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CHAPTER 3

HOMOGENEOUS SPACES

In this chapter we shall study invariant metrics on homogeneous spaces
— spaces on which a Lie group acts transitively. Homogeneous spaces are,
in a sense, the nicest examples of riemannian manifolds and are good
spaces on which to test conjectures.

We shall need some elementary facts about Lie groups, which we shall
summarize without proof. The reader who is not familiar with this material
should consult Chevalley [1946], Helgason [1962], Sternberg [1964]. We
shall also use Frobenius’ theorem and various properties of the Lie
derivative. (See Sternberg [1964]).

3.1. Definition. A Lie group G is a smooth manifold (which we do not
assume connected), which has the structure of a group in such a way that
the map ¢ : Gx G—G defined by ¢(x,y)=x-y~ ' is smooth.

It can be shown that a C* Lie group has a compatible real analytic
structure (see Chevalley [1946]). Canonically associated to a Lie group is
its Lie algebra.

3.2. Definition. A Lie algebra is a vector space V together withamap [, ]:
Vx V-V such that

M) [ayVi+a, Vo, Wl=a,[Vy, Wlta,[V,, W]
@V, wl=-[w, V]
(3) [Vl’ [V27 V3]]+[V3s [VI’ V2]]+[V2a [V39 Vl]] =0

The last relation is called the Jacobi identity.

3.3. Example. If M is a smooth manifold, then y(M) is a Lie algebra (of
infinite dimension) with respect to the bracket operation [X,Y](f) =
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(XY—YX)f. To check the Jacobi indentity is straightforward:

Ly, Z+[Z, [X, YTI+1Y, [Z, X]]
=X(YZ-ZY)—(YZ—-ZY)X+Z(XY-YX)—(XY—-YX)Z
+Y(ZX—XZ)—(ZX—XZ)Y
=XYZ—-XZY~YZX+ZYX+ZXY—ZYX—XYZ+YXZ
+YZX~YXZ—ZXY+XZY =0.

We shall now describe the Lie algebra associated with a Lie group G.
If G 1s a Lie group, we have for each geG the diffeomorphisms L, : g, —gg,
and R, :g,—g,g. We say that Vey(G) is left invariant (respectively right
invariant) if dL,(V(g,))= V(gg,) (respectively dR,(V(g.))=(V(g9.)
If V is left invariant, then it is uniquely determined by ¥'(e), where e is the
identity element of G. :

Conversely VeG,=g gives rise to a left invariant vector field (Liv.f)
V(g9)=dL,(V(e)). Since multiplication in G is smooth, so is a Liv.f.
Therefore the Li.v.f.’s form an n-dimensional subspace of x(G), and we claim
that the bracket of two Li.v.f.’s is again left invariant. In fact it follows from
the definition of Lie bracket that for any diffeomorphism ¢ : M— M and
X, Yey (M),

do[X, Y]=[do(X), do(Y)].
Then
dL,[X, Y]1=[dL,(X), dL, ()] =[X, Y]

if X, Y are L.iv.f’s. It follows that the Liv.f.’s form a Lie algebra g, the Lie
algebra of G. Of course the choice of li.v.f. rather than rivf. is only a
convention. The r.i.v.f.’s also form a Lie algebra isomorphic to the Li.v.f.’s.
It is often convenient to identify g with G, as above, and we will use both
interpretations simultaneously. We note that as a consequence of this
discussion, it follows that the tangent bundle of G is trivial. If X denotes
the r.i.v.f. such that X (e) = X(e) for some Liv.f. X, then we shall sce in
Proposition 3.7 that

[X3 Y:”e = [—"X, _Y]]e = [ﬁ]]e

Hence the map  X— —X induces the isomorphism between the two Lie
algebras.

3.4. Proposition. Let G, —G, be a continuous homomorphism of Lie groups.
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Then ¢ is a real analytic map and hence induces do, which is a homomorphism
of Lie algebras.

It can be shown that if G is simply connected and f/: G, —G,, is a homo-
morphism of Lie algebras, then there exists a unique analytic homomorphism
¢ : G,—G, such that dgp = f. Also, any finite-dimensional Lie aigebra is the
Lie algebra of a simply connected Lie group. In this way the classification
of simply connected Lie groups can be reduced to the algebraic problem of
classification of Lie algebras. In case g is semi-simple (defined before
Proposition 3.39), this classification can be carried out explicitly. Finally,
if G is a Lie group, any covering space of G is a Lie group in a natural way
with Lie algebra isomorphic to g.

A subspace b of g which is closed under [ , ] is called a subalgebra of g.
A subalgebra ¥ such that [x, 3}« I for all xeq is called an ideal.

3.5. Propesition. If' b is a subalgebra of g (considered as a Lie algebra of
vector fields), then Y defines an involutive distribution and the maximal
connected integral manifold H through e is a subgroup (which will not, in
general, be a closed subset of G).* Conversely, if H< G is a Lie subgroup
(a subgroup which is also a 1-1 immersed submanifold), then the tangent
space b to H at e is a subalgebra of o. H is a normal subgroup if and only if
b is an ideal.

As a special case of Proposition 3.5, we may take b to be any 1-dimensional
subspace of g. Then [b, b] = 0 = b. The subgroup corresponding to such an b
is called a 1-parameter subgroup. For any veG, = g, we have a natural homo-
morphism of Lie algebras do : R—g with de (1) =v, and hence a Lie group
homomorphism ¢ : R—G mapping R onto the integral curve through the
origin of the 1i.v.f. corresponding to V. We denote ¢ (1) by ¢”. Then et &/’ =
e®1t12® Moreover, there exists a neighborhood U of 0eG, such that
e : U—-(G is a diffeomorphism onto a neighborhood of the identity on G.

