critical points of the CH energy are
constructed from inner structures solving the second-order differential equation

∂2
zU −W ′(U) = λ. (1.5)

Choosing the Lagrange multiplier λ so that the modified well W (s) + λs is
‘un-tilted’, i.e. taking equal values at its two minima, then (1.5) supports a
heteroclinic or single-layer connection, Us between the two minima. The interface
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Γ is then “dressed” with Us, see (2.11), yielding an approximate critical point
of E which takes distinct constant values on the regions on the opposite sides
of the interface Γ. It is significant that the squared-variational term within the
FCH prevents the Lagrange multiplier associated to the mass constraint from ‘un-
tilting’ the well W , rather the multiplier serves to shift the location of the two
minima, particularly that of the majority phase to b= b− +O(ε), see (5.10) and
[Gavish et al. (2011)]. As a consequence, there is a bilayer solution Ub =Ub(z;λ)
of (1.5) with λ= 0 which is homoclinic to the shifted majority phase b, potentially
stable, [Doelman and Promislow (2013)].

For a co-dimension one interface, Γ, the dressing of Γ with Ub yields to
a bilayer interface with an O(ε) width which is potentially stable, coherent
structure, [Doelman and Promislow (2013)]. Moreover, stable structures can also
be generated near higher co-dimensional interfaces. For example in R3, co-
dimension two structures are formed by dressing a one dimensional filament Γ
with a radially symmetric solution of

∂2
RU +

1

R
∂RU −W ′(U) = 0, (1.6)

where R> 0 is the scaled distance to the center line of Γ. The end result
is a ‘spaghetti’ like structure with an O(ε) unscaled radius, but a spatially
extended length. The FCH also possesses co-dimension three micellular structures
in R3 as well as defect states such as end-caps and multi-junctions which
play an essential role in network formation, see [Gavish et al (2012)] and
[Dai and Promislow (2013)].

This paper presents a formal reduction of the H−1−gradient flow of the
functionalized energy F , called the Functionalized Cahn-Hilliard equation,

ut = ε2∆
δF
δu

= ∆

µ︷ ︸︸ ︷(
−ε2∆ +W ′′(u)− ε2η2

) (
−ε2∆u+W ′(u)

)
, (1.7)

subject to periodic or zero-flux boundary conditions on Ω⊂Rn. Here µ is the
chemical energy. This flow has the distinction of decreasing F while preserving
the masses of the majority and minority (surfactant) phases via a flux law
that depends locally on the values of concentration u. One may anticipate that
solutions of the FCH equation quickly converge towards a slow-manifold comprised
of approximate critical points of E and, modulo self-intersection or pinch-off events
of the underlying interface, subsequently flow slowly along the manifold until
arriving at a morphology of approximate critical points of E whose surface area
is maximal in comparison to other approximate critical points of E .

Our central results confirm this intuition, however there are several surprises.
Indeed, for the single-layer interfaces of the Cahn-Hilliard equation, it was shown,
[Pego (1989)] that the sharp interface reduction yields a spinodal decomposition
at O(ε−1), a Stefan-problem, at t=O(1), and a Mullins-Sekerka problem, at t=
O(ε−1), for the outer chemical potential. In contrast, for the choice of scaling
in (1.7) the flow is slower, but more importantly the chemical potential problem
uncouples from the free surface problem; the chemical potential converges to a
spatial constant, and the free-surface problems reduce to Ricci-type flows. Indeed
on the O(ε−1) time scale, in place of the Mullins-Sekerka problem, we find a
quenched mean-curvature driven flow, in which the normal velocity couples to an
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evanescent, spatially constant, chemical potential, B1(t1),

Vn = σ1B1(t1)κ0, (1.8)

d

dt1
B1 =− ρ1

|Ω|
B1

∫
Γ
κ2

0(s) ds, (1.9)

where κj , introduced in (2.8) is the sum of the j + 1-st powers of the curvatures,
while the W dependent constants σ1, ρ1 > 0 are surface tensions and decay rates.

While the exponential decay of B1 quenches the mean-curvature flow, the sign
of B1, see (5.30), is of significance. The equilibrium value, b−, of the majority
phase, i.e. the left minima of the double well W , is associated to a mixture
with a small, positive concentration of the minority phase (typically amphiphilic
surfactant or lipid). The case B1 > 0 corresponds to an initial mass of the minority
phase in excess of that required to construct the prescribed initial interface Γ0

with u= b− far from the interface. That is, the mass constraint is such that the
adjusted background state b > b−. Conversely, B1 < 0 corresponds to a deficit in
the initial mass of the minority phase: to construct the prescribed initial interface
Γ0 the value b of u far from the interface satisfies b < b−. An analysis of the FCH
shows that the excess surfactant configurations are strongly unstable, as growth
of interface leads not only to a lower energy through the η2 term, but drives the
background concentration towards equilibrium. On the other hand, the deficit
situation, B1 < 0, is a more stable balance, with growth of interface limited by
the expense of further reductions in the far-field value, b, of u.

This dichotomy is consistent with the normal velocity given in the sharp
interface reduction (1.8). For B1 > 0 the mean-curvature flow is ill-posed as
an evolution problem, leading to uncontrolled growth of interface, while for
B1 < 0 it is well-posed in time with possible finite-time singularities associated
to “contraction” of isolated vesicles as their surfactant phase is absorbed into
the background state and possibly redistributed to other structures. For B1 < 0
the exponential decay of B1 to zero quenches this fast transient. For B1 > 0 the
quenching is even faster, however the ill-poseness of the curvature flow removes us
from the framework of the formal analysis presented herein. This dichotomy has
no analogy within the single layer models, but is compatible with experimental
observations, particularly [Budin & Szostak (2011)] in which the addition of a
small background component of oleate (lipid) into a suspension of phosphate
containing vesicles lead to the spontaneous destabilization of the vesicles to an
uncontrolled filamentation process. Indeed, the authors of that work propose the
destablization as a mechanism for cell division in primitive vesicles.

