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Abstract. We define a notion of virtual fundamental class that applies to moduli spaces
in gauge theory and in symplectic Gromov-Witten theory. For universal moduli spaces over
a parameter space, the virtual fundamental class specifies an element of the Čech homology
of the compactification of each fiber; it is defined if the compactification is “thin” in the
sense that its boundary has homological codimension at least two.

The moduli spaces that occur in symplectic Gromov-Witten theory and in many gauge
theories are often orbifolds that can be compactified by adding “boundary strata” of lower
dimension. Often, it is straightforward to prove that each stratum is a manifold, but
more difficult to prove “collar theorems” that describe the structure of neighborhoods of
the boundary strata. The lack of collar theorems is an impediment to applying singular
homology to the compactified moduli space, and in particular to defining its fundamental
homology class. The purpose of this paper is to show that collar theorems are not needed to
define a virtual fundamental class as an element of Čech homology. Indeed, existing results
in the literature are enough to prove the existence of virtual fundamental classes in some
cases.

There are two classes of homology theories, exemplified by singular homology and by
Čech homology. We will use two Čech-type theories: Čech and Steenrod homologies. These
have two features that make them especially well-suited for applications to compactified
moduli spaces:

(1) For any closed subset A of a locally compact Hausdorff space X, the relative group
Hp(X,A) is identified with Hp(X ∖A). As Massey notes [Ma2, p. vii]:

. . . one does not need to consider the relative homology or cohomology groups of a

pair (X,A); the homology or cohomology groups of the complementary space X−A
serve that function. In many ways these “single space” theories are simpler than

the usual theories involving relative homology groups of pairs. The analog of the

excision property becomes a tautology, and never needs to be considered. It makes

possible an intuitive and straightforward discussion of the homology and cohomol-

ogy of a manifold in the top dimension, without any assumption of differentiability,

triangulability, compactness, or even paracompactness!

(2) Čech homology satisfies a “continuity property” ((1.9) below) that allows one to define
virtual fundamental classes by a limit process.

We briefly review Steenrod homology in Section 1. Then, in Section 2, we apply Property
(1) to manifolds M that admit compactifications M for which the “boundary” M ∖M is
“thin” in the sense that it has homological codimension at least 2. There may be many such
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compactifications. If M is oriented and d-dimensional, every thin compactification carries
a fundamental class

[M] ∈ sHd(M ;Z)
in Steenrod homology. This class pushes forward under maps M → Y that extend contin-
uously over M , and many properties of the fundamental classes of manifolds continue to
hold.

We then enlarge the setting by considering thinly compactified families. For this we start
with a Fredholm map

M
π
��
P

(0.1)

between Banach manifolds of index d that extends to a proper map π ∶ M → P so that
the boundary S = M ∖M is stratified by Banach manifolds of index at most d − 2 (see
Definition 3.2). The fiber Mp over each regular value p ∈ P is then a thin compactification
in the sense of Section 2, so has a fundamental class, which we now regard as an element
of Čech homology (see Lemma 1.1). Because regular values are dense, a limiting process
using Property (2) then yields a class – now called a virtual fundamental class – in the Čech
homology of every fiber of π. We then give a precise definition of virtual fundamental class
(Definition 3.4) and prove:

Theorem. Every thinly compactified family π ∶ M → P admits a unique virtual fundamental
class.

Section 4 describes several ways in which a virtual fundamental class on one thinly
compactified family induces virtual fundamental classes on related families.

Section 5 applies these ideas to Donaldson theory. Given an oriented Riemannian mani-
fold (X,g), one associates moduli spacesMk(g) of g-anti-self-dual U(2)-connections. Don-
aldson’s polynomial invariants are defined by evaluating certain natural cohomology classes
onMk(g) for a generic g. We show that results already present in Donaldson’s work imply
the existence of virtual fundamental classes for the Uhlenbeck compactification Mk(g) for
any metric.

Sections 6-10 give applications to Gromov-Witten theory. Here the central objects are
the moduli spaces of stable maps into a closed symplectic manifold (X,ω), viewed as a
family

MA,g,n(X) → JV (0.2)

over the space of Ruan-Tian perturbations (described in Section 6). Again, the theme is
that many results in the literature can be viewed as giving conditions under which there
exist thin compactifications of the universal Gromov-Witten moduli spaces (0.2) over JV or
over some subset of JV. The results of Sections 2–4 then immediately imply the existence
of a virtual fundamental class on the fibers of the moduli space over the same subset of JV.

As examples, we discuss moduli spaces of somewhere-injective maps in Section 7, of
domain-fine maps in Section 8, and of relative domain-fine maps in Section 9. In each case,
one obtains a virtual fundamental class in Čech homology over a subset of JV. Under
special assumptions on the data (X,A, g, n), this is true over all of JV, in which case the
virtual fundamental class determines Gromov-Witten numbers that are invariants of the
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symplectic structure of X. In Section 10 we use this viewpoint to briefly describe how
virtual fundamental classes exist in two general cases: for semipositive manifolds (X,ω), as
done by Ruan and Tian [RT1, RT2], and the genus g = 0 case, as done by Cielieback and
Mohnke [CM].

John Pardon recently constructed a virtual fundamental class on the space of stable maps
for any genus and any closed symplectic manifold [Pd1]. He also uses Čech theory, but his

approach is different. He considers the space of stable mapsMJ for a fixed almost complex
structure J , and constructs perturbations να of the J-holomorphic map equation on open

sets Uα that cover MJ , and shows that resulting perturbations of the Uα define a cycle in
the dual of Čech cohomology. Our approach should be compatible with his, although we
do not attempt to make this precise.

We thank John Morgan and John Pardon for very helpful conversations, and Mohammed
Abouzaid for encouraging us to write these ideas out in full.

1. Steenrod and Čech homologies

Expositions of Steenrod homology are surprisingly hard to find in the literature. We will
use the version of Steenrod homology that is based on “infinite chains”, as presented in
Chapter 4 of W. Massey’s book [Ma2]. To avoid ambiguity, we denote this theory by sH∗.
For background, see also [Ma1], [Mil] and the introduction to [Ma2].

Steenrod homology with coefficient group G assigns, for each integer p, an abelian group
sHp(X) = sHp(X,G) to each locally compact Hausdorff space X, and a homomorphism
f∗ ∶ sHp(X) → sHp(Y ) to each proper continuous map. The axioms for this homology
theory [Ma2, p. 86] include:

● For each open subset U ⊂X and each p, there is a natural “restriction” map

ρX,U ∶ sHp(X) → sHp(U). (1.1)

● For each closed set ι ∶ A↪X, there is a natural long exact sequence

⋯ Ð→ sHp(A) i∗Ð→ sHp(X) ρÐ→ sHp(X −A) ∂Ð→ sHp−1(A) Ð→ ⋯ (1.2)

● If X is the union of disjoint open subsets {Xα}, then the inclusions ια ∶ Xα → X
induce monomorphisms in homology, and sHp(X) is the cartesian product

sHp(X) = ∏
α

(ια)∗sHp(Xα). (1.3)

● For any inverse system {⋯ → Y3 → Y2 → Y1} of compact metric spaces with limit Y ,
the maps Y → Yα induce a natural exact sequence [Mil, Theorem 4]

0Ð→ lim1 [sHp+1(Yα;G)] Ð→ sHp(Y ;G) Ð→ lim←Ð
sHp(Yα;G) Ð→ 0. (1.4)

The corresponding cohomology theory is Alexander-Spanier cohomology with compact
support. For compact Haudorff spaces, this is isomorphic to both Alexander-Spanier and
Čech cohomology Ȟ∗ [Sp, p. 334], and there is a universal coefficient theorem ( [Ma2], Cor.
4.18)

0Ð→ Ext(Ȟd+1(M,G),G) Ð→ sHd(M,G) Ð→ Hom(Ȟd(M),G) Ð→ 0. (1.5)
3



One also has the following facts about oriented topological manifolds M of dimension d
(not necessarily compact) and any coefficient group:

● For all p > d,
sHp(M) = 0 and sHp(M) = 0. (1.6)

● For each topological d-ball B in a connected component Mi of M , sHd(B;G) ≅ G
and

ρMi,B ∶ sHd(Mi) → sHd(B) is an isomorphism. (1.7)

● The orientation determines a fundamental class [M] ∈ sHd(M). If M has compo-
nents Mα, the fundamental class is given under the isomorphism (1.3) by

[M] = ∏
α

[Mα]. (1.8)

For proofs, see [Ma2], Theorems 2.13 and 3.21a and page 112.

In Section 2, we work exclusively with Steenrod homology. In Section 3, where we consider
families of spaces, we pass instead to Čech homology, because it satisfies the following

Continuity Property. For every inverse system of compact Hausdorff spaces as in (1.4),
the maps Y → Yα induce a natural isomorphism

Ȟ∗(Y ;G) ≅Ð→ lim←Ð Ȟ∗(Yα;G) (1.9)

[ES, pages 260-261].

In general, Steenrod homology does not satisfy the continuity property (it satisfies (1.4)
instead), and Čech homology does not satisfy the exactness axiom. However, for every
compact Hausdorff space X and any coefficient group G, there are natural maps

sHp(X;G) Ð→ Ȟp(X;G) Ð→ Ȟp(X;G)∨ (1.10)

where Ȟp(X;G)∨ = Hom(Ȟp(X;G),G) is the dual to Čech cohomology (cf. Remark 5.0.3
in [Pd1]). Furthermore, when restricted to compact metric spaces and rational coefficients,
both arrows in (1.10) are isomorphisms (the first arrow by Milnor’s uniqueness theorem
[Mil]), giving a theory that is both exact and continuous (cf. [ES, p. 233]).

Lemma 1.1. Let H(X) denote one of the three possibilities:

H(X) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ȟ∗(X;Z) Čech homology, or

Ȟ∗(X;Z)∨ Dual Čech cohomology, or

Ȟ∗(X;Q) Rational Čech homology.

(1.11)

Then there is a natural map sH∗(X;Z) → H(X) defined on the category of compact Haus-
dorff spaces, and H satisfies the Continuity Property (i.e. (1.9) holds with Ȟ∗ replaced by
H).

Proof. For any coefficient module G, Čech homology satisfies (1.9) while, with the same
notation, Čech cohomology satisfies

Ȟp(Y,G) = limÐ→
α

Ȟp(Yα,G) (1.12)

[ES, pages 260-261]. Hence by Proposition 5.26 in [Ro],

Ȟp(Y,G)∨ = Hom(limÐ→
α

Ȟp(Yα,G),G)) = lim←Ð
α

Hom(Ȟp(Yα,G),G) = lim←Ð
α

Ȟp(Yα,G)∨.