3.6. Proposition. If ¢ : G,—G, is a homomorphism, then ¢(e°) = e%*®,

The following proposition will also be useful.

* H is in general only a 1-1 immersed submanifold, so its manifold topology is not
always the relative topology.
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3.7. Proposition.

(etx i _tx) = [X: Y]]e = - [Xa Y:”e'

ot +=0,5=0

A word about the precise meaning of the expression in Proposition 3.7.
For each fixed 7, € ¢ e™* is a curve through the origin.

a (etx esye—tx)
is then a tangent vector in G,. As we let ¢ vary,

0 (etx esye—tx)

describes a curve in G,. It makes sense to differentiate this curve at 7 =0
and the result is a tangent vector in G,.

Proof. Let ¢, be the 1-parameter group of diffeomorphisms generated by X.
Then by the alternative definition of Lie bracket (see Sternberg [1964],

[X,Y] = i do- (o))

Now the integral curve Y of through ¢(¢) is equal to e e by the left
invariance of Y. Then

l

0
[X, Y] = % 5 @ (e7e”)

t=0,5s=0

But for arbitrary geG, ¢_,(g) is by definition the endpoint of the integral
curve of X through g parameterized on the interval [0, —¢]. By left
invariance of the integral curves of X we then have

®_g =ge " = R.-ux(g).

Hence

0
[X, Y] - g (etxesye—tx)
0t 0

t Os t=0,5=0

The other equation follows similarly. [
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- 3.8, Example. Let M" = R™ denote the space of nx n matrices

GL(n) = {meM | det m==0}.

Since det(m, xm,) = det(m,) det(m,) and det(Z) = 1, it follows that GL(n)
is a group. GL(n) is in a natural way an open subset of R" and hence a
manifold. Define

2
™ = I+tm+1t> %+

The series can easily be shown to converge for all ¢ to a continuous function
satisfying

1o ta2v titi)v
1 z:e(x 2).

e ©

Moreover, for any m,

"™ = det(e™)

(as follows easily by using the Jordan canonical form). It follows that the
{e} are the parameter subgroups of GL(n), and the Lie algebra gl(n) of
GL(n) is naturally M". Now by Proposition 3.7,

[my, mp] = — —"( e eI
0t d t=0,5=0
_ 00
{(I—}—tml Yy I Hsmy + ) (I—tmyg + --)}
Gt t=0,5=0
00
== — (I+ts(mymy—mymy) + =)
Ot Os 1=0,5=0

= My M, — My My .

We refer the reader to Chevalley [1946] for the description of the standard
matrix subgroups of GL(n).

3.9. Example. Myers and Steenrod [1939] have shown that the isometry
group of any riemannian manifold is a Lie group. We will be using this Tact
implicitly below.

Given a Lie group G of dimension 7, there is a natural homomorphism,
the adjoint representation, from G to GL(g) ~ GL(n), defined as follows.
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3.10. Definition. Ad,(x)=dR,odL,_, (x).

Clearly Ad,,,. = Ad, Ad,,. Since for each g, the map A—>ghg™! is an auto-
morphism of G, it follows that Ad(g) is an automorphism of g,

Ad,y ([x, y]) = [Ad, (x), Ad,(»)].

We set ad = d(Ad). In other words ad : g—gl(a) is the differential of the
adjoint representation. We see from Proposition 3.7 that

(3.10) ad () = % 69 (€ e e =[xl

Ot Os t=0,5=0
From the Jacobi identity it follows that ad_ is a derivation,

ad.[y, 2] =[ad.(¥), Z]+[y, ad.(2)].

From the remark after proposition 3.4 it follows that Ad e* = ¢~
We will now begin the study of homogeneous spaces.

3.12. Definition. If G is a connected Lie group and H a closed subgroup,
G/H is the space of cosets {gH}, n: G—G/H is defined by g—[gH]. G/H
is called a homogeneous space.

Notice that for AeG we have h(H)=[H] if and only if heH.

3.13. Proposition. A subgroup which is a closed subset is an analytic sub-
manifold and hence a Lie subgroup.

3.14. Proposition. G/H has a unique real analytic structure for which
n: G—=G/H is an analytic fibration.

There is a natural smooth left action of G on G/H defined by g,[gH] =
[g19H]. The diffeomorphism, Lg, of G/H induced by g will sometimes
be denoted g. Since g,g~ '[gH]=[g, H], the action of G is transitive;
hence the terminology, homogeneous space. We want to study metrics on
G/H for which G acts by isometries. Such metrics are called invariant. In
G itself we may also consider the right zaction of G. Metrics invarient
under both left and right actions are called di-invarient. We should
point out that invariant metrics do not exist for all G/H. Moreover,
when they do exist, G may not be the full group G of isometries. H, the
largest group of isometries fixing some point [gH]eG/H, is called the
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isotropy group of that point. H is identified with a closed subgroup of tt
orthogonal group of G/Hy;, and hence is compact. This identification come
from the fact that on a connected riemannian manifold an isometry
determined by its differential at a single point. It is easy to verify this t
using the fact that isometries commute with the exponential map. That |
is closed follows from the Cartan-Ambrose~Hicks Theorem.

G is said to act effectively on G/H if L,=1 (the identity map) implic
g=-e. Let H, be the largest subgroup of H which is normal in G. Set

G*=G|H,, H*=H/H,.

Then it is straightforward to check that G*/H* is diffeomorphic to G/.
and that G* acts effectively on G*/H*. This reduction may require som
work in dealing with a specific example. If G acts effectively, then it may t
identified with a Lie subgroup of G. (Again this identification is 1-1 but nc
always an embedding.) In this case it is not hard to see that

dim 6 —dim G = dim A —dim H.

The tangent space to the point [H] of G/H can be naturally identific
with g/b. Further, since the action of G on G and G/H commutes with s
we have for he H and veg

he H=he'"h 1 H.