In the deficit situation, B1 < 0 approaches zero, initiating the slower O(ε−2)
time-scale. Here the chemical potential again uncouples from the interface Γ,
which evolves under the interface preserving normal velocity

Vn = σ2ΠΓ

[(
∆s +

κ2
0

2
− κ1

)
κ0

]
, (1.10)

where ΠΓ, introduced in (6.31) is a zero-average, curvature weighted projection
and σ2 > 0 is a surface tension depending only uponW . The interface-preservation
property is a direct consequence of the incompressibility of the bilayer structure
and the mass constraint which fix the total interfacial width. This is distinct from
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sharp interface reductions of single layer models. Indeed, the normal velocity
generated by an H−1 gradient flow of the Cahn-Hilliard energy (1.1) couples to
a Mullins-Sekerka problem for the chemical potential, [Pego (1989)], while the
L2 gradient flow of an FCH type energy yields a Willmore type flow, but for
which the quantity of interfacial material, the minority phase of the FCH, is
not conserved, [Loreti & March (2000)]. In particular, the interface preserving
Willmore flow generated by bilayer structures yields markedly different evolution
in space dimension n= 2, n= 3 and for n≥ 4, see (6.35).

2. The whiskered coordinates and innerexpansions

The FCH equation possesses many regimes and a global analysis of the PDE is
not reasonable. We assume an initial state that starts within a neighborhood of a
bilayer interface. More specifically we assume that we have a smooth, co-dimension
one initial interface Γ0 ⊂Rn, which divides Ω = Ω+ ∩ Ω− into an interior Ω+ and
an exterior Ω−, given parametrically, at least locally, by

Γ0 = {φ0(s) : s= (s1, . . . , sn−1)∈Q0 ⊂Rn−1}, (2.1)

where φ0 :Q0 ⊂Rn−1 7→Rn is smooth. We will describe the geometric evolution
of the bilayer interfaces as a flow in time t on this space, yielding a curve Γ(t)
parametrized by φ(s, t) over a set Q(t). The bilayer solutions we consider are
expressed in the normal-tangential coordinate system in a neighborhood of Γ(t).

For simplicity we choose the parametrization so that si corresponds to arc
length along the ith coordinate curve and the coordinate curves are lines of
curvature. In this setting the vectors Ti = (T i1, . . . , T

i
n) defined by

Ti :=
∂φ

∂si
, i= 1, . . . , n− 1 (2.2)

form an orthonormal basis for the tangent space to Γ at φ(s, t). Denoting the
outer normal vector of Γ pointing towards Ω− by n(s, t) = (N1, . . . , Nn), we have
the relations

∂Ti

∂si
=−kin,

∂n

∂si
= kiT

i, i= 1, . . . , n− 1 (2.3)

where ki = ki(s) are principal curvatures of Γ at φ(t, s).
From the implicit function theorem, for each x0 on Γ there exists a

neighborhood Nx0 of Γ, with the property that the map x 7→ (s, r) defined by

x= φ(s, t) + rn(s, t) (2.4)

is locally and smoothly invertible for each fixed time t. In particular in this
neighborhood we have the functions s= s(x) and r= r(x) that relate the local
coordinates to the cartesian ones. We introduce the scaled coordinate z = r

ε and
the “whiskers”

w(s) :=
{
φ(s) + zn(s)

∣∣ z ∈ [−`/ε, `/ε]
}
, (2.5)

which correspond to line segments of length `, in unscaled distance, emanating
from Γ in the normal direction. From the implicit function theorem, for `
sufficiently small, these whiskers do no self-intersect locally in s. We say that
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an interface Γ is far from self intersection if there exists ` > 0 such that none of
the whiskers of length ` intersect each other or ∂Ω. We introduce the neighborhood

Γ` =
⋃
s∈Q

w(s) (2.6)

of Γ, which comprises all points x∈Ω that are within a distance ` of Γ.
The proof of the following lemma, which summarizes the properties of

the coordinate system, can be found in, [Cahn, Elliott & Novick-Cohen (1996),
Dai and Du (2012), Gavish et al. (2011), Pego (1989)].

Lemma 1. Let Γ = Γ(t) be a smooth interface of the form (2.1) with
curvatures {ki}n−1

i=1 uniformly O(1). The normal velocity Vn of Γ at φ(s, t) is given
by −∂tr(s, t), and the tangential coordinates (r, s) enjoy the properties

∇xsi =
1

1 + rki
Ti, ∆xsi =− r

(1 + rki)3

∂ki
∂si

, i= 1, . . . , n− 1,

∇xr= n, ∆xr=

n−1∑
j=1

kj
1 + rkj

.

In particular in the scaled (z, s) coordinates we may expand the Cartesian
Laplacian in terms of the Laplace-Beltrami operator ∆s and the curvatures

∆x = ε−2∂zz + ε−1κ0∂z + zκ1∂z + ∆s + ε∆1 +O(ε2), (2.7)

where κj is related to sums of jth powers of the curvatures

κi = (−1)i
n−1∑
j=1

ki+1
j , ∆1 =−z

n−1∑
j=1

∂kj
∂sj

∂

∂sj
+ z2κ2∂z − 2zκ0∆s. (2.8)

The Jacobian J of the transformation x 7→ (z, s) takes the form

J =

(
(1 + εzk1)T1, . . . , (1 + εzkn−1)Tn−1, εn

)
(2.9)

and J = | detJ| satisfies

J(s, z) = ε
n−1∏
i=1

(1 + εzki) = ε+ ε2zκ0 +O(ε3). (2.10)

Definition 1. For a function ψ : R→R which tends to a constant values ψ±∞
at O(1) exponential rates as r→±∞, we say that we dress the interface Γ with
ψ, obtaining the Γ-extended function

ψΓ(x) :=ψ(z(x))η(|r(x)|/`) + ψ+
∞
(
1− η(r(x)/`)

)
+ ψ−∞

(
1− η(−r(x)/`

)
, (2.11)

where ` > 0 is the minimal (unscaled) distance of Γ to the compliment N c of its
neighborhood N and η : R→R is a fixed, smooth cut-off function which is one on
[−∞, 1] while η(s) = 0 for s≥ 2.
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Definition 2. Let Γ be far from self intersection. We say that f ∈L1(Ω) is
localized on Γ if there exist constants M,ν > 0, independent of ε > 0, such that

|f(x(z, s))| ≤Me−ν|z|, (2.12)

for all x∈ Γ`.

Lemma 2. If Γ is far from self-intersection and f is localized on Γ, then we
have the following integral formula∫

Ω
f(x) dx=

∫
Q

∫ `
ε

− `
ε

f(x(z, s))J(z, s) dz ds+O
(
e−ν

`
ε

)
, (2.13)

where J is the Jacobian associated to the immersion φ :Q=Q(t) 7→ Γ(t)⊂Rn.