◻
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Each of the possibilities in Lemma 1.1 pairs with Čech cohomology; there is no longer
any need for Alexander-Spanier cohomology. Čech cohomology, of course, is different from
singular cohomology but, for any G and any paracompact Hausdorff space X, there is a
natural map

Ȟp(X;G) →Hp
sing(X;G) (1.13)

that is an isomorphism if X is a manifold, or more generally if X is locally contractible [Sp,
Corollaries 6.8.8 and 6.9.5].

2. Thin compactifications

In Steenrod homology with integer coefficients, open manifolds M have a fundamental
class, but this class is of limited use because it does not push forward under general contin-
uous maps. This deficiency can be rectified by considering maps that extend continuously
over a compactification M =M ∪S of M , and showing that M carries a fundamental class.
Many such compactifications are possible; making S larger allows more maps to extend con-
tinuously to M , but making S too large interferes with the fundamental class. Definition 2.1
identifies a class of compactifications – “thin compactifications” – that is appropriate for
working with fundamental classes. These have the form

M =M ∪ S

where S is a space of (homological) codimension 2. There are no assumptions about differ-
entiability or about how M and S fit together, other than the fact that the total space is a
compact Hausdorff space.

Definition 2.1. Let M be an oriented d-dimensional topological manifold. A thin com-
pactification of M is a compact Hausdorff space M containing M such that the complement
S =M ∖M (the “singular locus”) is a closed subset of codimension 2 in the sense that

sHp(S) = 0 ∀p > d − 2. (2.1)

Every compact manifold is a thin compactification (with S empty), and for each manifold
of finite dimension d ≥ 2, the 1-point compactification is a thin compactification. Further
examples arise by applying the following lemma communicated to us by both J. Morgan
and J. Pardon.

Lemma 2.2. Suppose that a compact Haudorff space S is a union of closed sets Si, i ≥ 0,
such that for each i, Si+1 ⊂ Si and Si−Si+1 is a manifold of dimension at most d− i or more
generally has Steenrod homological dimension d − i. Then S has homological dimension at
most d, i.e. sHk(S) = 0 for all k > d.

Proof. By induction on i, starting from i = d, one can assume that sHq(Si) = 0 for all
q > d − i. This is because the long exact sequence

→ sHq(Si+1) → sHq(Si) → sHq(Si − Si+1) → sHq−1(Si+1) →

and the induction assumption implies sHq(Si)
≅Ð→ sHq(Si − Si+1) for all q > d − i − 1. But

sHq(Si − Si+1) = 0 for all q > d − i and therefore sHq(Si) = 0 for all q > d − i. ◻
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In practice, singular strata are usually unions of a large number of strata Sα. One must
form the Si of Lemma 2.2 as unions of the Sα and verify that Si − Si−1 are manifolds. One
way of doing this is described in the appendix.

Examples.

(a) The closure V of a smooth quasi-projective variety V ⊂ PN is a thin compactification.

(b) For a nodal complex curve C, the regular part M = Creg can be thinly compactified in

three ways: by its 1-point compactification, by C, and by its normalization C̃, which
may be disconnected.

(c) Define an infinite chain of 2-spheres as follows. For each n = 1,2, . . . , let pn be the point
( 1
n ,0,0) in R3. Let Sn be the sphere with center qn = 1

2(pn+pn+1) and radiusRn = ∣pn−qn∣
with the two points pn and pn+1 removed. Then M = ⋃Sn is an embedded 2-manifold
in R3, and M =M ∪ S is a thin compactification with a singular set S = ⋃pn ∪ (0,0,0)
of dimension zero.

(d) In contrast, M = { 1
n ∣n ∈ Z} ⊂ R is a 0-manifold, but its compactification M ∪{0} is not

thin.

Theorem 2.3. Let M be an oriented d-dimensional manifold with fundamental class [M].
Every thin compactification M of M has a fundamental class

[M] ∈ sHd(M ;Z)
uniquely characterized by the requirement that

ρM([M]) = [M], (2.2)

where ρM ∶ sHd(M ;Z) → sHd(M ;Z) is the map (1.1).

Proof. The exact sequence (1.2) for the closed subset A = S of M , together with (2.1),
implies that the map

ρM ∶ sH`(M) ≅Ð→ sH`(M) (2.3)

is an isomorphism for all ` ≥ d. Taking ` = d shows that there is a unique class [M] satisfying
(2.2). ◻

In general, a manifold M has many thin compactifications, each with a fundamental class
related to [M] by (2.2). If M is one such thin compactification with singular locus S, and
Z ⊂M is a closed subset such that Z ∪ S has homological codimension 2, then M is also a
thin compactification of M ∖ Z, and [M ∖Z] = [M]. In this sense, one can ignore sets of
codimension 2 in computations with fundamental classes.

Example 2.4. For two thin compactifications M1 and M2 of the same d-dimensional man-
ifold M , there are isomorphisms ρi ∶ sHd(M i) → sHd(M), as in (2.3), and the composition

ρ−1
2 ○ ρ1 ∶ sHd(M1) → sHd(M2)

takes [M1] to [M2]. This is true even when there is no continuous map from M1 to M2.
If there is a map f ∶M1 →M2, then f∗[M1] = [M2] by the naturality of ρ. In particular:

(a) Let π ∶ MZ → M be the blowup of a closed complex manifold M along a complex
submanifold Z. Then M and MZ are two different thin compactifications of M ∖ Z,
and π∗[MZ] = [M].
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(b) More generally, a rational map X ⇢ Y between complex projective varieties induces an
identification of [X] with [Y ].

(c) If dimM ≥ 2, every thin compactification M has a map p to the 1-point compactification
M+, and p∗[M] = [M+].

The fundamental class of a manifold M need not push forward under a general continuous
map f ∶ M → X. However, if f extends to a continuous map f ∶ M → X from some thin
compactification M of M , then f is proper, so induces a map f∗ in Steenrod homology:

sHd(M)
f
∗

((
ρ ≅
��

sHd(M) // sHd(X).

Then [M] corresponds to [M] by (2.2), and the class f∗([M]) ∈ sHd(X) serves as a surro-

gate for f∗[M]. Alternatively, one can take a Čech class α ∈ Ȟd(X) and evaluate f ∗α on
the image of [M] under (1.10).

2.1. Covering maps. The isomorphism (2.3) implies several statements about how fun-
damental classes behave under covering maps.

Lemma 2.5. Suppose that f ∶ M → N is a continuous map between thinly compactified
oriented manifolds that restricts to a finite oriented covering f ∶M → N . If f has degree `,
then

f∗[M] = ` [N]. (2.4)

More generally, if N has components {Nα} then, in the notation of (1.3) and (1.8),

f∗[M] = ∏
α

`α [Nα] (2.5)

where `α is the degree of the restriction of f to f−1(Nα) (and 0 if this set is empty).

Proof. First assume that M and N are both connected. Fix an open ball U ⊂ N so that
f−1(U) is the disjoint union of ` open balls V1, . . . V`. In this situation, there is an isomor-
phism ρU ∶ sHd(N) → sHd(U) as in (1.7), and similar isomorphisms ρi ∶ sHd(M) → sHd(Vi)
for each i. These fit into a commutative diagram

sHd(M)

f
∗

��

≅
ρM
// sHd(M)

f∗
��

(ρ1,...,ρ`)
// ⊕i

sHd(Vi)

f∗
��

≅ // Z⊕⋯⊕Z

ϕ

��
sHd(N) ≅

ρN
// sHd(N) ≅

ρU
// sHd(U) ≅ // Z

where ϕ(a1, . . . , a`) = ∑ai, where ρM and ρN are isomorphisms by (2.3), and where the first
two squares commute by the naturality of ρ. Restricting the diagram to generators gives
(2.4).

In general, for each component Nα of N , f−1(Nα) is the disjoint union of components
Mαβ, and (2.4) applies to each restriction fαβ = f ∣Mαβ

, and the homologies of M and N are
cartesian products as in (1.3). This implies (2.5) with `α = ∑β deg fαβ, and (2.4) if all `α
are equal to `. ◻

7



Example 2.6. Lemma 2.5 applies to branched covers of complex analytic varieties.

2.2. Components. Suppose that an oriented manifold M has finitely many connected
components Mα, and that M is a thin compactification of M with singular locus S. We
then have:

Lemma 2.7. For each α, Mα =Mα ∪ S is a thin compactification of Mα, and

[M] = ∑
α

[Mα]. (2.6)

Proof. The first statement holds because Mα =Mα∪S is a closed, hence compact, subset of
M and S satisfies (2.1). The disjoint union ⊔Mα is therefore another thin compactification
of M , and [⊔Mα] = ∑α[Mα]. Moreover, the identity M →M extends to a continuous map
ι ∶ ⊔Mα →M . Lemma 2.5 then gives ι∗[⊔Mα] = [M], and hence (2.6). ◻

2.3. Thin Compactifications with boundary. It is useful to extend the notion of thin
compactifications to manifolds M with boundary ∂M .

Definition 2.8. A thin compactification of (M,∂M) is a compact Hausdorff pair (M,∂M)
containing (M,∂M) such that

(i) S =M ∖M is a closed subset of M of codimension 2,

(ii) S′ = ∂M ∖ ∂M is a closed subset of ∂M of codimension 2, and
(iii) S′ ⊆ S.

Note that (ii) implies that ∂M is a thin compactification of ∂M , while (iii) implies that

the interior M0 =M ∖ ∂M is a subset of M ∖ ∂M . The exact sequence (1.2) of such a pair

(∂M,M) is, in part,

sHd(M) ρÐ→ sHd(M ∖ ∂M) ∂Ð→ sHd−1(∂M) ι∗Ð→ sHd−1(M). (2.7)

When M is oriented, there is an induced orientation on ∂M , and the interior M0 carries a
fundamental class [M0] ∈ Hd(M0). This is related to the fundamental class [∂M] of ∂M
by

∂[M0] = [∂M] ∈ sHd−1(∂M) (2.8)

where ∂ is the boundary operator in the sequence (1.2) for the pair (M,∂M) (see [Ma2,
Theorem 11.8], being mindful of orientations and noting the change of notation Hp ↦ H∞

p

on page 302).