Ady and ad, leave b invariant and hence act naturally on g/b. Differer
tiating with respect to ¢ yields

(3.15) dL,(v) = n(Ad,(v)),

where 7 : g—g/b is the natural projection.

3.16. Proposition. (1) The set of G-invariant metrics on G/H is natural,
isomorphic to the set of scalar products { , > on g/b which are invariant unde
the action of Adg on gfb.

(2) If H is connected, a scalar product { , ) is invariant under Ady if an
only if for each heb, ad, is skew symmetric with respect to { , .

(3) If G acts effectively on G/H, then G/H admits a G-invariant metric
and only if the closure cl (Ady) of the group Ady < GL(g) is compact.

4 If G acts effectively on GJH, and if ¢ admits a decomposition ¢ =p @
with Ady (p) = p then G-invariant metrics on G[H are in 1-1 correspondenc
with Adg-invariant scalar products on p. These exist if and only if 1
closure of the group Adg|vp is compact. Conversely, if G/H admits
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G-invariant metric, then G admits a left invariant metric which is right
invariant under H, and the restriction of this metric to H is bi-invariant.

Setting p =b* gives a decomposition as above.

(5) I H is connected, the condition Ady(p)cp is equivalent to
b, pl = p.

(6) If G is compact, then G admits a bi-invariant metric.

Proof. (1) Given a left invariant metric on G/H, by restricting to the tangent
space at [H] we get an inner product on g/b. By (3.15), { , > is invariant
under Ady. Conversely, given such a { , > we get an inner product on
G/Hpyy. Given [gH] we may define an inner product { , >y on G/Hpypm
by setting
{6, Yopgmy = <ALy— 1 (), ALy 1 (M 1m-
Since
<dth_1(x), dth-l(Y»[H] = {dL,,- dLg‘l(x)a di, dLg“(y)>[H]
= ALy~ (), dLy-s (Mpm

if ¢, > is invariant under Ady, { , Dpm is independent of which member
of [gH] we chose to define it. In this way we get a riemannian metric on
G/H which is clearly left invariant.

(2) That the condition

<Adetu X, Adetr} y> = <X, Y>
for all x,yeq/b and veb implies
{ad,x,y) + (x,ad,y> =0

follows from Proposition 3.7. Conversely, if we assume the second
condition, then by Proposition 3.6, for all x, y, v,

(AdgwX, Adewy) = (*x, e*vy) = 3 (e™x, (t/n!) (ad,)" y>
=3 (=" (Fm) (ad)" ¥ x, y) = (7 e, ).

Now the set of elements for which the claim holds obviously forms a‘

closed subgroup H < H. On the other hand, since every element of some
" open neighborhood U of the identity is of the form e, the claim holds for
elements of U. Thus the Lie algebra of H must be equal to that of H. Since
H is connected, H = H. '
(3) Let G*, H* denote the isometry and isotropy groups of G/H. Since
G acts effectively, we have a 1-1 homomorphism G—G* inducing g—g*.
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The group H* is compact and therefore so is its image Ady. : g*—g*. Let o
be a right invariant volume form on Adg., coming, for example, from a
right invariant metric. Then for any inner product < , > on g*, define

%, y) = (Adp (%), Adi () @ (h¥).

Adgr*

Then Adg. acts by isometries with respect to  , » because

CAdy, (%), Ady, (1)) = J (Adj»Ady, (x), AdwAd,, (1)) o (hY).

Adg*

Since Ad is a homomorphism and o is right invariant, this becomes
J CAdyep, (), Adyes,, (9)) R, -1 (hhy)
Adg*

B J Adg* (Ady(x), Adye(3)) dRy, -+ o (h").

Since R, - is a diffeomorphism, this becomes
J (Ady(x), Adye()y 0(h) = KX, ¥ .
Adg*

Now the restriction of € , ) to g is an inner product with respect to which
Ady acts by isometries. Hence Ady, is contained in the (compact) orthogonal
group with respect to this inner product, which implies that its closure is
compact. Conversely, if the closure of Ady is compact, in a manner similar
to the above we may construct an inner product € , » on g such that Ady
acts by isometries. Let p = b* with respect to { , ». Then ¢ , |, induces
an Ady-invariant inner product on gfh under the identification p : p—g/b.

(4) In view of (1), (3) this is straightforward to check.

(5) This follows as in (2).

(6) The proof is similar to that of (3). [J

In Proposition 3.34 we will show that a simply connected Lie group H
which admits a bi-invariant metric is the product of a compact group and
a vector group R* which is the center of H.

The following is an example of a homogeneous space which does not
admit a left invariant metric.

3.17. Example.
SL(n)/SL(n—1);
SL(n) = {meM"|detm=1};
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SL(n—1) may be embedded in SL(n) by setting

]
m ‘

0 m
fOI a}l ”lESL(n_ 1),

SL(n) acts effectively on SL(m)/SL(n—1).
The reader may verify that SL(n—1) is not the product of a compact group
and a vector group (see Proposition 3.34).

We are now going to compute the curvature of a left invariant metric on
G/H. We begin with the special case of a left invariant metric on G itself.
We use the notation 4* to denote the adjoint of the linear transformation 4
with respect to a given inner product.

3.18. Proposition. Ler { , > be a left invariant metric on G, and let X,Y,Z
be Liv. f.’s. Then:
(D Vx Y=3{[X, Y]—(ad)*(Y) — (ady)* (X)};
@ RX,NZ, W =LV3 Z,Vy W —LVy Z,Vy W) —Vix nZ, W);
(3) (R(X, V)7, X> = |[(adp)* (¥) + (ady)* ()]
—{(adp)* (X), (adp)* (V)> -2 |I[X, Y1|I?
—3IIX, Y1, YL, X5 —3L<[Y, X1, X1, ¥);
(4) 1-parameter subgroups are geodesics if and only for all X, ad}(X)=0.