We assume that the initial data u0 of (1.7) is close to a bilayer interface,
that is, for some interface Γ, u0 is close to the Γ-extension UΓ of the homoclinic
solution U of (1.5) with Lagrange multiplier λ= 0. We track the evolution of the
interface Γ = Γ(t) and which induces U(t) =UΓ(t). In our formal analysis we do
not construct a map from U back to Γ. We record the existence of the homoclinic
solution and the properties of the associated linearization in the following Lemma.

Lemma 3. Let U be the solution of (1.5) which is homoclinic to b−,
corresponding to λ= 0, and even in z, then U attains it maximum value UM
at z = 0, where UM is the unique zero of W in (b−, b+). Moreover there exists
ν > 0 such that the linearization,

L=−∂2
z +W ′′(U), (2.14)

operating on H2(R) has spectrum that satisfies

σ(L)⊂ {λ0, λ1 = 0} ∪ [ν,∞). (2.15)

where λ0 < 0 is the ground-state eigenvalue. The corresponding eigenfunctions are
ψ0 ≥ 0 and ψ1 =Uz. Moreover we record that

L
(z

2
Uz

)
=−Uzz, (2.16)

LUzz =−W ′′′(U)U2
z , (2.17)

and introduce the functions Φj ∈L∞(R) for j = 1, 2 which are the solutions of

LjΦj = 1, (2.18)

which are orthogonal to the kernel of L.

Proof. The existence of the homoclinic solution is immediate from phase-plane
considerations. Indeed writing (1.5) as a second order dynamical system in (U,Uz),
there are saddle points at (b±, 0). Since W (b−) = 0>W (b+) one deduces that the
unstable manifold of (b−, 0) crosses the horizontal axis at a point which we label
(UM , 0). By reversibility, this orbit returns to (b−, 0) along the stable manifold,
forming the homoclinic orbit. The linearization L is a Sturm-Liouville operator
which has simple, real eigenvalues which are enumerable by their number of nodal
points. Taking ∂z of (1.5), we see that LUz = 0, and since Uz has one nodal point,
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it is the first eigenfunction, ψ1, above the ground state ψ0 whose eigenvalue λ0 < 0.
The remainder of the spectrum is real and an O(1) distance to the right of 0. The
relation (2.16) follows from a direct calculation, while (2.17) follows from taking
∂2
z of (1.5). The functions Φ1 takes the form Φ1 = Φ̂1 − (W ′′(b−))−1 where Φ̂1 is

the L2(R) solution to

LΦ̂1 = 1− W ′′(U)

W ′′(b−)
. (2.19)

Since U → b− at an exponential rate as z→∞ the right-hand side is in L2, and
even about z = 0, hence orthogonal to the kernel of L. The existence of Φ2 follows
from a similar argument. �

We perform a multi-scale analysis of the solution u and chemical potential µ.
At a time-scale τ , we have the inner spatial expansions

u(x, t) = ũ(s, z, τ) = ũ0 + εũ1 + ε2ũ2 + ε3ũ3 + . . . , (2.20)

µ(x, t) = µ̃(s, z, τ) = µ̃0 + εµ̃1 + ε2µ̃2 + ε3µ̃3 + . . . . (2.21)

Using (2.7) we convert the Cartesian Laplacian of u into local coordinates.
Collecting orders of ε we find

∆xu=ε−2ũ0zz + ε−1 (ũ1zz + κ0ũ0z) + (ũ2zz + κ0ũ1z + κ1zũ0z + ∆sũ0)

+ ε (ũ3zz + κ0ũ2z + κ1zũ1z + ∆sũ1 + ∆1ũ0) +O(ε2). (2.22)

From (1.7), we write the chemical potential µ= PA where the prefactor P :=
−ε2∆ +W ′′(u)− ε2η2 acts on the Cahn-Hilliard residual A :=−ε2∆xu+W ′(u).
Expanding these in turn we find

P =− ∂zz +W ′′(ũ0) + ε
(
−κ0∂z +W ′′′(ũ0)ũ1

)
+ε2

(
−κ1z∂z −∆s +W ′′′(ũ0)ũ2 +W (4)(ũ0)

ũ2
1

2
− η2

)
+ (ε3), (2.23)

A=
(
−ũ0zz +W ′(ũ0)

)
+ ε

(
−ũ1zz − κ0ũ0z +W ′′(ũ0)ũ1

)
+ ε2

(
−ũ2zz − κ0ũ1z

− κ1zũ0z −∆sũ0 +W ′′(ũ0)ũ2 +
1

2
W ′′′(ũ0)ũ2

1

)
+O(ε3). (2.24)

Combining these expansions we group the orders of the chemical potential

µ̃0 =
(
−∂zz +W ′′(ũ0)

) (
−ũ0zz +W ′(ũ0)

)
, (2.25)

µ̃1 =
(
−∂zz +W ′′(ũ0)

)(
−ũ1zz − κ0ũ0z +W ′′(ũ0)ũ1

)
+
(
−κ0∂z +W ′′′(ũ0)ũ1

)(
−ũ0zz +W ′(ũ0)

)
, (2.26)
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µ̃2 =
(
−∂zz +W ′′(ũ0)

)(
−ũ2zz +W ′′(ũ0)ũ2 − κ0ũ1z − κ1zũ0z+ (2.27)

−∆sũ0 +
1

2
W ′′′(ũ0)ũ2

1

)
+

(
−κ0∂z +W ′′′(ũ0)ũ1

)(
−ũ1zz − κ0ũ0z +W ′′(ũ0)ũ1

)
+(

−κ1z∂z −∆s +W ′′′(ũ0)ũ2 +W (4) ũ
2
1

2
− η2

)(
−ũ0zz +W ′(ũ0)

)
. (2.28)

Moreover we may expand the Cartesian Laplacian of the chemical potential as

∆xµ= ε−2µ̃zz + ε−1κ0µ̃z + zκ1µ̃z + ∆sµ̃+ ε∆zµ̃+O(ε2),

= ε−2µ̃0zz + ε−1 (µ̃1zz + κ0µ̃0z) + (µ̃2zz + κ0µ̃1z + κ1zµ̃0z + ∆sµ̃0)

+ ε (µ̃3zz + κ0µ̃2z + κ1zµ̃1z + ∆sµ̃1 + ∆1µ̃0) +O(ε2). (2.29)

3. Fast times: Relaxation to the UΓ Bi-layer

We first consider the fast-time evolution, which leads to a relaxation towards the
bilayer profile for initial conditions which are sufficiently close.