Lemma 2.9. A thin compactification (M,∂M) of an oriented d-dimensional manifold-

with-boundary (M,∂M) has a natural fundamental class [M] ∈ sHd(M ∖ ∂M) such that,
for the maps in (2.7),

(a) ∂[M] = [∂M] and (b) ι∗[∂M] = 0. (2.9)

Furthermore, ρ′[M] = [M0] under the restriction to M0 ⊆M ∖ ∂M .
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Proof. Combining (2.7) with the similar sequence for the pair (M,∂M) gives the diagram

0 // sHd(M)
ρ
M,M

��

ρ // sHd(M ∖ ∂M) ∂ //

ρ′

��

sHd−1(∂M) ῑ∗ //

ρ∂

��

sHd−1(M)
ρ

��
0 // sHd(M) ρ // sHd(M0) ∂ // sHd−1(∂M) ι∗ // sHd−1(M)

where the rows are exact and the vertical maps are restriction maps to open subsets. Using
properties 3b, 4b, and 4c listed on page 86 of [Ma2], one sees that the three squares are
commutative. The first and third vertical arrows are isomorphisms by parts (i) and (ii) of
Definition 2.8, and the exact sequence (1.2) for the pair (M,S) shows that ρ is an injection.
The Five Lemma then implies that ρ′ is an isomorphism.

We can define [M] ∈ sHd(M ∖ ∂M) uniquely by the requirement

ρ′[M] = [M0]
Then (2.9a) follows from (2.8) and the uniqueness of (2.2), while (2.9b) follows from exact-
ness of the top row of the diagram. ◻

Examples.

(a) If X is a manifold of dimension d ≥ 1 with thin compactification X, then the cone M
on X is a thin compactification of M , the cone on X minus the vertex.

(b) In the picture, M is the union of a cone on S2 and a cylinder S2 × [0,1], intersecting
a one point p. Then the complement of the cone point p is a manifold with boundary,
and M satisfies the conditions of Definition 2.8 with S = S′ = {p}.

2.4. Cobordisms. Lemma 2.9 can be applied to cobordisms.

Corollary 2.10. Suppose that W is an oriented topological cobordism between d-dimensional
manifolds M0 and M1. If W admits a thin compactification (W,∂W ), then the fundamental
classes of M0 and M1 represent the same class in W .

Proof. The hypothesis means that W is an oriented topological manifold with boundary
M1 ⊔ −M0. Then Lemmas 2.7 and 2.9 applies, and (2.9b) becomes the statement

(ι0)∗[M0] = (ι1)∗[M1] in sHd(W ) (2.10)

where ι0, ι1 are the inclusions of M0 and M1 into W . ◻
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3. Virtual fundamental classes of families

The notion of thin compactification extends to families of manifolds, where the funda-
mental class is replaced by the “virtual fundamental class” of the fibers. In this section the
word “manifold” means a smooth separable Banach manifold, finite or infinite dimensional.
As usual, the term “second category” means a countable intersection of open dense subsets,
and we say that a property holds “for generic p” if it holds for all p in some second category
set.

We will consider Fredholm maps

M
π
��
P

(3.1)

between manifolds, which we regard as a family of spaces (the fibers of π) parameterized
by P. Such a map has an associated Fredholm index d which, by the following well-known
theorem, is the dimension of the generic fibers of π.

Theorem 3.1 (Sard-Smale [S]). For a Fredholm map (3.1) of index d,

(a) The set P∗ ⊂ P of regular values of π is a second category set, and for each p ∈ P∗,
the fiber π−1(p) is a manifold of dimension d, and is empty if d < 0.

(b) For any p, q ∈ P∗, every smooth path [0,1] → P from p to q is the C0 limit of paths
σk ∶ [0,1] → P from p to q such that π−1

k (σ) is manifold of dimension d + 1.

The data (3.1) also determines a real line bundle detdπ overM – the determinant bundle
of the Fredholm map π— whose restriction to each regular fiberMp = π−1(p), p ∈ P, is the

orientation bundle ΛdT ∗Mp. We will always assume that (3.1) has a relative orientation
specified by a nowhere zero section of detdπ.

The definition of a thin compactification for families is designed so that regular fibers are
thinly compactified in the sense of Definition 2.1

Definition 3.2. A thin compactification of a relatively oriented family (3.1) is a Hausdorff
space M containing M as an open subset, and an extension of π to a proper continuous
map π ∶ M → P such that M is a disjoint union

M=M∪
∞
⋃
k=2

Sk (3.2)

where each Sk is a manifold and each restriction πk = π∣Sk is a Fredholm map πk ∶ Sk → P
of index d − k.

We call Sk the codimension k stratum of M. As in Section 2, the adjective “thin” is
meant to emphasize that all boundary strata Sk in (3.2) have codimension 2 or more.

Given such a thin compactification, we can apply the Sard-Smale Theorem to (3.1) and
to each map πk ∶ Sk → P and intersect the resulting second category sets. The result is a
single second category set P∗ ⊂ P whose points are simultaneous regular values of π and
all πk; we call these regular values of π. The fiber Mp of π ∶ M → P over each p ∈ P∗
then satisfies the hypotheses of Lemma 2.2, so is a thin compactification of the manifold
Mp = π−1(p). By Theorem 2.3, each regular fiber therefore carries a fundamental class in
Steenrod homology

[Mp] ∈ sHd(Mp;Z). (3.3)
10



Similarly, for any p, q ∈ P∗, there is a dense set in the space of paths γ in P from p to q such
that each γ in this dense set is transverse to πk for all k. Then the Sard-Smale Theorem
implies that Mγ = π−1(γ) is a thin compactification of Mγ , and hence by Corollary 2.10

the images under the endpoint inclusions ιp and ιq are equal in the homology of Mγ :

(ιp)∗[Mp] = (ιq)∗[Mq] ∈ sHd(Mγ ,Z). (3.4)

We now pass from Steenrod to Čech homology. By Lemma 1.1, for each p ∈ P∗, the
fundamental class (3.3) defines a class

[Mp] ∈ Ȟd(Mp), (3.5)

in integral Čech homology, and (3.4) continues to hold in Ȟd(Mγ) for all p, q ∈ P∗. In this

setting, the association p↦ [Mp] now extends to all p ∈ P by the continuity property (1.9),
in the following form.

Lemma 3.3 (Extension Lemma). Assume π ∶ M → P is a proper continuous map from a
Hausdorff space to a separable Banach manifold. Suppose that there is a dense subset P∗
of P and a map

p↦ αp ∈ Ȟd(Mp) (3.6)

defined for p ∈ P∗ such that, for all p, q ∈ P∗, there exists a dense set of piecewise smooth
paths γ from p to q for which the endpoint inclusions induce an equality

ι∗αp = ι∗αq ∈ Ȟd(Mγ). (3.7)

Then (3.6) extends to all p ∈ P so that (3.7) holds for all paths γ from p to q, and this
extension is unique.

Proof. Fix p ∈ P and identify a neighborhood of p with a neighborhood of the origin in a
Banach space. The balls Bk of radius 1/k centered at p each contain a dense set of values
q ∈ P∗ ∩Bk for which αq ∈ Ȟd(Mq) is defined. Moreover, any two values in P∗ ∩Bk can be
joined by a line segment in Bk which, by assumption, can be perturbed to a path in Bk for
which (3.7) holds.

Choose any sequence pk ∈ Bk ∩ P∗ converging to p and paths γk ⊂ Bk from pk to pk+1

satisfying (3.7). For each m, the set

Km = {p} ∪ ⋃
k≥m

γk

is compact, and Mm = π−1(Km) is a sequence of nested compact Hausdorff spaces whose
intersection is the compact space Mp.

For each k ≥m, the images under the inclusionsMpk ↪Mm determine a homology class

αpk ∈ Ȟd(Mm) (3.8)

which, by (3.7), is independent of k. These homology classes are consistently related by the
inclusions Mm1 ↪Mm2 for m1 ≥m2, so define an element of the inverse system

lim←Ð
m

αpk ∈ lim←Ð
m

Ȟd(Mm). (3.9)

By the continuity property (1.9), this determines a unique Čech homology class

αp ∈ Ȟd(Mp). (3.10)

11



If K ′
m is another such broken path, we can similarly

find paths σk between pk and p′k inside Bk, as shown in
the figure, for which (3.7) holds. By (3.7), for each k ≤m,
the images of αpk and αp′

k
are equal in the homology of

the compact Hausdorff space MLm = π−1(Lm) where Lm
is the “ladder”

Lm =Km ∪K ′
m ∪ {σk ∣k ≥m}.

so the element (3.9) of the inverse system, and hence the
limit (3.10), is well-defined for every p ∈ P, independent of
choices.

p

p1

p2

p3

p′1

p′2

p′3

Similarly, to verify relation (3.7) for any path γ in P, first choose broken paths Km and
K ′
m as above that limit to the endpoints p and p′ of γ, respectively. For each k, we can

choose a path σk between pk and p′k that lies in the 1/k neighborhood of γ, and for which
(3.7) holds. Then the ladders Lm, defined as above, are a nested sequence of compacta
converging to γ such that, after including into Lm,

αp = αpk = αp′k = αp′ ∈ Ȟ∗(MLm)

for all k ≥m. Again applying the continuity property, we conclude that αp = αp′ ∈ Ȟ∗(Mγ).
Finally, to check uniqueness, assume α′ is another extension which agrees with α on P∗

and satisfies (3.7) for all paths γ in P. Pick any point p ∈ P and broken paths Km as above.
Then for any k ≥m, the inclusions induce equalities

α′p = α′pk = αpk ∈ Ȟd(MKm).
Therefore, again by continuity,

α′p = lim←Ð
m

α′p = lim←Ð
m

αpk = αp

in lim←Ð Ȟd(MKm) = Ȟd(Mp). This completes the proof. ◻

We can now give an axiomatic definition of virtual fundamental classes for thinly com-
pactified families. Let Ȟ∗ denote any one of the possibilities in (1.11).

Definition 3.4. A virtual fundamental class (VFC) of a thinly compactified familyM→P
of index d associates to each compact path connected subset Q ⊂ P an element

[MQ]vir ∈ Ȟd(MQ) (3.11)

such that:

A1. For each regular p ∈ P, [Mp]vir is the fundamental class [Mp].
A2. Every inclusion ι ∶ R → Q of compact path connected subsets induces an equality

ι∗[MR]vir = [MQ]vir.

The virtual fundamental class (3.11) is called integral if it lies in Ȟd(MQ;Z) and rational

if it lies in Ȟd(MQ;Q). As in Lemma 1.1, an integral and rational virtual fundamental

classes both determine a class in Ȟd(MQ;Q)∨, where Pardon’s virtual fundamental classes
are defined [Pd1].
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With this terminology, our main result can be stated simply:

Theorem 3.5. Every thinly compactified family π ∶ M → P admits a unique virtual funda-
mental class.

Proof. Let P∗ be the dense set of regular values of π ∶ M → P. The discussion containing
(3.3) and (3.4) shows that, after passing to Čech homology, the map p ↦ [Mp] is defined
on P∗, and satisfies (3.7) for the dense set of paths described above (3.4). By Lemma 3.3,
there is a unique extension αp ∈ Ȟd(Mp), defined for all p ∈ P, that satisfies (3.7). Write

this extension αp as [Mp]vir. Then Axiom A1 holds, and we also have:

A2′. For every continuous path γ from p to q, the endpoint inclusions satisfy (3.4).

