Math 930 Problem Set 4

Due Monday, September 29

Problem 4.1 Many interesting manifolds arise as *Riemannian submersions*. To understand this idea, do Problem 3.8 on page 45 of the textbook.

Problem 4.2 A smooth function $\phi : M \to \mathbb{R}$ determines a 1-form $d\phi$. If there is an affine connection on M then the covariant Hessian of ϕ is defined by

$$(\nabla^2 \phi)(X, Y) = \nabla_X(\delta \phi)(Y).$$

(which differs slightly from the equation at the bottom of page 54 of the textbook).

- (a) Show that $(\nabla^2 \phi)(X, Y) = X \cdot Y \phi (\nabla_X Y) \phi$.
- (b) Prove that $\nabla^2 \phi$ is a $\binom{2}{0}$ tensor.
- (c) Show that a connection ∇ is torsion-free if and only if the covariant Hessian $\nabla^2 \phi$ is a symmetric tensor for every $\phi \in C^{\infty}(M)$.

Problem 4.3 Do Problem 4.4 on page 63 of the textbook.

Problem 4.4 Do Exercise 5.7 on page 82 of the textbook.

Problem 4.5 Lobatchevski's non-euclidean geometry is the metric

$$g = \frac{1}{y^2} \left(dx \otimes dx + dy \otimes dy \right)$$

on the upper half-plane $H = \{(x, y) \in \mathbb{R}^2 | y > 0\}$ (thus $g_{11} = g_{22} = \frac{1}{y^2}$ and $g_{12} = 0$).

- (a) Show that the Christoffel symbols of the Levi-Civita connection are given by $\Gamma_{11}^1 = \Gamma_{22}^1 = \Gamma_{12}^2 = 0, \qquad \Gamma_{11}^2 = \frac{1}{y}, \qquad \Gamma_{12}^1 = \Gamma_{22}^2 = -\frac{1}{y}.$
- (b) Fix the vector $X_0 = (0,1) \in T_{(0,1}H$ and let X_t be its parallel transport along the line $\gamma(t) = (t,1)$. Show that X_t is the unit vector that makes an angle t with the positive x-axis, measured *clockwise*.

Hint: Since X_t is a unit vector and y = 1, we can write $X_t = (\cos \theta(t), \sin \theta(t))$ for some function $\theta(t)$. Write down the equation of parallel transport (using the above Γ_{ij}^k), and show that $\frac{d\theta}{dt} = -1$.