(a)Time scale T2 = t/ε2 : outer expansion

Away from the interface, the outer expansion for the density and chemical
potential takes the form

u(x, t) = u0 + εu1 + ε2u2 + ε3u3 + . . . , (3.1)

µ(x, t) = µ0 + εµ1 + ε2µ2 + . . . , (3.2)

where each ui and µi depends upon x and T2 = t/ε2. The first two orders of the
chemical potential, defined in (1.7) have the form

µ0 =W ′′(u0)W ′(u0), (3.3)

µ1 =
(
W ′′′(u0)W ′(u0) +W ′′(u0)2

)
u1. (3.4)

For the outer expansion the time derivative ∂t = ε−2∂T2 yields the expression

∂tu= ε−2∂T2u0 + ε−1∂T2u1 + ∂T2u2 + ε∂T2u3 + . . . , (3.5)

while the chemical potential takes the simple form

∆µ= ∆µ0 + ε∆µ1 + ε2∆µ2 + . . . . (3.6)

Applying these to the FCH equation, (1.7), and matching orders of ε, we find

∂T2u0 = 0, ∂T2u1 = 0, ∂T2u2 = ∆µ0. (3.7)

In the T2 time scale, the outer solution u does not evolve to O(ε2).
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(b)T2 = t/ε2 : the inner expansion

We recall the inner expansions (2.20)-(2.21) for the concentration u and
chemical potential µ, with τ = T2. We also expand the normal distance r=
r0 + εr1 +O(ε2), obtaining

ut = ε−2ũT2 + ε−2∇sũ ·
∂s

∂T2
+ ε−3 ∂r

∂T2
ũz,

= ε−3 ∂r0

∂T2
ũ0z + ε−2

(
∂r1

∂T2
ũ0z +

∂r0

∂T2
ũ1z + ũ0T2 +∇sũ0 ·

∂s

∂T2

)
+O(ε−1).

(3.8)

Using (3.8) to expand the left-hand side of the FCH equation, (1.7), and (2.29)
on the right-hand side, we find at O(ε−3)

∂r0

∂T2
ũ0z = 0, (3.9)

which implies that ∂T2r0 = 0 since ũ0 is not constant in z. The interface Γ(t) does
not move to leading order on the T2 time scale. At O(ε−2) the equation (1.7)
reduces to

∂r1

∂T2
ũ0z + ∂T2 ũ0 +∇sũ0 ·

∂s

∂T2
= µ̃0zz. (3.10)

Recalling the form of µ̃0 from (2.25), and our assumption that the initial data
is at leading order of the form u0 =UΓ(x) where U is the homoclinic solution of
(1.5) with λ= 0, which corresponds to the boundary conditions

ũ0→ b− as z→±∞, (3.11)

it follows that µ̃0 = 0 and u0 =UΓ is an equilibrium solution of (3.10). A similar
analysis applies to the time scale T1 = t/ε, with the conclusion that UΓ is an
equilibrium solution of (1.7) on this time scale. For brevity we omit the details.

4. The time scale t: a Gradient Flow

Applying the outer expansions (3.1) and (3.2) to (1.7) on the t time scale and
collection O(1) terms we obtain a nonlinear diffusion equation for u0,

∂tu0 = ∆µ0, µ0 =W ′′(u0)W ′(u0). (4.1)

Performing the inner expansions (2.20) and (2.21) for τ = t, we have the leading
order inner expressions

ut = ũt +∇sũ ·
∂s

∂t
+ ε−1∂r

∂t
ũz = ε−1∂r

∂t
ũ0z +O(1). (4.2)

Matching (4.2) and (2.29), the ε−2 and ε−1 terms give

0 = µ̃0zz, (4.3)

∂r

∂t
ũ0z = µ̃1zz + κ0µ̃0z. (4.4)
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From (4.3) it is easy to verify that ũ0(s, z, t) =U(z) is an equilibrium solution to
µ̃0 = 0, however to derive the sharp-interface is stable within a larger framework.
To this end consider a more general form for ũ0,

µ̃0 = δB0(s, t), (4.5)

where δ is sufficiently small, but independent of ε. A regular perturbation
expansion of (2.25) about Uz shows that (4.5) leads to an inner solution

ũ0(z, s, t) =Uz(z) + δB0(s, t)Φ2(z) +O(δ2), (4.6)

where ũ0 is homoclinic to b− + δB0(s, t)α−2
− along the whisker w(s), and Φ2 is

defined in (2.18). Within this framework, (4.4) simplifies to

∂r

∂t
ũ0z(z) = µ̃1zz. (4.7)

Integrating (4.7) in z from −∞ to ∞, and remarking that ∂r
∂t is independent of z

while ũ0 is homoclinic in z, yields the key equalities,

lim
z→∞

ũ0(z)− lim
z→−∞

ũ0(z) = 0 = lim
z→∞

µ̃1z(z)− lim
z→−∞

µ̃1z(z). (4.8)

(a) Inner-Outer Matching

The derivation of the interface evolution at this and subsequent time-scales
requires a matching of the inner and the outer expansions. We follow the procedure
of [Pego (1989)]. Fixing x∈ Γ, we require

(µ0 + εµ1 + ε2µ2 + . . . )(x+ εzn, t)≈ (µ̃0 + εµ̃1 + ε2µ̃2 + . . . )(s, z, t) (4.9)

when εz is between O(ε) and o(1). Expanding the left hand side around x as
εz→ 0+, we have

µ+
0 + ε(µ+

1 + z∂nµ
+
0 ) + ε2(µ+

2 + z∂nµ
+
1 +

1

2
z2∂2

nµ
+
0 ) + . . . , (4.10)

where ∂n is the directional derivative along n, and

µ+
i (x, t) = lim

h→0+
µi(x+ hn, t) for all i. (4.11)

We can obtain a similar expansion as εz→ 0−. The matching condition (4.9) gives

µ±0 = lim
z→±∞

µ̃0, (4.12)

µ±1 + z∂nµ
±
0 = µ̃1 + o(1) as z→±∞, (4.13)

µ±2 + z∂nµ
±
1 +

1

2
z2∂2

nµ
±
0 = µ̃2 + o(1) as z→±∞, (4.14)

µ±3 + z∂nµ
±
2 +

1

2
z2∂2

nµ
±
1 +

1

6
z3∂3

nµ
±
0 = µ̃3 + o(1) as z→±∞. (4.15)
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A similar expansion yields the matching conditions for u,

u±0 = lim
z→±∞

ũ0, (4.16)

u±1 + z∂nu
±
0 = ũ1 + o(1) as z→±∞, (4.17)

u±2 + z∂nu
±
1 +

1

2
z2∂2

nu
±
0 = ũ2 + o(1) as z→±∞. (4.18)