Proof. By left invariance we have
0=XY,Z) =<V Y, Z)+(Y,VxZ),
0=YX, Z) =<{Vy X, Z)>+<{X,Vy Z),
0=Z(X,Y>=( VX, YO+L{X,V, Y.

Computing as in Chapter 1, Section 0 gives

(Vi ¥, Z5 =3{X, YL, Z5— <Y, [X, ZD =X, Y, ZD},
from which (1) readily follows.
(2) By left invariance, X(VyZ, W) = 0. Therefore,
ViVyZ, W) = —(VyZ, Vx W5,
L VyVyZ, W) =<{VxZ,Vy W5,
—<V[X,sz> Wh=— <V[X,Y]Z, w>.
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(2) follows by adding these equations.
(3) follows from (1) and (2).
(4) is immediate from (1). O

In the case of a bi-invariant metric, (3) above simplifies considerably.

3.19. Corollary. If { , > is bi-invariant, then:

() VyY=3[X, Y];
?) (R(X, V)Z, Wy =+(IX, WL Y, ZD - X, ZL,[Y, WD);
(3) (RX, Y, Xy =%|[X, Y1I*.
In particular the sectional curvature is nonnegative.
(4) 1-parameter subgroups are geodesics.

Proof. Since ¢ , ) is bi-invariant, by Proposition 3.16 we have
Y IX, ZD = =<V, [Z, X1y =<[Z, Y], X}.

(1) now follows from the proof of (1) of Proposition 3.18.
(2) Substituting (1) into (2) of Proposition 3.18 gives

(RX, V)Z, Wy =1<[X, ZL[Y, W —I<IY, ZL [X, WD)

Using the Jacobi identity, the last term may be rewritten as

—3Y,1Z, X1, WH—4{X[Y, Z], W) =

and (2) follows.
(3) follows immediately from (2).
(4) 1-parameter subgroups are the orbits of Li.v.f.’s, so (1) implies (4). [

In order to generalize our formulas to the case of an arbitrary homo-
geneous space, we will prove a formula of O’Neill [1966], on the curvature
of riemannian submersions. A submersion is a differentiable mar
7M™ 5 N™ such that at each point dz has rank n. It follows from the
implicit-function theorem that n~'(p) is a smooth k-dimensional sub-
manifold of M for all peN. Let ¥ denote the tangent space to n” (p) al
gen ™ '(p). Assume that M and N have riemannian metrics, and set H = V*
We call H and V the horizontal and vertical subspaces, respectively, and we
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use H and V as superscripts to denote horizontal and vertical components.
7 is called a riemannian submersion if dm | H is an isometry. If X is a vector
field on N, then there is a unique vector field X on M such that Xe H and

dn(X)=X. Also if ¢:[0,1]-»N is a piecewise smooth curve, and

gen 1(c(0)), then there is a unique curve ¢:[0,1]->M such that
¢(0)=gq, n-c=c, ¢ (t)eH. This follows from the theory of ordinary
differential equations exactly as in the special case in which A is a principal
bundle over N and H defines a connection; see Kobayashi and Nomizu
[1963, 1969].

We now give a formula which relates the curvature K(X, Y) of a plane
section spanned by the orthonormal vectors X, Y to that of the section
spanned by X, Y at p. First of all, note that the expression [X, Y]"|, depends
only on the values of X, Y at p. In fact, if T is a vector field tangent to V,
then

X, V1,15 =LV Y-VyX, T)
= <Xn v)”11>—<75 VXT>'

3.20. Theorem (O’Neill). K(X, ¥) = K(X, V)+3[[X, Y1"II%.

Thus riemannian submersions are curvature nondecreasing on the
horizontal sections.

et n: M—N be any smooth map. Vector fields X, X are called
r-related if at all points gen ™ (p),

dn(¥)=X.
In particular X, X as above are m-related. We shall make use of the

following lemma.

321. Lemma. If X,X are ¥,Y are n-related, then [X, Y] is n-related to
X, Yl

Proof. For any function f: N>R,
X (fom) = dn(X)(f) = X(f).
Therefore at gen™*(p),
dn (X, YDf = (X, YD(fom) = XY - T ) (for) = XY - YX)f = [X, YI(/).
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Since a tangent vector is determined by its action on functions, the lemma
follows. ]

Proof of Theorem 3.20. Lemma 3.21, together with the riemannian sub-
mersion property, has the consequence that given X,Y,Z on N and a vertical

field T on M,
(3.22) (X, Y1, Z) =X, Y], Z)>, (X, T, Y>=0.
Then the formula for the riemannian connection of Chapter 1,.Section 0,
together with (3.22) and the riemannian submersion property, gives
(3.23) (Ne¥, Z)=3{X(, S+ Y(X,Zy-ZLX, Y
+(IX, Y1, Zy—<IX, Z1, ¥> [V, Z}, XD}
=<(VxY, Z5,
while if T is vertical,
V37, Ty =3{XKY, T)+Y<{X, T>— T{X,Y)
(X, Y, Ty—<IX, T, T> (¥, T], XO}-

Since (X, Y =<X, Y and T'is vertical, T¢X,Y) =0. The first two terms
on the right clearly vanish as do the Jast two, by (3.22). Therefore

(3.24) VY, T>=3(X, Y], T>.
Thus by (3.23) and (3.24),
(3.25) VY = (Vi V) +3[X. 71",

