Math 930 Problem Set 3

Due Friday, September 19

Problem 3.1 The energy of a path $\gamma : [a, b] \to M$ is

$$E(\gamma) = \int_a^b \|\dot{\gamma}\|^2 \ ds$$

where $||X||^2$ denotes g(X, X). Use Hölder's inequality to prove that

$$L(\gamma)^2 \le (b-a)E(\gamma)$$

with equality if and only if γ is parameterized proportionally to arclength.

Problem 3.2 Let $E \to M$ be a vector bundle over a manifold. Use a partition of unity to prove that there exists a connection ∇ on E.

Suggestion: take $\nabla_{\partial/\partial x^i}$ to be $\frac{\partial}{\partial x^i}$ in each local trivialization.

Problem 3.3 Again, let $E \to M$ be a vector bundle, now with a metric h. Show that if a connection ∇ on E is compatible with the metric (i.e. $\nabla h = 0$)then, for each path $\gamma : [a, b] \to M$ from $p = \gamma(a)$ to $\gamma(b)$, the parallel transport operator $P_{\gamma,t} : E_p \to E_q$ is an isometry.

Hint: Fix vectors $\xi, \eta \in E_p$, let $\xi(t) = P_{\gamma,t}\xi$ and $\eta(t) = P_{\gamma,t}\eta$ be their extensions to sections parallel along γ and differentiate $\langle \xi_t, \eta_t \rangle = h(\xi_t, \eta_t)$ with respect to t.

Problem 3.4 Let E and ∇ be as in Problem 3.3. Show that parallel transport determines the connection in the following sense.

Given a vector field X defined in a neighborhood of $p \in M$, let $\gamma(t)$ be a path in M with $\gamma(0) = p$ and $\dot{\gamma}(0) = X(p)$. Show that for each section ξ of E,

$$\left(\nabla_X \xi\right)_p = \lim_{t \to 0} \frac{P_{\gamma,t}^{-1} \xi(\gamma(t)) - \xi(p)}{t}$$

Start of proof. Choose a local basis $\{e_{\alpha}\}$ of the fiber E_p of E at p, and extend it to a basis $\{e_{\alpha}(t)\}$ of $E_{(\gamma(t)}$ by parallel transport (so $\nabla_{\dot{\gamma}}e_{\alpha} = 0$), and then, for good measure, extend it to a neighborhood of γ . In this basis,

$$\xi(t) = \sum_{\alpha} \xi^{\alpha}(t) e_{\alpha}(t)$$

- (a) Show that the parallel extension $\hat{\xi}(t) = P_{\gamma,t}\xi_0$ is given by keeping the coefficients ξ^{α} constant.
- (b) Evaluate at t = 0 to get a expression for $(\nabla_X \xi)_p$ in this basis.
- (c) Show that $P_{\gamma,s}^{-1}(\xi(t)) = \sum \xi^{\alpha}(t) e_{\alpha}(t-s)$.
- (d) Now calculate the difference quotient.