(b) Sharp interface reduction: Gradient Flow

The matching condition (4.13) shows that limz→±∞ µ̃1z = ∂nµ
±
0 which, in

conjunction with the second equality of (4.8), implies that the normal derivative
of the outer chemical potential is continuous across Γ. Similarly, the matching
condition (4.16), in conjunction with the first equality of (4.8), implies the
continuity of u0. That is across the interface Γ we have the jump conditions

[[∂nµ0]] = [[u0]] = 0. (4.19)

This implies that u0 is a strong solution of (4.1) over the entire domain Ω. The
evolution of the interface Γ uncouples from the evolution of u0. Indeed the interface
motion can be calculated after the fact. Moreover the resulting equation for u0

∂tu0 = ∆
(
W ′′(u0)W ′(u0)

)
on Ω, (4.20)

subject to periodic boundary conditions, is a mass-preserving H−1 gradient flow
on the reduced energy

F0(u0) :=

∫
Ω

1

2

(
W ′(u0)

)2
dx, (4.21)

where the effective potential 1
2 (W ′(u0))2 is a triple well with equal zeros at b− <

b0 < b+. In particular if the outer values of the initial data are sufficiently close
to b− then u0 will converge to a constant value that is close to b−.

For completeness of presentation, we assume the leading-order initial value
u0(t= 0) equals the spatial constant b−, which is an equilibrium of (4.20), and
verify that the normal velocity of the interface is indeed zero. We return to (4.7)
with ũ0 =Uz = Ûz, where Û :=U − b−, enjoys the property Û → 0 as z→±∞.
We integrate from 0 to z twice, since ∂r

∂t is independent of z, we obtain

µ̃1 = µ̃1(0) +

(
µ̃1z(0)− ∂r

∂t
Û(0)

)
z +

∂r

∂t

∫ z
0
Û(σ) dσ. (4.22)

We also integrate (4.7) in z from −∞ to 0, which yields

∂r

∂t
Û(0) = µ̃1z(0)− lim

z→−∞
µ̃1z(z) = µ̃1z(0)− ∂nµ0. (4.23)

To find µ̃1z(0), we simplify (2.26). Observing that ũ0 =U so that Uzz −W ′(U) =
0, −∂zz +W ′′(U) =L, and LUz = 0, we obtain

µ̃1 =L2ũ1. (4.24)
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From (2.15) this equation has solution ũ1 ∈L2(R) only if µ̃1 ⊥ψ1 =Uz. Recalling
the form, (4.22), of the chemical potential µ̃1 the solvability condition reduces to

0 =

∫
R

{
µ̃1(0) +

(
µ̃1z(0)− ∂r

∂t
Û(0)

)
z +

∂r

∂t

∫ z
0
Û(σ) dσ

}
Û ′ dz, (4.25)

and integrating by parts on Û ′, we obtain

µ̃1z(0) =
∂r

∂t

{∫
R
Û(z) dz

}−1{
Û(0)

∫
R
Û(z) dz −

∫
R
Û(z)2 dz

}
. (4.26)

Combining this expression with (4.23) we obtain the normal velocity

Vn(s) =−∂r
∂t

(s) =
m

S1
∂nµ0

∣∣∣
Γ
, (4.27)

where we have introduced the constants

m :=

∫
R
U − b− dz and S1 :=

∫
R

(U − b−)2 dz. (4.28)

Since ũ0 ≡ b− on Ω, it follows that µ0 ≡ 0 on Ω and Vn = 0 at this time scale.

5. The time scale t1 = εt: A Quenched Mean Curvature Flow

On the time t1 = εt we obtain the first non-trivial dynamics of the interface Γ.

(a)Outer expansion

For t1 = εt the ∂t derivative expands as

∂tu= ε∂t1u0 + ε2∂t1u1 + ε3∂t1u2 + . . . . (5.1)

Inserting (5.1) and (3.6) in the FCH equation, (1.7), and matching terms at O(1)
and O(ε), we have

0 = ∆µ0, µ0 =W ′′(u0)W ′(u0), (5.2)

∂t1u0 = ∆µ1. (5.3)

The first equation, (5.2), is consistent with our assumption that the outer-solution
u0 =UΓ = b−. The outer equation (5.3) reduces to

−∆µ1 = 0 in Ω+ ∪ Ω−, (5.4)

where the O(ε) outer chemical potential is related to the O(ε) outer concentration
via the expression

µ1 =
(
W ′′′(b−)W ′(b−) +W ′′(b−)2

)
u1 = α2

−u1. (5.5)
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(b) Inner expansion

Recalling the inner expansion (2.20) and (2.21) at τ = εt we expand

ut = ε

(
ũt1 +∇sũ ·

∂s

∂t1

)
+
∂r

∂t1
ũz =

∂r

∂t1
ũ0z +O(ε). (5.6)

We insert (5.6) and (2.29) into the FCH equation and match terms at the ε−2, ε−1

and ε0 orders. The first equation µ̃0zz = 0 is consistent with our choice ũ0 =U ,
which in fact implies µ̃0 = 0. With this reduction the remaining two equations
become

0 = µ̃1zz, (5.7)

∂r

∂t1
ũ0z = κ0µ̃1z + µ̃2zz (5.8)

The matching condition (4.13) implies that µ̃1z→ ∂nµ
+
0 = 0 as z→∞, which,

together with (5.7) implies the existence of B̃1(s, t) independent of z such that
µ̃1 = B̃1. However, since ũ0 =U the expression (2.26) for µ̃1 simplifies to

B̃1 = µ̃1 =L2ũ1 (5.9)

Recalling the function Φ2 introduced in (2.18), we find the solution

ũ1 = B̃1(s, t)Φ2(s), (5.10)

where we assumed ũ1 ⊥ ker(L) on each whisker w(s) since adding a term
proportional to Uz merely serves to shift the front location. The equation (5.8)
simplifies to

∂r

∂t1
ũ0z = µ̃2zz. (5.11)

As in Section 4, we conclude from the matching conditions that ∂nµ
+
1 = ∂nµ

−
1 =

∂nµ1 while integrating (5.11) yields

µ̃2 = µ̃2(0) +

(
µ̃2z(0)− ∂r

∂t1
Û(0)