Also, by (3.23) and (3.24),
(3.26) VX, Y)= (VeT, YO+T, XL, YD
= (VRY, Ty = —3(X, Y], 7> = — X, Y, .
Now by (3.23) it is clear that
(3.27) X<(VeZ, Wy =X{VyZ, W>.
Therefore
(3.28) (VgVyZ, W) =X(VyZ, W>—<(VyZ, VW
= X{VyZ, Wy—<(Vy Z, Ve W~V ZLIX, WD
= (VxVy Z, WY=3Y, 2V, [X, W)
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Also by (3.23) and (3.26),
3.29) iz, 11Z Wy = Vg g Z, Wy + NViz.yw Z, W)
= Vix, i Z, W) = 3(Z, W1, [X, Y]
Therefore, using (3.28) and (3.29),
(3.30) RX,V)Z, W) =<VxVyZ, W) —(VyV3Z, W>—Viz.:1Z, W>
=R, V)Z, Wy+iX, Z", [Y, WI">
—4IY, Z) X, WD +3Z, WY, [X, YT
The theorem follows by setting Z=Y, X =W. [

‘We make one more general remark:

3.31. Proposition. If n: M—N is a riemannian submersion, y : [0, 1]->N and
710, 11 M a horizontal lift, then y is a geodesic if and only if 7 is.

| Proef. From (3.25),

V?”?/ = Vy”y, + %[,)—;”.)—)']V = Vy'y,a

and the claim follows immediately. [J

Proposition 3.31 may be seen more geometrically from the relation
Ll¢] = j o'l d ZJ (@)l d¢ = Ln(¢)]

for any curve ¢ : [0, 1]> M, and the relation
Ly} = L[]

We now specialize back to the case of homogeneous spaces. The map
n . G-G/H is a fibration and hence a submersion. If G/H admits a
left invariant metric € , ) then by Proposition 3.16(4), G admits a left
invariant metric { , > which is right invariant under H. The restriction of
{, > to b is bi-invariant, and its restriction to p =b* induces ¢ , ». Then
7 : G—G/H is a riemannian submersion, and the curvature of G/H may be
computed immediately from Proposition 3.18(3) and Theorem 3.20. The
decomposition g=p@b corresponds precisely to the decomposition
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M,=H®V and for X, Yep, the correction term in Theorem 3.20 becomes
FIX, Y1 |I%. We get the formula

(3.32)
K(X,Y) = |(adg)* (V) + (adp)* (XO))* — {(adp)* X, (ady)* YD —
—3IIX, Y10% = 3<[IX, YL, Y1, X> — 3<[[Y, X1, X, Y>.

Here we have written K(X, Y) for K(dn(X), dn(¥)). We will continue to
do this.

Suppose that the metric { , > on G is bi-invariant. In this case the
corresponding metric on G/H is called normal. As in Corollary 3.19, the
formula for the curvature simplifies substantially.

3.33. Cerollary. If the metric on G/H is normal, then
(1) KX, Y) =% |[X, YLI*+I[X, YII*
In particular the sectional curvature is nonnegative.
(2) The geodesics in G|H are the images of 1-parameter subgroups of G.

Proof. (1) is immediate from Corollary 3.19(3) and Theorem 3.20.
(2) Follows from Corollary 3.19(4) and Proposition 3.31. [

Berger [1961], has classified those normal homogeneous spaces which
have strictly positive curvature. With two exceptions of dimension 7 and 13,
they are precisely the symmetric spaces of rank 1 which will be introduced
later in this chapter. Recently, Wallach [1972a, b] has discovered 3 new
examples of (nonnormal) homogeneous spaces of positive curvature of
dimensions 6, 12, 24. He has shown that in even dimensions these are the
only nonsymmetric homogeneous spaces of positive curvature. However,
he has also constructed infinitely many simply connected nondiffeomorphic
7-dimensional homogeneous spaces with positive curvature.

3.34. Propesition. 4 simply connected Lie group which admits a bi-invariant
metric is the product of a compact group and a vector group.

Proof. Let 3 denote the center of g
3=1{xeg| [x, y] =0 for all yeg}.

It is clear that 3 is an ideal. On the other hand, if G' admits a bi-invariant
metric, and I, is any ideal of g, then I, =TI} is also an ideal since

0=y, Ly =x1], L,) =y, [xL]).
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Therefore, in this case g splits as g=3®b. Let G=ZxH be the
corresponding splitting of G. Then G is easily seen to be the isometric
product of Z and H. Z is simply connected, abelian and therefore a vector
group. The formula of Corollary 3.19 for the curvature of a Lie group with
bi-invariant metric implies that if the corresponding Lie algebra has no
center, then the Ricci curvature is strictly positive. Hence, by Myers’
Theorem 1.26, H is compact. [

Theorems 8.17 and 8.21 are much more general results of the type of
Proposition 3.34. They are proved by quite different methods.

The following example is due to Berger. In addition to illustrating how
our formulas work in practice, it provides a counterexample to a certain
conjecture about closed geodesics. This point is explained in Chapter 5.

3.35. Example (Berger). Consider the 3-dimensional Lie algebra L spanned
by z,, z,, z3 with multiplication table

[z1, 22] = —22z3, [z1, 23] =22,, [z2, 23] = —2z;.

It is straightforward to check that the inner product defined by making
2y, Z5, Z3 orthonormal is invariant under ad L. It is known that the simply
connected Lie group with Lie algebra L is the ordinary 3-sphere S*® which
is a 2-fold covering space of SO(3). In fact, by using the formula for the
curvature, one may easily show that the sectional curvature is constant and
equal to 1. We wish to consider the homogeneous space G/H with
G=S3+R, and H the l-parameter subgroup generated by oz;-+fzg,
where z,eL, a>+f? =1 and z, is the Liv.f. tangent to R. If B+ 0, then
G/H is easily seen to be diffeomorphic to S3. In fact IT | S*x{0} is a non-
singular smooth map from S3 to G/H.

