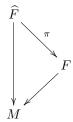
Topics in Gauge Theory

Problem Set 2

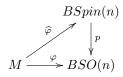
Due Friday, Oct 11

Exercise 5. Let M be an n-dimensional oriented Riemannian manifold M and let $p_n : Spin(n) \to SO(n)$ be the natural projection. Recall that a spin structure on M is a lift of the SO(n) frame bundle F of T^*M to a principal Spin(n) bundle \widehat{F} , that is a 2-fold covering map π so that



$$\pi(fg) = \pi(f)p_n(g) \qquad \forall f \in \widehat{F}, g \in Spin(n)$$

Prove that there exists a spin structure on M if and only if the classifying map $\varphi: M \to BSO(n)$ lifts to a map $\widehat{\varphi}: M \to BSpin(n)$:



Exerccise 6. Let $E, F \to M$ be a hermitian vector bundles on a compact Riemannian manifold M. Prove that if $D: \Gamma(E) \to \Gamma(F)$ is self-adjoint, $(D^* = D)$, the index D = 0. Hint: use the L^2 inner product to show that $\operatorname{coker} D \cong (\operatorname{image} D)^{\perp} \cong \ker D^*$.

Exercise 7. Let $V \cong \mathbb{R}^n$ be the first fundamental representation of O(n) and let

$$\mathcal{R} = \left\{ \sum_{ijk\ell} R_{ijk\ell} e^j \otimes e^i \otimes e^k \otimes e^\ell \mid R_{ijk\ell} = -R_{jik\ell} = -R_{ij\ell k} = R_{k\ell ij} \right\}$$

be the space of curvature tensors. Show that the vector space of all O(n)-equivariant maps

$$\phi: \mathcal{R} \to V \otimes V$$

has dimension 2 and write down a basis of this space.