But A2′ is the special case of Axiom A2 with Q = γ and R = ∂γ and, in fact, is equivalent to
Axiom A2, as follows. For any nonempty, compact, path connected subset Q of P, define
[MQ]vir ∈ Ȟd([MQ]) to be (ιp)∗αp, where ιp ∶ p ↪ Q is the inclusion of some point in Q.
This is well-defined, independent of p: given any q ∈ Q, we can find a path γ in Q between p
and q, and then (3.7) shows that (ιp)∗αp = (ιq)∗αq in Ȟd(Mγ), and therefore in Ȟd(MQ).
◻

Theorem (3.5) has the following immediate consequence.

Corollary 3.6. For any class α ∈ Ȟ∗(M), the function defined by

Ip(α) = ⟨α, [Mp]vir⟩ (3.12)

is constant in p on components of P, and hence independent of p if P is connected. In
particular, if P is connected, then for any continuous map f ∶ M → Y there are invariants

I(β) = ⟨f∗β, [Mp]vir⟩ = ⟨β, f∗[Mp]vir⟩

for each β ∈ Ȟ∗(Y ).

We conclude this section with two finite-dimensional examples, both of which come from
algebraic geometry. The first shows that the virtual fundamental class can be different from
the actual fundamental class even when the fiber is a manifold.

Example 3.7 (Elliptic Surfaces). An elliptic surface is a compact complex algebraic surface
S with a holomorphic projection π ∶X → C to an algebraic curve C whose fiber is an elliptic
curve except over a finite number of points pi ∈ C. The singular fibers Fpi are unions of
rational curves, each possibly with singularities and multiplicities, and elliptic curves with
multiplicity. The restriction of π to the union of the smooth fibers is a Fredholm map
X∗ → C of index 2, and π ∶ X → C is a thin compactification of X∗ regarded as a family
over C.. Thus by Theorem 3.5, every fiber Fp carries a virtual fundamental class

[Fp]vir ∈ Ȟ2(Fp,Z)

whose image ι∗[Fp]vir in Ȟ2(X,Q) is the homology class of the generic fiber.
In particular, if Fp is a smooth elliptic fiber with multiplicity m > 1, then Fp has a

fundamental class [Fp], but the virtual fundamental class is

[Fp]vir =m[Fp]. (3.13)
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Example 3.8 (Lefschetz Pencils and Fibrations). Consider a complex projective manifold
X with a complete linear system ∣D∣ of divisors of dimension at least 3. Lefschetz showed
that a generic 2-dimensional linear system [D] determines a holomorphic map π ∶X ∖B →
P1, where B is the base locus of [D]. The generic fiber of π is smooth and the other fibers
have only quadratic singularities. This map π is Fredholm of index d = dimX − 2. While
π does not extend continuously to X, it does extend continuously over the blowup XB of
X along B, and π̃ ∶ XB → P1 is then a thin compactification of X ∖B → P1. Theorem 3.5
therefore defines a virtual fundamental class

[Fp]vir ∈ Ȟd(Fp,Z)

on the fiber Fp = π̃−1(p) over each p ∈ P1.

4. Family expansions and thin coverings

In practice, applying Theorem 3.5 requires choosing a space P of parameters, and a
compactification of M→P. One then must stratify S =M∖M, and prove lemmas of two
types:

(i) Formal dimension counts for all strata.

(ii) Transversality results showing that each stratum is a manifold of the expected dimen-
sion.

In general, (ii) can be done only if the space of parameters P is sufficiently large. Thus it
may be necessary to enlarge the space of parameters in order to define virtual fundamental
classes. Base expansions also are needed to show independence of added geometric struc-
ture, such as the choice of a Riemannian metric used to define Donaldson polynomials (see
Section 5), and the choice of an almost complex structure used to define Gromov-Witten
invariants (see Sections 6-10).

This section describes several ways to expand the base space P and extend virtual fun-
damental classes. The first type of expansion is to families where M may not be a Banach
manifold over all of P:

Lemma 4.1. Let π ∶ M → P be a proper continuous map from a Hausdorff space to a
separable Banach manifold. Suppose that there is an open, dense and connected set P∗ of
P such that π−1(P∗) is the thin compactification of a relatively oriented Banach manifold.
Then π ∶ M → P admits a unique virtual fundamental class [Mp]vir for all p ∈ P (not just
p ∈ P∗).

Proof. For each p ∈ P∗, there is a virtual fundamental class αp = [Mp]vir by Theorem 3.5.
The hypotheses on P∗ imply that p ↦ αp satisfies the consistency condition (3.7). The
proof of Theorem 3.5 then applies, without change, to show that a virtual fundamental
class exists for all p ∈ P. ◻

When enlarging the parameter space, some care is needed because the definitions of
thin compactification and of virtual fundamental classes depend on the choice of P. Thus
enlarging the space of parameters may change the problem that one is trying to solve.
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Definition 4.2. A base expansion of the thin compactification (3.2) is a thin compactifi-
cation of π′ ∶ M′ → P ′ with a commutative diagram

M
π
��

ι //M′

π′

��
P � � // P ′

(4.1)

where (a) the bottom map is an inclusion as a submanifold, (b) the restriction of M′ over
P is M, and (c) there is a second category subset P∗ of P consists of regular values of both
π and π′ for each p ∈ P∗.

Because the index is the dimension of a regular fiber, condition (c) implies that index π =
index π′.

The following lemma shows that if a family already carries a VFC, expanding the space
of parameters in the manner of Definition 4.2 does not change the VFC along the original
family.

Lemma 4.3. For every base expansion (4.1), the virtual fundamental classes of π and π′

agree over P, i.e.

ι∗[Mp]vir = [M′
p]vir (4.2)

in Ȟ∗(M′
p) for all p ∈ P.

Proof. Conditions (a) and (b) of Definition 4.2 imply that M = M′ over P, so for each
p in the second category subset P∗ of P appearing in Definition 4.2(c), Mp = M′

p is a

manifold with two thin compactifications Mp and M′
p. Each carries a fundamental class

by Theorem 2.3, and these are equal to the corresponding VFC by axiom A1. Therefore

ι∗[Mp]vir = ι∗[Mp] = [M′
p] = [M′

p]vir ∀p ∈ P∗,
where the middle equality holds by Lemma 2.5, applied to the degree 1 map ι ∶ Mp →M′

p.
Then (4.2) follows by applying Extension Lemma 3.3, noting that the consistency condition
(3.7) automatically holds for both ι∗[Mp]vir and [M′

p]vir by Axiom A2′. ◻

Example 4.4. (a) If p is a regular point of π ∶ M → P, then the inclusion of Mp → {p}
into π ∶ M → P is a base expansion. Equation (4.2) becomes [Mp] = [Mp]vir, which is
Axiom A1 of Definition 3.4.

(b) Example 3.7 shows the importance of condition (c) in Definition 4.2. Let Fp be a smooth
elliptic fiber in an elliptic surface with multiplicity m > 1. Then Fp → {p} is a thinly
compactified family with [Fp]vir = [Fp], and the inclusion of Fp → {p} into X → C
satisfies all of the conditions of Definition 4.2 except (c). But, as in (3.13), the virtual
fundamental class induced by the enlarged family X → C is m[Fp] rather than [Fp].

(c) Similarly, in Example 2.4(a), the family πZ ∶ π−1(Z) → Z embeds into π ∶ MZ → M ,
but this is not a base expansion because no regular value for πZ is regular for π. In
this case, the dimensions of the generic fibers and the indices are different, and the two
virtual fundamental classes are in different dimensions.

(d) For moduli spaces of solutions to an elliptic differential equation, a base expansion comes
from lowering regularity of the parameters, for example, from W k,p to W k−1,p. Often,
elliptic theory implies that, for sufficiently large k and p, all conditions in Definition 4.2
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are satisfied, and hence the virtual fundamental class is unchanged in the sense of
Lemma 4.3.

Examples (b) and (c) above show that that the virtual fundamental class [M]vir depends
on the choice of the parameter space P. Thus it does not make sense to speak of “the” VFC
of a single moduli space Mp: virtual fundamental classes are, by their nature, associated
with families over parameter spaces.

There is a parallel story for a second operation on thinly compactified families: lifting to
covers.

Definition 4.5. A thin covering of degree ` of a thinly compactified family N → P is
a thinly compactified family M → P over the same parameter space with a commutative
diagram of continuous maps

M
f

~~

π′

��

N
π
��
P

(4.3)

such that

(a) there is a second category subset P∗ of P consisting of regular values of both π and π′,
and

(b) for each p ∈ P∗, every component Np,α of Np, contains a non-empty open set Up,α so
that the restriction of f ∶ M → N to f−1(Up,α) is a degree ` covering.

In Gromov-Witten theory, thin coverings arise by adding marked points and imposing
constraints.

Lemma 4.6. For every thin covering (4.3) of degree `, the VFC of π and π′ are related by

f∗[Mp]vir = ` [N p]vir. (4.4)

Proof. At each p ∈ P∗, the fibers Mp and N p are thin compactifications of Mp and Np
respectively, and by Definition 4.5(b) and (2.4), their fundamental classes are related by

f∗[Mp] = ` [N p]. To see that this equality holds for all p ∈ P, apply Extension Lemma 3.3,

first with αp = f∗[Mp]vir, and then with αp = ` [N p]vir, noting that (3.7) holds in both
cases because virtual fundamental classes, by definition, satisfy Axiom A2′. ◻

The two operations described in this section can be used together. For example, in some
situations a covering N →M can be specified by adding structure to the geometric objects
representing points of M. One can then expand the base P to a space P ′ of parameters
that depend on this added structure.
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5. Donaldson theory

Let X be a smooth, closed, oriented 4-manifold that satisfies the Betti number condition
b+(X) > 1. Donaldson theory uses moduli spaces of connections to construct invariants of
the smooth structure of X. This section explains how Donaldson’s polynomial invariants fit
into the context of the previous sections. We follow Donaldson’s exposition in Sections 5.6
and 6.3 of [D].

Fix a U(2) vector bundle E → X with Chern number k = (c2(E) − 1
4c

2
1(E))[X], and fix

a connection ∇0 on Λ2E. Let Ak(E) be the space of all connections on E that induce ∇0

on Λ2E, and let R be the space of Riemannian metrics on X. After completing in Sobolev
norms, the group G of gauge transformations of E with determinant 1 acts smoothly on
Ak(E), and Bk = Ak(E)/G is an orbifold. Furthermore, both R and the subset B∗k ⊂ Bk of
irreducible connections are Banach manifolds.

