Math 993 Spring 2017 Harmonic and J-Holomorphic Maps

Class meets: 12:40 – 1:30 MWF in C-304 Wells Hall.

Professor:	T. Parker	Office hours:	Monday: 1:30-2:30
Office:	C-346 Wells Hall 353-8493		Wednesday 3-4
parker@math.msu.edu			Friday 2-3

Class Web page: math.msu.edu/~parker/HHM.

This course covers both harmonic and *J*-holomorphic maps. One goal is to include new approaches to the issue of bubbling and conformal invariance.

Prerequisites: A working knowledge of (i) Riemannian geometry and (ii) elliptic PDE at the level of Evans' Chapters 5 and 6.

Course Content: The following is a tentative outline of the course, in order.

1. Harmonic maps	7. Analysis results and regularity	
2. Symplectic geometry and topology	8. Bubbling	
3. J-holomorphic maps	9. Polarized symplectic manifolds	
4. Riemann surfaces	10. Gromov compactness theorem.	
5. Complex curves	11. Virtual fundamental classes and GW invariants.	
6. Gromov-Witten moduli spaces	12. Harmonic map heat flow.	

Textbook: Riemannian Geometry and Geometric Analysis, by Jurgen Jost.

Additional books: The following books are cover the same topics, with varying styles.

- 1. Fanghua Lin and Changyou Wang, The analysis of harmonic maps and their heat flows.
- 2. D. McDuff and D. Salamon, J-holomorphic curves and quantum cohomology. ("short book")
- 3. D. McDuff and D. Salamon, J-holomorphic curves and symplectic topology. ("big book")

Grades: Course grades will be based on homework assignments and on team projects. (The nature of the projects will be explained in class).