)
z +

∂r

∂t1

∫ z
0
Û(σ) dσ, (5.12)

and integrating (5.11) in z from −∞ to 0 we obtain

∂r

∂t1
Û(0) = µ̃2z

∣∣∣∣0
−∞

= µ̃2z(0)− ∂nµ
−
1 . (5.13)

To calculate µ̃2z(0), we return to (2.28), and recall that ũ0 =U while from (5.10),
we deduce that Lũ1 = B̃1Φ1. With these simplifications we have

µ̃2 =L
(
−ũ2zz − κ0ũ1z − κ1zUz +W ′′(U)ũ2 +

1

2
W ′′′(U)ũ2

1

)
+

(
−κ0∂z +W ′′′(U)B̃1Φ2

)(
B̃1Φ1 − κ0Uz

)
. (5.14)
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We may solve for ũ2 if and only if we can invert L2, which requires

µ̃2 −
(
−κ0∂z +W ′′′(U)B̃1Φ2

)(
B̃1Φ1 − κ0Uz

)
⊥Uz. (5.15)

From parity considerations the non-zero terms in the integral are∫
R

(
µ̃2 + B̃1κ0(Φ′1 +W ′′′(U)Φ2U

′)

)
U ′ dz = 0.

However using (2.17) we rewrite the last term above as∫
R
W ′′′(U)(U ′)2Φ2 dz =−

∫
R

Φ2LU ′′ dz =−
∫
R
U ′′Φ1 dz, (5.16)

so that it combines with the middle term. Moreover, using (2.16) we find,

−
∫
R

2U ′′Φ1 dz =

∫
R
L(zÛz)Φ1 dz =

∫
R
zÛ ′ dz =−

∫
R
Û dz. (5.17)

Substituting for µ̃2 from (5.12) and (5.13), we reduce the solvability condition to∫
R

(
∂nµ

−
1 z +

∂r

∂t1

∫ z
0
Û(σ) dσ

)
Ûz dz = B̃1κ0

∫
R
Û dz. (5.18)

Integrating by parts and solving for the normal velocity we obtain

Vn =− ∂r
∂t1

=
m

S1

(
∂nµ

−
1 + B̃1κ0

)
, (5.19)

where we recall the constants m and S1 from (4.28).

(c) Sharp interface limit: Quenched curvature driven flow

We summarize the t1 = εt evolution in the following model,

∆µ1 = 0 in Ω \ Γ, (5.20)

[[u]] = [[∂nµ1]] = 0 on Γ, (5.21)

V =
m

S1

(
∂nµ1 + B̃1κ0

)
on Γ. (5.22)

Indeed, (5.20)-(5.21) imply that ∆µ1 = 0 in Ω, and with periodic boundary
conditions on ∂Ω, it follows from the maximum principle that µ1 is a spatial
constant µ1(x, t) =B1(t1) for all x∈Ω. Consequently ∂nµ1 = 0 on Γ, and by
continuity of the inner and outer chemical potentials, we have µ̃1 = B̃1(s, t1) =
B1(t1), and the motion of the interface on the t1 time scale reduces to

V =
m

S1
B1(t1)κ0. (5.23)

The value of B1 is related to u1 through (5.5), and is determined in part via
the conservation of the total mass of the minority phase,

M :=

∫
Ω
u(x, t)− b− dx=

∫
Ω
u(x, 0)− b− dx, (5.24)
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which is fixed by the initial data. This value couples to the flow, (5.23); if the
evolution causes the interface Γ to lengthen, then either its width must compress
or minority phase must be drawn from the outer region, lowering the value of u1.

In the outer region Ω\Γ` we have the expansion

u= b− + ε
B1

α2
−

+O(ε2), (5.25)

while in the inner region, Γ` from (5.10) the inner expansion takes the form

u=U(z) + εB1(t1)Φ2(z) +O(ε2). (5.26)

We insert these expansions into the right-hand side of (5.24)

M =

∫
Ω\Γ`

ε
B1

α2
−
dx+

∫
Γ`

Û(z) + εB1Φ2(z) dx+O(ε2). (5.27)

Assuming that |Γ|=O(1), changing to whiskered coordinates in the localized
integrals, and using the Jacobian expansion (2.10), we find at leading order

M = ε

(
|Ω|B1

α2
−

+

∫
Q

∫ `/ε
−`/ε

Û(z) dzds

)
+O(ε2). (5.28)

We expand M =M1ε+M2ε
2 +O(ε2) and the surface area |Γ|= γ0 + εγ1 +

O(ε2), evaluate the integrals, and recall the definition of m from (4.28), to obtain

M1 =

(
|Ω|B1

α2
−

+ γ0m

)
. (5.29)

This permits us to solve for B1 in terms of the length of the interface,

B1 =
α2
−
|Ω|

(M1 − γ0m)< 0, (5.30)

where the negativity of B1 is a condition imposed on the initial data, see the
discussion following (1.8). On the other hand, when subject to a normal velocity
V , measured in time units t1, the interfacial surface area grows at the rate

d|Γ|
dt1

=

∫
Γ
κ0(s)V (s) ds, (5.31)

so that, the interfaces, Γ(t) subject to (5.23) have the leading order growth

d

dt1
γ0(t1) =

m

S1
B1

∫
Γ
κ2

0(s) ds. (5.32)

Taking ∂t1 of (5.30) we arrive at the ordinary differential equation

d

dt1
B1 =−

m2α2
−

|Ω|S1
B1

∫
Γ
κ2

0(s) ds. (5.33)

In particular, B1, and hence µ1 and u1 decay exponentially to zero on the t1
time scale. Naturally, the total mass M1, given in (5.29), is conserved under the
flow, so the equilibrium interfacial length satisfies γ∗0 = M1

m . While it is possible
that portions of the interface Γ become singular in finite time, that is Γ may fail
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to be far from self-intersection, generically one expects the interface to move an
O(1) amount in an O(ε−1) time, as measured in the unscaled x and t, before
approaching its t1 equilibrium.

For the particular case in which Γ is comprised of N disjoint, hollow balls (i.e.
spherical vesicles) of radii Ri =Ri(t1), in Ω⊂Rn, the quenched-curvature driven
flow reduces to

d

dt1
Ri =

m(n− 1)

S1

B1

Ri
, for i= 1, · · · , N, (5.34)

d

dt1
B1 =−

m2α2
−αn(n− 1)2

|Ω|S1
B1

N∑
i=1

Rn−3
i , (5.35)

where αn is the surface area of the unit ball in Rn. The conserved quantity takes
the form

M1 =
|Ω|
α2
−
B1 +mαn

N∑
i=1

Rn−1
i . (5.36)

If B1(0)> 0 then each ball grows in radius to a finite limit. If B1(0)< 0 then it is
possible individual balls may collapse to an O(ε) radius before B1 tends to zero,
in which case the evolution (5.34)-(5.35) breaks down.