A pair (A,g) in A(E) ×R is called an instanton if its curvature FA satisfies ∗ad(FA) =
−ad(FA) where ∗ is the Hodge star operator on 2-forms for the metric g. The set of all
G-equivalence classes ([A], g) of instantons is the universal moduli space Mk ⊂ Bk × R.
Projection onto the second factor is a map

Mk

πk
��
R

(5.1)

whose restriction to M∗
k =Mk ∩ Bk is a smooth Fredholm map of index 2dk, where

dk = 4k − 3
2(1 − b

1 + b+). (5.2)

Now assume that c1(E) is an odd element of H2(X;Z)/Torsion. This implies that the
space Ak(E) admits no flat connections [D, Section 5.6]. In fact, because b+(X) > 1, there
is a dense open and path connected subset R∗ of R such that (5.1) is a manifold over R∗ for
all bundles E′ with c1(E′) = c1(E) and Chern number j ≤ k [DK, Section 4.3.3]. Hence by
the Sard-Smale Theorem, there is a second category set of g ∈ R∗ for whichMk(g) = π−1(g)
is a manifold of dimension 2dk. This is oriented by the choice of a homology orientation for
X [DK, 7.1.39].

Lemma 5.1. Mk →R extends to a proper map Mk →R whose restriction to R∗ is a thin
compactification of Mk →R∗.

Proof. Using the topology of weak convergence [DK, Section 4.4], one sets

Mk = Mk ∪ S, (5.3)

where S is the union of the strata Sjk = Mk−j × Symj(X) for 0 < j < k (M0 is empty

because there are no flat connections). Then Mk is paracompact, Hausdorff, and even
metrizable [DK, Section 4.4]. Corollary A.2 in the appendix shows that S can be re-stratified
to see that the family M→R∗ is a thin compactification. ◻

Theorem 3.5 produces a virtual fundamental class for the thin compactificationMk →R∗

of Lemma 5.1, and this extends over the entire space of metrics by Lemma 4.1. Thus we
obtain a virtual fundamental class for Donaldson theory:
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Corollary 5.2. Let X be a closed, oriented 4-manifold with b+(X) > 1, and let E → X a
U(2) vector bundle with Chern number k and c1(E) an odd element of H2(X;Z)/Torsion.
Then a homology orientation for X determines a virtual fundamental class [Mk]vir for the
Uhlenbeck compactification

Mk

πk
��
R.

(5.4)

To obtain invariants, one pairs [Mk]vir with the Čech cohomology classes defined by the
µ-map

µ ∶H2(X;Q) → Ȟ2(B∗k ;Q)
[DK, Chapter 5]. For each choice of classes A1, . . . ,Adk , the product µ(A1) ∪ ⋯ ∪ µ(Adk)

restricts to a class

µ(A1, . . . ,Adk) ∈ Ȟ2dk(M∗
k;Q),

and under the inclusion ιg ∶ M∗
k(g) ↪M∗

k of the moduli space over g further restricts to

ι∗gµ(A1, . . . ,Adk) ∈ Ȟ2dk(M∗
k;Q). (5.5)

The next lemma shows that, for each metric g, the classes (5.5) are pullbacks under the

inclusion ιg ∶ M∗
k(g) →M

∗
k(g) into the compactification. The proof is dual to the proof of

Lemma 3.3.

Lemma 5.3. For each A1, . . . ,Adk ∈H2(X;Z), there is a unique map

g ↦ µg = ι∗gµ(A1, . . . ,Adk) ∈ Ȟ2dk(M∗
k(g);Q)

such that (i) µg is equal to the class (5.5) for all regular g ∈ R∗, and (ii) the consistency
condition (5.6) below holds for all paths γ in R.

Proof. Donaldson and Kronheirmer showed [DK, Section 9.2.3] that for each regular g, µg

has a Čech representative with compact support, so defines a class in the compactification

µg ∈ Ȟ2dk(M∗
k(g);Q).

Furthermore, each pair g, g′ ∈ R∗ can be joined by a smooth path γ so that the compactified
moduli space Mk(γ) over γ contains no reducible connections. Then ιg and ιg′ factor

through the inclusion ιγ ∶ Mk(γ) ↪M
∗
k, giving the consistency condition

µg = ι∗gµγ and µg
′ = ι∗g′µγ for some µγ ∈ Ȟ2dk(M∗

k(γ);Q), (5.6)

namely µγ = ι∗γµ(A1, . . . ,Adk). Thus the hypotheses of Lemma 3.3 hold, with (3.6) replaced
by g ↦ µg, and (3.7) replaced by the dual condition (5.6). The proof of Lemma 3.3 then
applies in cohomology, with inverse limits replaced by direct limits, and the continuity
property (1.12) used instead of (1.9). The lemma follows. ◻

Donaldson’s polynomials are the maps qk ∶ SymdkH2(X;Q) → Q defined as

qk(A1, . . . ,Adk) = ⟨µg(A1, . . . ,Adk), [Mk(g)]vir⟩ , (5.7)

By Lemma 5.3(i), the righthand side agrees with Donaldson’s original definition (which
defined the invariants in terms of the moduli space over a regular g). Furthermore, the
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righthand side is independent of the Riemannian metric g ∈ R: given A1, . . .Adk and g, g′ ∈
R, choose a continuous path γ from g to g′. Then by Lemma 5.3(ii) the numbers

Qg = ⟨µg, [Mk(g)]vir⟩
satisfy

Qg −Qg′ = ⟨µγ , (ιg)∗[Mk(g)]vir − (ιg′)∗[Mk(g′)]vir⟩ ,
which vanishes by Property A2′ in the proof of Theorem 3.5.

Thus the Donaldson polynomials (5.7) are invariants of the smooth structure of the
manifold X, the class c1(E), and the homology orientation. In fact, changes in c1(E),
and the homology orientation simply multiply the Donaldson polynomial by a (specific)
sign. The story is completed by removing the assumption that E is admissible by using the
stabilizing trick of Morgan and Mrowka; see [MM] or [D, Section 6.3].

This viewpoint makes clear that the invariance of Donaldson’s polynomials follows di-
rectly from two core facts: (i) the Uhlenbeck compactification is a thin compactification over
an open, dense, path connected subset R∗ of the space of metrics, and (ii) 2dk-dimensional
products of classes µ(A) extend to the compactification. Both appear explicitly in the
work of Donaldson. As we have seen, these same two facts imply the existence of a virtual
fundamental class [Mk(g)]vir for every metric g, and this encodes all needed cobordism
arguments in Čech homology.

6. Gromov-Witten theory

In the remaining sections, we consider various thin compactifications in Gromov-Witten
theory. This section summarizes the (well-known) setup; details are in [MS], [RT1] and
[RT2].

The Deligne-Mumford spaces Mg,n are at the foundation of Gromov-Witten theory.

Points in Mg,n represent equivalence classes [C] of stable, nodal complex curves C of
arithmetic genus g with n marked points x1, . . . xn; those without nodes form the principal
stratum Mg,n. There is a universal curve

Ug,n
π
��

Mg,n

(6.1)

with the property that for each curve C as above there is a map ϕ ∶ C → Ug,n whose image
is a fiber of (6.1) that is biholomorphic (as a marked curve) to C/Aut(C). More generally,
for any connected, n-marked genus g nodal curve C, there is a map ψ ∶ C → Ug,n that first
collapses all unstable irreducible components of C, and then applies ϕ.

Now let (X,ω) be a closed symplectic manifold and let J = J (X) be the space of all
ω-tame almost complex structures J on X. For each J , we consider maps f ∶ C →X whose
domain is an n-marked connected nodal curve C with complex structure j. Such a map is
called J-holomorphic if

∂Jf = 1
2(df + Jdfj) = 0, (6.2)
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and two such maps are regarded as equivalent if they differ by reparametrization. Let
MA,g,n(X) denote the moduli space of all equivalence classes of pairs (f, J), where J ∈ J
and f is a J-holomorphic map with smooth stable domain that represents A = [f(C)] ∈
H2(X;Z). There is a projection and a stabilization-evaluation map

MA,g,n(X)
π

��

se //Mg,n ×Xn

J

(6.3)

defined by π(f, J) = J and se(f, J) = ([C], f(x1), . . . , f(xn)).
More generally, each map f ∶ C → X from a connected nodal curve has an associated

graph map

Γf ∶ C → Ug,n ×X (6.4)

defined by Γf(x) = (ψ(C), f(x)); this is an embedding if Aut(C) = 1.Following Ruan and
Tian [RT2, Definition 2.2], we can use Γf to expand the base of (6.3), as follows.

The universal curve Ug,n is projective; fix an embedding Ug,n ↪ PM . For each fixed J ,

consider sections ν of the bundle Hom(π∗1TPM , π∗2TX) over PM×X that satisfy J○ν+ν○j = 0.

Each such ν defines a deformation Jν of the product almost complex structure on Ug,n ×X
by writing

Jν = ( j 0
−ν ○ j J

) . (6.5)

Definition 6.1. Let JV(X) denote the space of smooth almost complex structures Jν in
the form (6.5); we write its elements as pairs (J, ν) and call them Ruan-Tian perturbations.

A map f ∶ C → X is (J, ν)-holomorphic if its graph satisfies ∂JνΓf = 0, or equivalently if
f satisfies

∂Jf(z) = ν(z, f(z)). (6.6)

Such a map is called stable if, for each irreducible component Ci of C, either Ci is stable or
f(Ci) is non-trivial in homology.

Now expand the base in (6.3) by the inclusion J ↪ JV defined by J ↦ (J,0). The maps
π and se extend continuously over the universal moduli space MA,g,n(X) of all triples
(f, J, ν) where f is a stable (J, ν)-holomorphic map, giving a diagram

MA,g,n(X)
π

��

se //Mg,n ×Xn

JV.

(6.7)

We can now apply the following version of the Gromov Compactness Theorem, proved
by Ivashkovich and Shevcheshin [IS, Theorem 1].

Theorem 6.2. Fix p > 2. Every sequence {fn ∶ Cn →X} of Jn-holomorphic maps with fixed
arithmetic genus and number of marked points, uniformly bounded energy, and with contin-
uous Jn converging to J in C0 has a subsequence that, after reparameterization, converges
in C0 and in W 1,p to a stable J-holomorphic map f ∶ C →X.
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Replacing the maps f by their graphs Γf , one obtains the corresponding convergence
statement for sequences of (Jn, νn)-holomorphic maps. This implies, in particular, that the
projection π in (6.7) is a proper map.