Further, IT | S® x 0 is trivially seen to be 1-1. (Notice that G does not act
effectively on G/H). G/H may be given a normal metric by taking |z, =1
and {z;,z,>=0, i=1,2,3. We note for future reference that y=
I (exp t(— Pz, +0z,)) is a geodesic, as follows from Corollary 3.33. In fact,

y is periodic of length 27f, since
elnﬂ(~—ﬁzl+cx24) _ eZn(—ﬁ221+ﬁa24) _ eZﬂ((a2—1)21+ﬂaZ4)

— e—-21t21 eme(aZ1+BZ4) — 621&1(121‘)'/324).

(e~ 2™ = ¢ since e is a periodic geodesic of length 27 in S3.)
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Now if z= fz, —az,, then
A=pz2+ 2, + 1323,
B=v,z+v,2,+V372;,
[A, Bl=2A 2z, +2PAyz, +2PA5 23,
Ay =y V3—HU3Vs,
Ay =4 V3—H3Vy,
Az =y Va—UpV1.
Then one gets easily
1[4, Bly|* = 40727,
1[4, BY I|* = 4B°(A{+23+23),
|4 ABJ> = 2A+43+15>0,
(1+30%) A2+ B (A5+13)
yEE Y )

K(4,B) =

One sees that the sectional curvature satisfies
H=p<Ky<l+3a*=4-3p*=K.
We note that if f2/(4—38%) <%, then
2nf<2n (4=3p* V2 =2n K12

as an easy computation shows. In Chapter 5 we will show that for an even-

“dimensional manifold M with K>K, >H>0, every closed geodesic has
Jlength >27n K~Y2 If M is odd-dimensional with K> K, >%K, the same

result obtains. Our example, however, shows that such a result does not
hold in general. The best one could hope for is K> Ky=iK.

We will now briefly discuss a special class of homogeneous spaces—the
symmetric spaces.

3.36. Definition. The riemannian manifold M is called locally symmetric
if for each meM there exists r such that reflection through the origin (in
normal coordinates) is an isometry on B.(m). M is (globally) symmerric if
the above reflection extends to a global isometry 7, : M— M.

3.37. Proposition. (1) M is locally symmetric if and only if VR =0.
(2) M simply connected complete and locally symmetric implies M
symmetric.
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(3) M symmetric implies M homogeneous. M = G/H, where G is the
isometry group of M and H is the isotropy group of some point me M.

(4) Let M =G/H be symmetrié with G the isometry group of M and the
isotropy group of meM. Let I denote the symmetry about m. Then g—Igl
defines an automorphism o of G such that 6® = 1. The set F of fixed points
of o is a closed subgroup containing H. Its identity component F coincides
with that of H.

(5) Conversely, let G be a Lie group, ¢ an automorphism such that
0¥ =1, and { , > a left invariant metric on G|F, where F is the set of fixed
points of a. The relation a(gf) =0o(g) o(f)=10(g)f shows that ¢ induces a
diffeomorphism of G[F. If this diffeomorphism preserves { , >, then G/F is a
symmetric space.*

(6) A simply connected Lie group G possesses an automorphism ¢ such
that 6* =1 if and only if g =p ®b with

b, bleb,  bplep,  [pplcb.

In case G|F admits a c-invariant riemannian metric, G/F is therefore globally
symmetric and its curvature is given by

KX, Y)=4lx, Y}, Y], X5 —3[¥, X], X], YD,

where X, Yep are orthonormal.

Proof. (1) Since I, is an isometry, df,, commutes with VR. Hence
—[VxRI(y,2) w=dL,([VxR1(y,D)w) = [V_xR1 (-, —2)(—w)
=[VxRl1(y,Dw.
The converse, which is an easy consequence of Lemma 1.35, is left as an
exercise (or see Helgason [1962]).
(2) This follows immediately from the Cartan-Ambrose-~Hicks Theorem,

using the condition VR =0 as above.
(3) Given a geodesic segment y: {0, {]-> M,

70, U L, (7(0,0) U -

is y extended arbitrarily far. Hence M is complete by the Hopf-Rinow

* It can be shown that even if G/F does not admit a g-invariant metric it nonetheless
admits a unique left invariant affine connection preserved by ¢. Thus in general G/F is
affine symmetric.
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Theorem 1.8. Given p, g, let y:[0,f,]»M be a geodesic segment from p
to ¢. Then I,,2,(p) = q. Hence M has a transitive group of isometries and
is homogeneous. ;

(4) The only nontrivial part is to show Hy, = F,. Since H < F it suffices to
check that F, = H. For feF, we have f(m) = IofoI(m) =1-f(m). However,
m is the only point of a normal coordinate ball B,(m) which is fixed by L
Hence there is a neighborhood U of e in G such that F n U < H. It follows
that Fn H is open (since H <= F). But Fn H is also closed since F and H are
closed. Hence F, = .

(5) The symmetry about a coset [gF] is given by L,c6L,_;.

(6) If g=p@Db as above, then the linear map do defined by

do|b=1, do|p=-—1
is easily seen to be an automorphism of g such that (do)* = 1. It induces
an automorphism ¢ of G by the remarks following Proposition 3.4.