6. The time scale t2 = ε2t: surface-area preserving Willmore flow

For the t2 = ε2t time scale, the outer solution has equilibrated to u0 = b− and
u1 = 0. As a consequence the outer expansion reduces to

u= b− + ε2u2 + ε3u3 + . . . , (6.1)

µ= ε2µ2 + ε3µ3 + . . . . (6.2)

Matching terms in (1.7) in the outer region yields

∆µ2 = 0. (6.3)

The inner expansion reduces to

u(x, t) = ũ(s, z, t) =UΓ + ε2ũ2 + ε3ũ3 + . . . , (6.4)

µ(x, t) = µ̃(s, z, t) = ε2µ̃2 + ε3µ̃3 + . . . , (6.5)

so that the left-hand side of (1.7) take the form

ut = ε2

(
ũt2 +∇sũ ·

∂s

∂t2

)
+ ε

∂r

∂t2
ũz = ε

∂r

∂t2
ũ0z +O(ε2). (6.6)

Inserting (6.6) and (2.29) in (1.7), the ε−2 and ε−1 terms give

0 = µ̃2zz (6.7)

∂r

∂t2
U ′ = κ0µ̃2z + µ̃3zz. (6.8)
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The equation (6.7) and matching condition (4.14) implies the existence of B2(s, t),
independent of z, such that µ̃2 =B2. In light of (6.4) we expand (2.28), to find

B2 = µ̃2 =L2ũ2 + (2κ1 + κ2
0)U ′′. (6.9)

Since both U ′′ and B2 are orthogonal to the kernel of L we can solve for ũ2,

ũ2 =B2Φ2 − (2κ1 + κ2
0)Ψ2, (6.10)

where Φ2 was introduced in (2.18) while Ψj ⊥Uz satisfies LjΨj =U ′′.
Turning to equation (6.8), it simplifies to

∂r

∂t2
U ′ = µ̃3zz. (6.11)

As in Section 4, we can conclude that ∂nµ
+
2 = ∂nµ

−
2 = ∂nµ2, so that the outer

chemical potential µ2 will solve (6.3) in all of Ω, in particular it is constant.
To derive the motion of the interface we return to (6.11) and integrate twice

from 0 to z, which yields,

µ̃3 = µ̃3(0) +

(
µ̃3z(0)− ∂r

∂t2
Û(0)

)
z +

∂r

∂t2

∫ z
0
Û(σ) dσ, (6.12)

while integrating from z from −∞ to 0, are recalling that µ̃2 is constant yields

∂r

∂t2
Û(0) = µ̃3z

∣∣∣∣0
−∞

= µ̃3z(0)− ∂nµ2 = µ̃3z(0), (6.13)

To evaluate µ̃3z(0) we need the O(ε3) terms in the inner expansion of PA from
(2.23) and (2.24). In general this is cumbersome, but since ũ0 =U and ũ1 = 0, we
simplify the expression for P and A and derive the inner chemical potential

µ̃3 =L
(
Lũ3 − κ0ũ2z − κ2z

2ũ0z

)
− κ0∂z

(
Lũ2 − κ1zũ0z

)
+

(
−κ1z∂z +W ′′′(ũ0)ũ2 −∆s − η2

)
(−κ0ũ0z). (6.14)

Using the relation (6.10) for ũ2 we re-write this in the form

L
(
Lũ3 − κ0ũ2z − κ2z

2ũ0z

)
=R2, (6.15)

where we have introduced the t2 residual

R2 := µ̃3 + κ0B2

(
Φ′1 +W ′′′(U)Φ2U

′)− (2κ1 + κ2
0)κ0

(
Ψ′1 +W ′′′(U)Ψ2U

′)+

− κ0κ1

(
U ′ + 2zU ′′

)
− (∆s + η2)κ0U

′. (6.16)

The solvability condition requires that R2 ⊥L2(R) U
′. We examine the terms one

by one. First , from (6.12) and (6.13), we have∫
R
µ̃3U

′ dz =−mµ̃3z(0) +
∂r

∂t2
(Û(0)m− S1) =−S1

∂r

∂t2
. (6.17)
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For the next two terms, since L is self-adjoint, using (2.17) and (2.16), we find∫
R

(Φ′1 +W ′′′(U)Φ2U
′)U ′ dz =−2

∫
R
U ′′Φ1 dz =

∫
R
L(zU ′)Φ1 dz =−m, (6.18)∫

R
(Ψ′1 +W ′′′(U)Ψ2U

′)U ′ dz =

∫
R
L(zU ′)Ψ1 dz =

∫
R
zU ′U ′′ dz =−1

2
S2, (6.19)

where m is defined in (4.28) and we have introduced

S2 :=

∫
R

(U ′)2 dz. (6.20)

The fourth term yields no contribution,∫
R

(U ′ + 2zU ′′)U ′ dz = 0. (6.21)

Inserting these results into the solvability condition, and isolating the normal
velocity, we find

Vn =− ∂r
∂t2

=
S2

S1

(
∆s + η2 +

m

S2
B2 −

(
κ1 +

κ2
0

2

))
κ0. (6.22)

(a)The mass constraint

As was the case for the t1 time scale, the value B2 =B2(t2) of the outer
chemical potential, µ2, is determined by the conservation of total mass of the
minority phase, whose integral we break over the inner and outer regions

M :=

∫
Ω
u(x, t)− b− dx=

∫
Ω\Γ`

(u− b−) dx+

∫
Γ`

(ũ− b−) dx. (6.23)

In the outer region, the solution takes the form (3.1) with u0 = b−, u1 = 0, and
B2 = µ2 = [W ′′(u0)]2u2 = α2

−u2. In particular u2 =B2α
−2
− is a spatial constant.

Since |Γ|=O(1), the outer integral reduces to∫
Ω\Γ`

(u− b−) dx=

∫
Ω\Γ`

(ε2u2 +O(ε3)) dx= ε2B2|Ω|
α2
−

+O(ε3). (6.24)

In the inner domain u has an expansion (2.20) with ũ0 =U(z), ũ1 = 0. Using
(2.13) to change to the whiskered coordinates and expanding the Jacobian from
(2.10), the inner integral reduces to∫

Γ`

(ũ− b−)dx=

∫
Γ

∫
|z|≤`/ε

(ũ− b−)J(s, z) dzds, (6.25)

=

∫
Γ

∫
|z|≤`/ε

Û(z)(ε+ ε2zκ0) dzds+O(ε3) = εm|Γ|+O(ε3).