The linearization of the (J, ν)-holomorphic map equation (6.2) at (f, J, ν) is an operator

Df,Jν ∶ Ω(f∗TX) ×H0,1(C) × TJJV → Ω0,1(f∗TX)

given by formula [RT2, (3.10)]; see also [MS, Prop 3.1.1]. Restricting the last factor to be 0
gives the restricted linearization Df ∶ Ω(f∗TX)×H0,1(C) → Ω0,1(f∗TX). After completing
the spaces in (6.3) in appropriate Sobolev norms, one has two important regularity criteria
(cf. [MS, Sections 3.1-3.2] and [RT2, Section 3]):

Reg 1. If Df,Jν is surjective, the universal moduli space π ∶ MA,g,n(X) → JV in (6.3) is a
manifold near (f, J, ν) with a natural relative orientation (see the proofs of [RT2,
Theorem 3.2] or [MS, Theorem 3.1.5]).

Reg 2. If Reg 1 holds, then at each regular value (J, ν) of π, the fiber MJ,ν
A,g,n(X) is a

manifold whose dimension is the index of Df , which is

ι(A,g,n) = 2[c1(A) + (N − 3)(1 − g) + n] (6.8)

where dimX = 2N .

The construction of Gromov-Witten invariants now hinges on a single issue: Find a
thin compactification of (6.3) so that the map se extends over the compactification to give
diagram (6.7). Doing so, even over a portion of JV, allows us to define the Gromov-Witten
numbers

GWA,g,n(α) = ⟨(se)∗α, [MJ
A,g,n]vir⟩ for all α ∈ Ȟ∗(Mg,n ×Xn;Q). (6.9)

Note that Mg,n × Xn is locally contractible, so by (1.13) α can also be regarded as an
element of rational singular cohomology.

At this point, we can apply the results of Section 3, with the following payoffs:

(a) A thin compactification for the fiber over a single regular J ∈ J yields a virtual fun-

damental class [MJ
A,g,n]vir. However, the numbers (6.9) may not be invariant under

changes in J .
(b) A thin compactification over a connected neighborhood P of J0 gives a virtual funda-

mental class at each J ∈ P, and by Corollary 3.6 the numbers (6.9) are independent of
J in P.

(c) A thin compactification over all of J or JV gives numbers (6.9) that depend only on
the symplectic structure of (X,ω).

(d) A thin compactification over the larger space Jsymp of all tame pairs (ω,J), with ω vary-
ing, implies that the numbers (6.9) are invariants of the isotopy class of the symplectic
structure on X.

We will take up the problem of constructing thin compactifications in the next section.
Before proceeding, here are some simple examples that illustrate the ideas of this section.
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Example 6.3 (Rational ghost maps). For each J ∈ J (X), every J-holomorphic map
f ∶ S2 → X representing the trivial class A = 0 is a constant map. It follows that Df

is the ∂ operator on the trivial holomorphic bundle f∗TX, and f is regular because the
sheaf cohomology group H1(S2, f∗TX) vanishes. Hence for n ≥ 3 the fibers of the moduli

spaceMJ
0,0,n(X) → J are all regular and canonically identified withM0,n ×X. The virtual

fundamental class [MJ(X)]vir is therefore equal to the actual fundamental class [M0,n×X]
and the GW invariants (6.9) are independent of J .

Example 6.4 (K3 surfaces). Let X be a K3 surface, and consider the moduli space
M(X) → Jalg of smooth rational holomorphic maps (f, J) for algebraic J ∈ J . By a
theorem of Mumford and Mori (see [MMu]), every algebraic K3 contains a non-trivial
rational curve, so the fiber MJ

A,0,0(X) is non-empty for each algebraic J and some A /= 0.

But by (6.8) the index ι(A,0,0) = −2 is negative. Thus MA,0,0(X) → Jalg does not satisfy
Reg 1. for any algebraic J .

Now extend the base by considering π ∶ M(X) → Jcx over the space of all integrable
complex structures. Each J ∈ Jcx determines a 20-dimensional subspace H1,1(X;R) of
H2(X;R) ≅ R22, and the resulting map J → Gr(20,22) is a submersion. But A ∈H2(X;Z)
can be represented by a J-holomorphic curve only if the Poincaré dual of A is an integral
(1,1) class. It follows that MJ

A,g,n(X) is empty for all J in a subset P ⊂ Jcx whose
complement has codimension 2. Since empty fibers are regular, a virtual fundamental class
exists over P and is equal to 0. This extends by Lemma 4.1, showing that

[MJ
A,g,n(X)]vir = 0

for all A /= 0, g and n, and all J ∈ Jcx, including the algebraic J .

Example 6.5 (Convex manifolds). A complex algebraic manifold (X,ω,J) is called
convex if H1(C, f∗TX) = 0 for stable J-holomorphic maps f ∶ S2 → X. Examples in-
clude projective spaces, Grassmannians, and Flag manifolds. Convexity implies that all
J-holomorphic maps with smooth domain are regular, so MJ

A,0,n(X) is smooth and com-

plex. It is also a quasi-projective variety (cf. [FP]), so its closure is a thin compactification.

Hence there is a virtual fundamental class [MJ
A,0,n(X)]vir for the given J ; more work is

needed to determine if the associated GW numbers (6.9) are symplectic invariants.

7. Stable map compactification

The space of stable maps is the most commonly-used compactification of the moduli
space (6.3) of smooth pseudo-holomorphic maps. Indeed, it is often regarded as the central
object of Gromov-Witten theory. This section uses existing results to show that, in certain
rather special circumstances, the space of stable maps is a thin compactification over J . In
these cases, the space of stable maps carries a virtual fundamental class.

Each stable map f ∶ C →X has an associated dual graph τ(f), whose vertices correspond
to the irreducible components Ci of C and whose edges corresponding to the nodes of C.
Each vertex of the graph is labelled by the homology class Ai = [f(Ci)] ∈H2(X;Z), by the
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genus gi of Ci, and by the number ni of marked points on Ci. Every such graph τ defines
a stratum Sτ consisting of all stable maps f with τ(f) = τ . The space of all stable maps is
the disjoint union

MA,g,n = MA,g,n ∪ ⋃Sτ , (7.1)

where MA,g,n is as in (6.3), and where the union is over all non-trivial graphs τ with

∑Ai = A, ∑ni = n, and with ∑ gi plus the first Betti number of the graph equal to g. The
Gromov Compactness Theorem implies that the projection π ∶ MA,g,n → J is proper.

To check whether (7.1) is a thin compactification one must, as always, compute the virtual
dimension of each stratum, and prove transversality results that show that each stratum is
a manifold over J . In this case, the index calculations have been done many times in the
literature (specifically, see Theorem 6.2.6(i) in [MS] or Section 4 in [RT1] for the g = 0 case,
and Section 3 in [RT2] in general). These calculations show that, for each τ , the index of
πτ ∶ Sτ → J is given by

index πτ = ι(A,g,n) − 2k (7.2)

where ι(A,g,n) is the index (6.8) of the principal stratum π ∶ MA,g,n → J , and k is the
number of nodes of the domain. Lemma A.1 in the appendix then shows that (7.1) is a thin
compactification provided all strata satisfy the transversality condition Reg. 1 in Section 6.

Unfortunately, transversality can only be shown for certain classes of stable maps. One
such class is:

Definition 7.1. A stable map f ∶ C → X is called somewhere injective if each irreducible
component Ci of C contains a non-special point pi such that (df)pi /= 0 and f−1(f(pi)) =
{pi}.

In the literature, it is usual to consider the universal moduli space of stable maps M→
J over the entire space of almost complex structures, and to show that the subset M∗

consisting of somewhere injective maps has good properties. Shifting perspective, we will

restrict attention to the subset of J consisting of those J for which every map in MJ
is

somewhere injective. Fixing (A,g,n), we set

Js−inj = Js−inj(A,g,n) = {J ∈ J ∣ all (f, J) ∈ MJ
A,g,n are somewhere injective}.

Lemma 7.2. For each (A,g,n), Js−inj is an open subset of J in the C0 topology.

Proof. From Definition 7.1 and the discussion in [MS, Section 2.5], one sees that the comple-
ment of Js−inj in J is the set of all J such that there exists a J-holomorphic map f ∶ C →X

in MA,g,n and an irreducible component Ci of C with either

(i) f(Ci) = p is a single point,

(ii) the restriction f ∣Ci is a multiple cover of its image, or

(iii) there is another component Cj of C with f(Ci) = f(Cj).
We will show that each of these is a closed condition on J , so the complement of Js−inj is
the union of three closed sets.

Suppose that a sequence {Jk} converges in C0 to J ∈ J and that there are stable Jk-
holomorphic maps fk ∶ Ck → X, and components C ′

k ⊂ Ck that satisfy (i). By Gromov
compactness (6.2), after passing to a subsequences and then a diagonal subsequence, {fk}
and {fk∣C′

k
} converge in C0 to J0-holomorphic maps f ∶ C →X and f ′ ∶ C ′

k →X, respectively,

for some nodal curves C and C ′. But then f ′ = f ∣C′ is a constant map, which means (i) is
a closed condition on J .
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If each {fk∣C′
k
} is multiply covered then, by the proof of [MS, Proposition 2.5.1], there

exit curves Bk and holomorphic maps ϕk ∶ C ′
k → Bk of degree > 1 such that fk∣C′

k
is the

composition gk ○ϕk for a Jk-holomorphic map gk ∶ Bk →X. Again by Gromov compactness,
we may assume that, after restricting to C ′

k, these converge to maps f ′, g and ϕ with
f ′ = g ○ ϕ and degϕ > 1. Then f ′ = f ∣C′ satisfies (ii), so (ii) is a closed condition on J .

The proof for (iii) is similar after using [MS, Corollary 2.5.3] to write fk∣Ci as the com-

position of ϕk ∶ Cik → Cjk and gk ∶ Cjk →X. ◻
Now fix (A,g,n) consider the restriction of the universal space of stable maps to Js−inj =

Js−inj(A,g,n) (assuming that it is not empty):

MA,g,n

π

��
Js−inj .

(7.3)

Lemma 7.3. The family (7.3) is a thinly compactified family whose index d = ι(A,g,n) is
given by (6.8).

Proof. For each somewhere injective f , one can use the variation in the parameter J ∈ J to
show that the linearization of the equation ∂Jf = 0 (with fixed domain and map f) is onto.
Specifically, for the g = 0 case, Proposition 6.2.7 and Theorem 6.3.1 in [MS] imply that each
stratum Sτ of (7.3) is a Banach manifold and πτ ∶ Sτ → Js−inj . has index given by (7.2).
As mentioned before (6.8), the principal stratum is relatively oriented. Therefore (7.3) is a
thinly compactified family when g = 0.

