Topics in Gauge Theory

Problem Set 4

Due Friday, Nov 7

Exercise 10. Let $L^2(S^1)$ denote the Hilbert space of complex-valued functions on the unit circle $S^1 \subset \mathbb{C}$ with the hermitian inner product

$$\langle f, g \rangle = \int Re(f\overline{g}).$$

For each constant $c \in \mathbb{R}$, consider the 1-parameter family of operators

$$D_t = i\frac{d}{d\theta} + ct : L^2(S^1) \to L^2(S^1)$$

parameterized by $t \in \mathbb{R}$.

- (a) Show that D_t is self-adjoint.
- (b) For which values of c and t is D_t invertible?
- (c) Compute the spectral flow of D_t for the path $0 \le t \le L$, defined by

$$SF(D_t) = P - N \in \mathbb{Z}$$

where P (reap. N) is the number of eigenvalues, counted with multiplicity, crossing 0 from negative to positive (reps. positive to negative) in the family. You will have to assume that D_t is invertible at the endpoints, and your answer will depend on both L and c.

*(d) Do parts (a), (b) and (c) for the similar family of real operators

$$E_t(f) = i \frac{df}{d\theta} + ct \overline{f} : L^2(S^1) \to L^2(S^1)$$