Combining the outer, (6.24), and inner, (6.25), integrals, we find the balance

M = εm|Γ|+ ε2B2α
−2|Ω|+O(ε3). (6.26)



Motion of Bilayers 21

Scaling the minority mass as M = εM1 and expanding the interfacial surface area
as |Γ|= γ0 + εγ1 + · · · , we find that at leading order all the minority phase is
located on the interface, whose surface area is fixed over the t2 evolution

γ0 =m−1M1. (6.27)

At second order, we obtain an expression for the outer chemical potential

B2 =−mγ1
α2
−
|Ω|

. (6.28)

Recalling the relation (5.31), we have∫
Γ
κ0(s)Vn(s) ds=

d|Γ|
dt2

= ε
dγ1

dt2
+O(ε2) =O(ε). (6.29)

In particular, since the interface surface area is conserved to leading order, this
forces the value of B2,

B2 =−S2

m

∫
Γ−|∇sκ0|2 + η2κ

2
0 − (κ1 + 1

2κ
2
0)κ2

0 ds∫
Γ κ

2
0 ds

. (6.30)

We may express the normal velocity more succinctly by introducing the zero-
average, mean-curvature-weighted projection associated to the interface Γ,

ΠΓ[f ] := f − κ0

∫
Γ f(s)κ0(s) ds∫

Γ κ
2
0(s) ds

, (6.31)

which maps L1(Γ) into itself with the property that the normal velocity ΠΓV
preserves surface area. The leading order evolution of the interface Γ, at the t2
time scale can be written as

Vn =
S2

S1
ΠΓ

[(
∆s −

(
κ1 +

κ2
0

2

))
κ0

]
, (6.32)

where the constant η2 drops out since ΠΓ[η2κ0] = 0.

(b)Evolution of disjoint spherical vesicles

As in section 5, consider an initial configuration of N well-separated vesicles of
radii Ri =Ri(t2) contained in a periodic domain Ω⊂Rn. InRn, on the i’th sphere
each curvature kj =R−1

i , for j = 1, · · · , n− 1, which yields the relations κ0 = (n−
1)R−1

i and κ1 =−(n− 1)R−2
i . The normal velocity, (6.32), can be written as

dRi
dt2

=−(n− 1)2(n− 3)S2

2S1
ΠΓ

[
R−3(s)

]
, (6.33)

where R(s) :=Ri for s on the i’th sphere. The integrals in the projection take the
value ∫

ΓR
−3(s)κ0(s) ds∫
Γ κ

2
0(s) ds

=
1

n− 1

∑n−1
j=1 R

n−5
j∑n−1

j=1 R
n−3
j

=:
1

R2
c

, (6.34)
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where Rc =Rc(t2) defines a critical radius that varies in time. So the evolution
reduces to

dRi
dt

=−(n− 1)2(n− 3)S2

2S1

1

Ri

[
1

R2
i

− 1

R2
c

]
. (6.35)

In space dimension n= 2, the coefficient is positive and one can verify that balls
with radii bigger than Rc shrink, while those with radii smaller than Rc grow. In
space dimension n= 3 the coefficient is zero and the radii do not change on the
t2 time scale. For n≥ 4, balls with radii larger than Rc grow, while those with
radii smaller than Rc shrink and disappear in finite time, leading to a coarsening
phenomenon and eventually a winner-take all scenario, assuming the stability of
the underlying structures.

7. Conclusion

The Functionalized Cahn-Hilliard equation supports different classes of interfaces
than the Cahn-Hilliard equation, and these interfaces manifest significantly
different dynamics, in particular collections of closed bilayers evolve on long time
scales according to a surface area preserving Willmore flow. More specifically
the long-range interaction between single-layer interfaces in the Cahn-Hilliard
equation is mediated through a Mullins-Sekerka problem. For the FCH gradient
flow the long-range interaction is mediated through the spatially constant outer
chemical potential – its value below equilibrium dictates the growth or decay of
each bilayer.

There are many possible areas to investigate, both in model development
and model analysis. It is quite intriguing to consider extensions beyond binary
mixtures, indeed a preliminary discussion in this direction can be found in
[Gavish et al (2012)]. For example, bilayers need not only form a barrier between
the same phase, but can also separate two distinct phases. This requires a three-
phase model, one for the surfactant which forms the separating membrane, and
two for the distinct separated phases. The bilayer structure is still required to
incorporate the competition for a scarce membrane/surfactant phase; moreover
such a ‘third-phase’ membrane can rupture, resulting in mixing of the two bulk
phases, as well as support mergings between distinct membrane structures.

The most challenging issues are the competition between the wide variety
of possible stable morphologies supported by the FCH gradient flows. In on-
going work, [Dai and Promislow (2013)], the authors have extended the analysis
presented here to incorporate a co-dimension two, or closed cylindrical pore
structures. As in the situation investigated in this work, the competition between
between co-exisiting bilayers and pores for scarce surfactant phase is mediated
through the constant value of the outer chemical potential, this competition is
quite evocative of the “phospholipid war” proposed in [Budin & Szostak (2011)]
as a fundamental evolutionary force in early cell membranes. However this analysis
avoids the central issue: the role of tremendous number of locally stable “defect
structures” supported by the FCH free energy. These are the end-caps of open
pores and the rims of open bilayers – called bicelles in the biological literature,
[Shinoda et al (2011)]. Indeed, it is tempting to conjecture that the FCH model
will provide a more accurate estimation of the free energy of highly curved
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interfaces than the usual Cahn-Hilliard free energy, which is known to significantly
underestimate this energy, [Du et al (2004), ?]. This presumption arises from the
fact that for co-dimension one interfaces the squared variational derivative term
in the FCH energy naturally yields a contribution proportional to

∫
Γ ε

2H2 dS,
where H is the mean curvature of the co-dimension one interface Γ. However for
a strongly curved interface the coordinate system presented in Lemma 1 becomes
singular when H ∼ ε−1 at which point the bilayer structure is likely to degenerate,
quite likely resulting in the generation of a defect structure. The mathematical
characterization of these defect structures, their role in mergings and bifurcations,
and their impact on competitive geometric evolution and Γ-limits awaits those
with the requisite curiosity.
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