The same proofs (Propositions 6.2.7 and 6.2.8 and the proof of Theorem 6.3.1) in [MS]
also apply for g > 0: they show that the linearization is surjective using variations that fix
the complex structure on the domain, which implies, a fortiori, surjectivity as the domain
is allowed to vary. ◻
Corollary 7.4. The family (7.3) carries a virtual fundamental cycle

[MJ
A,g,n(X)]vir ∈ Ȟd(M

J
A,g,n(X);Q)

for all J ∈ Js−inj(A,g,n). The corresponding GW invariants (6.9) are constant on each
path-component of Js−inj(A,g,n).

In particular, the Gromov-Witten invariants are invariant under C0-small deformations
of J in Js−inj . Note, however, that this is not enough to imply that they are symplectic
invariants.

In a limited number of examples (X,A, g, n), one can show that Js−inj is path connected
and dense in J . This occurs, for example, if energy considerations imply that all boundary
strata are empty. Corollary 7.4 and Lemma 4.1 then define a virtual fundamental class over
all of J , and the corresponding GW invariants are symplectic invariants.

Example 7.5. For X = CPN , the universal space ML,0,0(X) of stable rational maps
representing the class of a line is smooth and equal to ML,0,3(X), and Js−inj(L,0,0) is all
of J .

Example 7.6. Assume X is a Calabi-Yau 3-fold and A ∈H2(X;Z) is a primitive homology
class. Then there exists a subset J ∗ of Js−inj(A,0,0) which is path connected, open and
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dense in J (cf. [IP2, Lemmas 1.1 and 6.5]). In fact, the restriction to J ∗ of the universal
spaceMA,0,0(X) of stable rational maps consists only of embeddings with smooth domains.

8. Domain-fine moduli spaces

As Examples 7.5 and 7.6 suggest, the somewhere injective condition is too restrictive for
most applications. In the genus 0 case, the needed transversality results hold for the slightly
larger class of maps (“simple maps”) that are somewhere injective on the complement of
ghost components; see [MS, Example 6.2.5]. But it is more effective to expand the base
space J to the space JV of Ruan-Tian perturbations.

Definition 8.1. A (J, ν)-holomorphic map f ∶ C →X is called domain-fine if Aut C = 1.

Any domain-fine map f ∶ C → X is stable. Furthermore, the map C ↦ ψ(C) into
the universal curve (6.1) is an embedding, and hence the graph map (6.4) is somewhere
injective. While the proofs in the previous section do not immediately apply (because of
the 0 in (6.1)), their conclusions holds, as we show next.

Fix (A,g,n) and set

Jd−f = Jd−f(A,g,n) = {J ∈ J ∣ all (f, J) ∈ MJ
A,g,n are domain-fine}.

As in Lemma 7.2, Gromov compactness implies that Jd−f is an open subset of J .

Lemma 8.2. Jd−f = Jd−f((A,g,n) is an open subset of J in the C0 topology. The space

JV`d−f , defined similarly, is also open.

Proof. Under Gromov convergence, the order of the automorphism group is upper semi-
continuous, and limits of unstable domain components are unstable. Thus each domain-fine
map f has a neighborhood with the same property. For J ∈ Jd−f , these open sets cover the

moduli space MJ
A,g,n(X), and hence by compactness cover the moduli spaces π−1(U) for

some open neighborhood U of J . The same argument applies to JV`d−f . ◻
Example 8.3. Because stable rational curves have no non-trivial automorphisms, the space
M0,0,n(X) of rational ghost maps considered in Example 6.3 is domain-fine for all J , so in
this case Jd−f(0,0, n) = J .

The next proposition rephrases the main result of Ruan and Tian in [RT1] and [RT2]. It
shows that the techniques developed in Sections 1-3 apply directly to domain-fine moduli
spaces.

Proposition 8.4. Fix (A,g,n) and JVd−f as in Lemma 8.2. Then the restriction of the

universal moduli space of stable maps MA,g,n(X) → JV`d−f is a thinly compactified family

of index d = ι(A,g,n).

Proof. For domain-fine maps, one can use the variation in ν to show that the linearization
of the equation ∂Jf = ν is onto (essentially because the graph Γf of f is an embedding, thus
somewhere injective). The proof is completed exactly as in the proof of Lemma 7.3. ◻
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Corollary 8.5. For each (A,g,n), the thin compactification of Proposition 8.4 determines
a unique virtual fundamental class

[MJ
A,g,n(X)]vir ∈ Ȟ∗(M

J
A,g,n(X),Q) (8.1)

defined for J ∈ J Vd−f . The corresponding GW numbers (6.9) are independent of J on each
path component of Jd−f .

Proof. Apply Theorem 3.5 to the family of Lemma 8.4. ◻
A priori, Jd−f may be empty or have many components. Thus Corollary 8.5 is not

yet enough to define a virtual fundamental class over JV. In particular, for g = 0, the
stable map compactification MA,0,n(X) → JV may not be a thin family over the entire
JV because of the presence of multiply-covered unstable domain components. On such
components, the perturbation ν vanishes and cannot be used to verify condition Reg 1 of
Section 6.

Compactifications that are not thin occur in Gromov-Witten theory, as in the following
example.

Example 8.6. Fix a complex structure j on a smooth torus T with one marked point, and
let M denote the moduli space of degree d stable maps f ∶ T → P2 for fixed j. Then M is
a smooth family over the space J of almost complex structures on P2, and this family has
a bubble tree compactification M. However, the results of [I1] show that the restriction
M → J is not a thin compactification: it contains a stratum (maps whose domain is a
ghost torus with a degree d rational bubble tree) which is always larger dimensional than
M.

This difficulty can be resolved in two ways:

(i) M and M extend to a thinly compactified family over JV (using [RT1]).

(ii) There is a different, smaller, thin compactification of M→J , which includes maps f
from nodal rational curves with a ghost torus attached at a point p only if df(p) = 0;
see [I1].

In this case, Lemma 4.3 does not apply, and the two virtual fundamental classes are different.
The difference between the corresponding invariants is calculated in [I1].

9. Domain-fine relative moduli spaces

The virtual fundamental classes constructed in Section 8 come with a big caveat: they
exist only if Jd−f is non-empty, that is, if there is some J for which the domain C of every
stable J-holomorphic map is stable with Aut(C) = 1. In general, there is no such J . A
natural way to proceed is to add some geometric structure that has the effect of introducing
more special points on all domains, and hope that these new points stabilize and rigidify all
domains. This procedure may yield moduli spaces with several different compactifications,
and one must ask if any of these are thin. Below, we do this for added structures of two
types: a smooth symplectic divisor, and a normal crossings divisor. In each case we show
that existing results in the literature are enough to construct a virtual fundamental class
for domain-fine J .
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An embedded codimension 2 submanifold V of (X,ω) will be called a divisor if it is
J-holomorphic for some ω-tame J . A finite union of divisors in general position is a normal
crossing divisor, also denoted by V , if it is J-holomorphic for some ω-tame J (see [I2,
Definition 1.3] for precise definition). In either case, there are associated subspaces J V ⊂
J and JVV ⊂ J V consisting of all J (respectively (J, ν)) that satisfy a condition (“V -
adapted”) on the 1-jet of J along V as defined in Definition 3.2 of [IP1] and Section A.2
of [I2]. We assume that these subspaces are non-empty; this is true for any divisor V
(see [IP1]), but is an assumption on V for normal crossing divisors.

In [IP1] we defined relative moduli spaces Ms(X,V ) consisting of stable maps with
smooth domain whose image intersects V at points with multiplicities s = (s1, . . . , s`). We
also constructed a relative stable map compactification

π ∶ Ms(X,V ) → JVV (9.1)

that consists of equivalence classes of certain types of maps f ∶ C → Xm into a “level m
building” Xm =X ∪PV ∪ ⋅ ⋅ ⋅ ∪PV , modulo the action of C∗ ×⋯×C∗ where C∗ acts fiberwise
on the projectivized normal bundle PV = P(NV ⊕C). There is a refined se map which also
keeps track of the multiplicities s. This was extended in [I2] to the case V is a normal
crossing divisor; s then records multiplicities of intersections with each statum of V , and
the evaluation map now also keeps track of the leading coefficients of f at the `(s) contact
points to V (as elements of a weighed projectivization Ps(NV ) of the normal bundle to V ,
cf. [I2, (3.17)]). In both cases, for each (A,g,n, s), the maps π and se are continuous on
the components MA,g,n,s(X,V ) of (9.1), giving a diagram

MA,g,n,s(X,V )

π
��

se //Mg,n+`(s) ×Xn × Ps(NV )

J VV

(9.2)

There is also a continuous forgetful map

ϕV ∶ MA,g,n,s(X,V ) →MA,g,n+`(s)(X) (9.3)

induced by composing f ∶ C →Xm with the collapsing map Xm →X, and then contracting
all unstable domain components whose image is a single point. The image of a f ∈ Ms(X,V )
is a map f0 ∶ C0 →X that may have components in V :

C
f //

ct
��

Xm

πX
��

C0
f0 // X

(9.4)

Note that the contracted domain C0 = ct(C) of f depends on f (not just C), and is
different from the stable model st(C), which is obtained by contracting all unstable domain
components, not just the trivial ones.

Definition 9.1. A map f ∈ M(X,V ) is called domain-fine if f0 ∈ M(X) is domain-fine,
that is, if the contracted domain C0 is stable with Aut(C0) = 1.

We now proceed as in previous sections. Again, the subset of the moduli space (9.2)
consisting of domain-fine maps is a manifold, and we restrict attention to those fibers of π
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that are entirely contained in this subset. Thus we fix (A,g,n, s) and set

JVVd−f = {(J, ν) ∈ J VV ∣ all (f, J, ν) ∈ MJ,ν
A,g,n,s are domain-fine};

this is an open subset of JVV that implicitly depends on (A,g,n, s). Each domain-fine
map has irreducible components fi ∶ Ci → X of two types: (i) ones whose graph map (6.4)
is somewhere injective, and (ii) trivial components, i.e. unstable domain components that
multiply-cover a fiber of one PV in Xm. On trivial components the perturbation ν vanishes
identically and the restricted linearization Dfi is the ∂-operator on the holomorphic bundle
TCi ⊕E, where E is holomorphically trivial. Hence, coker Dfi = 0 and, as in Example 6.3,
this allows one to obtain all needed transversality results at domain-fine maps, as is shown
in Lemma 5.23 in [I2].

Proposition 9.2. Over JVVd−f , the universal moduli space of relatively stable maps

MA,g,n,s(X,V ) πÐ→ JVVd−f (9.5)

is a thinly compactified family. Therefore for each J ∈ J Vd−f , there is a virtual fundamental
class

[MJ
A,g,n,s(X,V )]vir.

