Math 930 Problem Set 2

Due Friday, September 12

Problem 2.1. Let $\{e_1, \ldots, e_n\}$ be a basis of a vector space V and $\{f_i, \ldots, f_m\}$ a basis of W. We can then identify vectors in V with column vectors by

(0.1)
$$v = \sum v^i e_i \quad \longleftrightarrow \quad \begin{pmatrix} v^* \\ v^2 \\ \vdots \\ v^n \end{pmatrix}.$$

Given a linear map $L: V \to W$, we can write $Le_i = \sum_j A_i^j f_j$ for some numbers A_i^j , and identify

(0.2)
$$Lv = \sum_{i} v^{i} L(e_{i}) = \sum_{i,j} A_{i}^{j} v^{i} f_{j} \longleftrightarrow \left(Av\right)$$

where A is the matrix with A_i^j in the j^{th} row and i^{th} column.

Now let $\{e^i\}$ and $\{f^j\}$ be the dual bases of V^* and W^* .

- (a) For $\alpha \in V^*$, write down a correspondence similar to (0.1) above.
- (b) Find a correspondence similar to (0.2) for the dual map $L^*\alpha$, using a matrix B.
- (c) How are the matrices A and B related?

Problem 2.2. Work out the following special case of the Lemma on page 21 of Lee's book. A map

$$A:\mathcal{T}(M)\to C^\infty(M)$$

is called *tensorial* if it is linear over $C^{\infty}(M)$. Prove that such a map defines a smooth 1-form on M, as follows.

- (a) Choose local coordinates $\{x^i\}$ and set $\alpha = \sum A_i(x) dx^i$ where A_i is obtained by applying A to the basis vector fields.
- (b) Show that α is independent of coordinates by choosing coordinates $\{y^j\}$ and showing that the procedure in (a) defines the same 1-form α .

Problem 2.3 Let (M, g) be a Riemannian manifold with metric $g = f^*g_0$ induced by an embedding $f: M \to \mathbb{R}^m$ (Here $g_0(X, Y) = X \cdot Y$ is the euclidean metric on \mathbb{R}^n). Let $\{x^1, \ldots, x^n\}$ be coordinates on $U \subset M$, and write $f|_U$ as

$$(f^1(x^1,...,x^n), f^2(x^1,...,x^n),...,f^m(x^1,...,x^n))$$

What is the matrix g_{ij} in terms of f?

Problem 2.4 Let H be the upper half-space in \mathbb{R}^2 , i.e. $H = \{(x, y) | y > 0\}$. Let $f : H \to \mathbb{R}^2$ be the map $f(x, y) = (x, \log y)$. Find f^*g_0 .