Conversely given such a o, take b, p to be its +1 and —1 eigenspaces,
respectively. Then for example

do([py, pal) =[do(py), do(p)l=[—p1, —P21=[p1, P2l

shows [p, pl b, and the other relations follow similarly.
IfX, ¥, Zep, then[X, Z]ebh and

{adp* (Y), 25 =<Y,[X, Z]) =0.
Therefore (ady)* ¥ < b. Now if Teb,
YITXD = =((T1,Y], X5
because the metric on G is right invariant under H. Therefore
ady)*(Y), T) =Y, [X, TT) = —<[Y, T], X} = —{(adp)* (X), T>.
Therefore, substituting in (3.32) gives
KX, Y)=—3{X, Y], Y], X>—3Y, X], X], Y>. [

A complete classification of symmetric spaces is available (Helgason
[1962]). In particular, the only simply connected symmetric spaces having
positive curvature are the spheres of constant curvatures, complex and
quaternionic projective spaces, and the Cayley plane. These are sometimes
referred to as rank one symmetric spaces, and except for the spheres they
have canonical metrics with sectional curvature varying between % and 1,
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As an example, we will compute the curvature of complex projective space.
The calculations for the other rank one spaces are similar.

3.38. Example. The unitary group U(n) is defined as the (compact) group
of nxn matrices with complex entries («;;) such that («;;)~" = (a;;). The
special unitary group SU(#n) is the subgroup of U(n) of matrices of deter-
minant 1. The Lie algebra u(n+1) of U{(n+1) consists of skew hermitian
matrices (&;;) = (—ay). For su(n+1) we must add the condition

trace(a;;) =0

Complex projective space is the homogeneous space CP{n) =SU (n+1)/U(n),
where U(n) is embedded in SU(n+1) as

[U : :I
0 | detU

where Ue U(n). Geometrically, CP(n) may be thought of as the collection
of 1-dimensional complex subspaces of C**1.

The following may be easily checked. The rule {4, B) = —1 trace(4B)
defines a bi-invariant metric on SU(n+1) which gives rise to the
decomposition gu{n+ 1) = p+u(n), where p consists of matrices of the form

&y

o

n

al...an O

p may be thought of as a complex n-space or real 2n-space. Multiplication

by i gives a real linear transformation J:p—p such that J>=—1 and

$x, ¥y =<Jx), J(». [p, p] = un), so that CP(m) is a symmetric space.
Now if Jla]] = |l =1 and {a, B> =0, by Corollary 3.33,

(R, B)B, oy = |[ex, I,

i&j—aiﬁj 0
[o, ] = !: - J
0 ! z o i — B &

where
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10, A1

—%iZ (Bidt;— o B;) (B0 —; B)

—%é (o Bi— Bi%) (o B;— B;%,)

- lZoci&i Y BiB; - %Z Bid; g B;d;

aE2: O‘JiBi }; B =

- %; (Biow— fi) ZJ‘. (a;B;— B; ;)

F(l® 181%) + 3T @, 8 = 4+ 3T @, 57,
where the last step follows from the relations

Y @B+ BiE) = <op>,

Y (—ouBit fid) = iKT (@), B> .

If {J(a), B> =1, then K(a, B) = 1, while if {J(a), > =0, K{a, f) =%.
Given a Lie algebra g, we define the Killing form as the form

Il

B(gy, g,) = trace(ad g, ad g,).

Then B is easily seen to be symmetric. Further, for all xeg, ad x is skew
symmetric with respect to B; i.e.

Bad, y;, y,) = —B(y1, ad, y2).

If B is nondegenerate, we say that g is semi-simple. It is easy to show that
this implies that g is a direct sum of simple ideals. An ideal is called simple
if it contains no proper ideal. It is also true that if g is a direct sum of
simple ideals, then g is semi-simple; but this is more difficult to prove;
see Helgason [1962].

3.39. Proposition. (1) If the group G is compact, the Killlng form B of g
is negative semi-definite. If B is negative definite, G is compact.

Q) If G is semi-simple and noncompact, then q may be decomposed as
p®b such that B|Y is negative definite, B|p is positive definite, ) is a
(maximal compact) subalgebra, [b, bl < b, b, pl<p, [p, pl <b. .

(3) Let G be semi-simple and non-compact, and let a =p @b be as abave
Then B|p defines a metric invariant under do so that G/H becomes a
symmetric space. The curvature of GJH is given by

KX, ¥)=—|[x, Y1I*.
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(4) Let G be compact semi-simple, 6* = I, and g = p ®b the decomposition
into the + and — eigenspaces of a. Then — B | g is a bi-invariant metric and
defines a symmetric metric on G[H. The curvature is given by K(X, Y)=
ILx, Y1i%.

(5) Leta=b®pbeasin(3)andlet| , ] denote the Lie algebra structure.
Then the rule

(340 [pi,pl=—Ipi,pal, [P Al=Ip. B, [hy, B] =1k, By)

defines a new Lie algebra structure [ , | on g. Let B denote the Killing form
of [ , ] Then '

Blp=-Blp, BEbh=0, B|b=B]b.

In particular, B is negative definite.

Conversely, given [ , |, define [ , ] by (3.40). Then [ , ], g=b@p are
as in (2).

(6) If G is a compact Lie group, then G = (G x G)/G is a symmetric space,
where G < G x G is the diagonal inclusion.

Proof. (1) If G is compact, then it admits a bi-invariant metric { , >. For
all g, Ad, is in the orthogonal group of { , ). Therefore, for all x, ad, is
represented by a skew symmetric matrix. But the trace of the square of a
non-zero skew symmetric matrix is negative. If, on the other hand, B is
negative definite, then — B induces a bi-invariant metric on G. Using the
fact that g has no center, the claim follows from Proposition 3.33.

(2) See Helgason [1962], p. 156.

(3) Everything but the formula for the curvature follows immediately
from (2). Moreover, if X, Yep, then [[X, Y], Y]ep, and by Proposition
3.37(6),

KX, Y)=—3dX, Y], YL, X>—3<Y, X, X1, Y5
= +3B(X, Y] [X, YD +3B(Y, X1, [V, X]).
But [X, Y]eb and B|b= -, >|b. Therefore the above becomes
—IIX, Y1)1%.

(4) This follows by an argument completely analogous to that of (3).
(5) This is straightforward, and we omit the details.