Its pushforward under the se map in (9.2) is the relative GW invariant over JVVd−f defined

in [IP1, Theorem 8.1] and [I2, Theorem 8.1].

Proof. If V is a smooth divisor, Theorem 7.4 of [IP1] shows that (9.5) is a thinly compactified
family (see also Lemmas 7.5 and 7.6, and note that domain-fine maps f are “irreducible”
in the sense of [IP1, Definition 1.7] and are smooth points of their stratum of the universal
moduli space because Aut(C0) = 1). The corresponding facts for normal crossing divisors
are proved in [I2]: π is proper by Theorems 7.5, and by Theorem 7.6 every stratum of (9.5)
is smooth, and all boundary strata have index at least 2 less than the index of the principal
stratum, so again (9.5) is a thinly compactified family. One can then apply Theorem 3.7
and Corollary 3.6. ◻

Small relative compactification When V is smooth, there is a smaller compactified
relative moduli space

N(X,V )
that is sometimes easier to work with, and was recently used by J. Pardon; see Remark 1.9
in [Pd2]. Each point in M(X,V ) is represented by a map f ∶ C → Xm whose restrictions
fi = f ∣Ci to the irreducible components Ci of C are of two types: “level 0” maps fi ∶ Ci →X

with images not in V , and “level k” components whose image lies in the kth copy of PV ,
k ≥ 1. Some positive level components may be trivial, but each positive level has at least
one nontrivial component. Then N(X,V ) is obtained from this set of maps by contracting
all unstable domain components whose image is a fiber of PV and taking the quotient by
the action of C∗ on each nontrivial component. This is a quotient of M(X,V ), and the
map (9.3) factors through this compactification:

MA,g,n,s(X,V ) ψÐ→NA,g,n,s(X,V )
ϕ′VÐ→MA,g,n+`(s)(X) (9.6)

where ϕ′V is the composition with the collapsing map Xm → X. As in Proposition 9.5,

NA,g,n,s(X,V ) is also a thin compactification of the moduli space M(X,V ) over JVVd−f .
The labelling of the boundary strata is the same, but their dimension may decrease: a
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relatively stable map f ∶ C → Xm in M(X,V ) lies in a stratum of codimension equal
to twice the maximun level of the non-trivial components of f , while the corresponding
stratum of N(X,V ) is twice the total number of nontrivial components with positive level.

Because these are two thin compactifications of the same spaceMA,g,n,s(X,V ), Lemma 2.5
applies with ` = 1 to show that

ψ∗[MA,g,n,s(X,V )]vir = [NA,g,n,s(X,V )]vir

over JVVd−f(A,g,n, s).

10. Applications: the Semipositive and Genus 0 cases

We close by mentioning – without details – two important cases in which Gromov-Witten
invariants have been defined, and where the existing proofs can be reinterpreteted as showing
the existence thin compactifications.

Semipositive manifolds. In general, spaces of stable maps MA,g,n(X) → JV are not
thinly compactified families because of the presence of multiply-covered unstable domain
components with negative Chern class. But Ruan and Tian observed that if X is semi-
positive (cf. Definition 6.4.1 in [MS] or page 456 of [RT2]), there is a quotient

NA,g,n(X) → JV (10.1)

of the space of stable maps whose boundary strata all have codimension at least 2 for
generic (J, ν). This quotient, which they call the GU-compactification, is obtained by
replacing multiply-covered unstable components by their images; the basic idea is described
in Section 3 of [RT2], and a detailed description in the g = 0 case is given in Sections 6.1
and 6.4 of [MS]. The transversality lemmas and dimension counts in these references prove
most of what is needed to show that (10.1) is a thinly compactified family (cf. Theorem
3.11 of [RT2]).

Granting this, Theorem 3.5 implies the existence of a virtual fundamental class, as an

element in the rational Čech homology of N J
A,g,n(X). Since the stabilization-evaluation

map se factors through the GU-compactification, this defines GW invariants as in (6.9) for
all semipositive closed symplectic manifolds.

Remark 10.1. In fact, Ruan and Tian assert that if N J
A,g,n(X) is an analytic space, then

it carries a virtual fundamental class in singular homology (Remark 3.12 in [RT2]). It may
be possible to prove this. But it is more natural to work with rational Čech homology as
above, in which case the existence of a virtual fundamental class follows from the results
in [RT2].

Genus 0 GW invariants. Suppose that X is a closed symplectic manifold whose sym-
plectic form ω represents a rational class in H2(X;R). Then Donaldson’s Theorem shows
that for each almost complex structure J0 and each k ≫ 0 there is a submanifold Vk that is
Poincaré dual to [kω]. Let J0(Vk) be the space of all J such that Vk is a J-holomorphic.
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Then for k ≫ 0 and g = 0, there exists an open, dense and path connected subset J ∗ of
J0(Vk) over which the relative stable map compactifications

MA,0,n,s(X,Vk) → J ∗ (10.2)

are domain-fine, and the only maps in Vk are constant maps (cf. [CM, Corollary 8.16]).
K. Cielieback and K. Mohnke exploit this fact to define genus 0 Gromov-Witten invariants

on X. They define spaces Jl+1(Vk, . . . ) of domain-dependent almost complex structures and
show that the evaluation map factors through a quotient NA,0,n,s(X,Vk) of (10.2):

MA,0,n,s(X,Vk) Ð→ NA,0,n,s(X,Vk)
evÐ→Xn. (10.3)

Transversality lemmas and dimension counts show that the boundary strata of N all have
codimension at least 2 for generic J in Jl+1(Vk, . . . ) (cf. [CM, Proposition 9.6]). These
proofs, reinterpreted, show that for s = (1) = (1, . . . ,1), NA,0,n,(1)(X,Vk) is a thin com-
pactification of MA,0,n,(1)(X,Vk) over an open dense subset of Jl+1(Vk, . . . ). Theorem 3.5
yields a virtual fundamental class for this family, which by Lemma 4.1 extends to a class in
rational Čech homology for the family over J0(Vk). Using the evaluation map ev in (10.3),
one then has Vk-dependent Gromov-Witten numbers

GWA,g,n(α) = 1

(A ⋅ Vk)!
⟨ev∗α, [NA,0,n,(1)(X,Vk)]vir⟩

= 1

(A ⋅ Vk)!
⟨α, ev∗[NA,0,n,(1)(X,Vk)]vir⟩

for all α ∈H∗
sing(Xn;Q).

Finally, Cieliback and Mohnke show that these numbers are independent of the choice
of the submanifold Vk (see [CM, Section 10]), and hence are symplectic invariants. It is
conjectured that these agree with the standard GW invariants whenever both are defined.

Appendix

In practice, compactifications of moduli spaces often come with natural stratifications.
The following lemma provides a useful criterion that implies that a compactification is thin.

Lemma A.1. Consider an index ι family (2.1) such that there exists a Hausdorff space M
containing M as an open set and an extension of π to a proper continuous map π ∶ M → P
such that

(a) M can be written as a disjoint union of sets {Sα∣α ∈ A} indexed by a finite set A with
S0 =M.

(b) Each Sα is a manifold, and πα = π∣Sα is a smooth Fredholm map Sα → P of index ια.
(c) ια ≤ ι − 2 for all α ≠ 0, and

Sα ∖ Sα ⊆ ⋃
{β ∣ ιβ<ια}

Sβ.

Then π ∶ M → P is a thinly compactified family.
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Proof. Condition (c) implies that the accumulation points of Sα must lie in strata of strictly
smaller index. Hence for each k, the union of strata of index ι − k

Xk = ⋃
ια=ι−k

Sα

is topologically a disjoint union of manifolds. This means that each Xk is a manifold,
and that the restriction of π to Xk is a Fredholm map of index ι − k. We can then apply
Lemma 2.2 to conclude that

M = M∪ ⋃
α≠0

Sα = M∪ ⋃
k≥2

Xk

is a thin compactification of M→P. ◻
As one application, consider the Uhlenbeck compactification (5.3). We will show that

Mk has a stratification – different from the one in (5.3) – that satisfies the hypotheses of
Lemma A.1. The strata are labeled by partitions.

A partition is a non-increasing sequence α = (α1, . . . , α`) of positive integers; its length
`(α) = ` and its weight ∣α∣ = ∑αi satisfy `(α) ≤ ∣α∣. We also consider (0) to be a partition
with `(0) = ∣(0)∣ = 0. Let Pk be the set of all partitions α with ∣α∣ ≤ k. Define the level of α
to be

Λ(α) = 2∣α∣ − `(α), (A.1)

and note that Λ(α) ≥ 0 with equality if and only if α = (0).
Given a four-manifold X, an integer k ≥ 0, regard SymkX as formal positive sums ∑αixi

of distinct points of X associated with some partition α = (α1, . . . , α`) with ∣α∣ = k. Let ∆α

be the set of all such sums associated with a given α. Then ∆α is a manifold of dimension
4`(α), and SymkX is the disjoint union of the sets ∆α over all α with ∣α∣ = k. With these
preliminaries understood, we can prove a fact used in the proof of Lemma 5.1.

Corollary A.2. With R∗ as Section 5, the Uhlenbeck compactification Mk →R∗ is a thin
compactification.

Proof. Re-stratify the compactification (5.3) by writing

Mk = Mk ∪ ⋃
α∈Pk

Sα

where
Sα = Mk−∣α∣ ×∆α.

By the choice of R∗, each Sα is a Banach manifold with a Fredholm projection πα ∶ Sα →R∗

of index
ια = 2d(k − ∣α∣) + 4`(α) = 2dk − 4Λ(α), (A.2)

where dk is the dimension of the top stratum Mk.
One then sees that conditions (a) and (b) of Lemma A.1 hold. To verify (c), suppose

that a sequence (An,∑αi(xn)i) converges in the weak topology. Then {An} converges to a
formal instanton (B,∑βjyj) with B ∈ Mk−∣α∣−∣β∣, and ∑αi(xn)i converges to ∑γmzm with
`(γ) ≤ `(α) and ∣γ∣ = ∣α∣. Thus the limit is

(B,∑βjyj +∑γmzm) ∈Mk−∣δ∣ ×∆δ,

with `(δ) ≤ `(β)+ `(γ) ≤ `(α)+ `(β) and ∣δ∣ = ∣β∣ + ∣γ∣ = ∣α∣ + ∣β∣. The level (A.1) of this limit
stratum is therefore

Λ(δ) = 2∣δ∣ − `(δ) ≥ Λ(α) +Λ(β) ≥ Λ(α),
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with equality if and only if β = (0) and γ = α. This, together with (A.2), implies property
(c) of Lemma A.1. The corollary follows. ◻
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