(6) Set a(g1,9:) =(g2,91). O
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The metric in the Berger example is, of course, — B, The symmetry about

e in G considered as a symmetric space is given by g—g~ L.

A pair of symmetric spaces related as in (5) are called dual to one another.

We note that in a locally symmetric space that since VR =0, the Jacobi
equation V;VyJ = R(T, J)T has constant coefficients and hence may be
solved explicitly. In fact, if 7, E,, ..., E, are an orthonormal base of eigen-
vectors of x—R(T, x) T, at t =0, then solutions vanishing at 1 = 0 are of the
form

sin (t/2) E(t),  sinh (t =N E(®),  tEQ)

according as A>0, 1<0, A =0, where E(z) is a parallel eigenvector with
eigenvalue A. In particular, if G is a compact Lie group then

R(T,J)T= —1(Ad T)*(J).

Since the nonzero eigenvalues of the square of a skew symmetric matrix
occur in pairs, we have:

3.41. Proposition (Bott). If G is a compact Lie group with bi-invariant metric,
then all conjugate points are of even order.

The following result will be utilized in Chapter 5 in the proof that in a
symmetric space geodesics minimize up to the first conjugate point.
Suppose that G is compact, 0 : G=G, 6> =1 and H is the fixed point set
of g. Let

g=b®p, do(h)=bh, do(p)=-p.
1

Call geG a transvection if geexp p=2%. ge¥ clearly implies o(g)=g""1,
but not conversely.

3.42. Proposition. The map & :[gH)—>gc(g™") defines an imbedding of
G/H onto T. If { , ) is a bi-invariant metric, then T is a totally geodesic
submanifold, and the metric on G/H induced by ® is 2 times the normal metric.

Proof. (1) & is well defined:
gho((ghy™)=ghoh™ g Y =gha(h™Yo(g™)=ghh™ (g™
=ga(g™h).

(2) @ is injective:

go(g N =fo(S™Y)
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implies
fTlg=a(f"N (@) T=a(fDalg)=a(f"9)
This implies f “'geH or [ fHl=[gH].

(3) ¢(G/H)=Z: GJH is compact and therefore complete. Hence
eXpygy | G/Hpyy is onto. dm: p—G/Hyyy is injective. By Corollary 3.33,
1-parameter subgroups of G are geodesics and project to geodesics in G/H.
Therefore moexp maps p onto G/H. Given g let e?eZ be such that [gH] =
[ef H]. Then

D(g)=P(eP) =e? (e P) =e?Pel

Thus & (G/H) =Z. But given g =e?el,
PPy =e?? D(e P =ef =g.
(4) Let B.(e) be a normal coordinate ball. Then
B,(e) n T =exp.(B,(0) n p).

Clearly exp.(B,(0) n p)< B,(e) n 3.
Conversely if geB.(e)nZ, then ¢ maps the unique minimal geodesic

e =expix:[0,1]-M

from e to g into the unique minimal geodesic from e to g~ =exp(—x) =

e *. But this geodesic is just e, so that g =e* with do(x) = —x.
(5) ®on(g)=g* if ge3. Thus d®odn | p =21, where I is the identity
map. In fact,
Pon(9)=golg N =g9=9". /
(6) & is an imbedding and the metric on G/H induced by @ is 2 times
the normal metric: At [H] this follows from (5), so it suffices to prove the
relation

& B Pg)) e = B(g)
for all e?eZ. For then, taking [e? H] =[gH] as is possible by (5), the above
implies
dR,odL,.d®, =dP,.
But, in fact,
ef B([ePg])e? =ePe P ga(g e?) e? =ga(g!) ePe? = D(g).

(7) T is a totally geodesic submanifold: By (3), (4) it follows that if B.(e)
is a normal coordinate ball then £ B.(e) is a submanifold which is
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geodesic at e. Therefore it suffices to verify that e?/?Te?’? =%, But if e*eZ,
then by (3),
e??e*e?? = P (e?? )T

This completes the proof. []

We shall now briefly describe some applications of Theorem 3.20 to the
problem of finding examples of manifolds which admit a metric of non-
negative curvature but are not diffeomorphic to a homogeneous space.

3.43. Example. Let G be a Lie group, K a compact subgroup and { , > a
metric right invariant under K. Let M be a manifold on which K acts by
isometries. Then K acts by isometries on the product Gx M by k(g, m)=
(gk™*, km). Clearly K acts without fixed point, and the quotient, which
we write as G x ¢ M, is a manifold.

II: GxM—-G xgM is a submersion. Topologically, G x M is the
bundle with fibre M, associated with the principal fibration K—G—G/K.
Since K acts by isometries, G X x M naturally inherits a metric such that IT
becomes a riemannian submersion. If the metrics on G and M have non-
negative curvature, then by Theorem 3.20 so does the metricon G x x M. For
G compact, we could take the bi-invariant metric on G, which does have
nonnegative curvature. Even if M is homogeneous, if K does not act
transitively then G x M is not, in general, homogeneous; see Cheeger
[1973] for details.

3.44. Example (Gromoll and Meyer). Let Sp(n) denote the n-dimensional
symplectic group realized by nx#n matrices Q, with quaternionic entries,
satisfying Q0" = I. Sp(n) is a compact Lie group and carries a bi-invariant
metric. Let Sp(1) act on Sp(2) by

g O g O
Q—>l: ]Q[ ] geSp(l), QeSp(d).
0 ¢ 0o 1 »

This action is free and the quotient space turns out to be an exotic
7-sphere. Thus, this exotic sphere carries a metric of nonnegative curvature.
A calculation shows that on an open dense set of points the curvature is
actually strictly positive.

At present all known examples of manifolds of nonnegative curvature
are constructed by techniques closely related to the above.



