Topics in Gauge Theory

Problem Set 1

Due Friday, September 20

Exerecise 1. Let $E \to M$ be a vector bundle with hermitian metric \langle , \rangle and connection ∇ . Fix a path $\gamma : [0,1] \to M$ in M from $p = \gamma(0)$ to $q = \gamma(1)$. Recall that the holonomy along γ is the map

$$
\mathcal{H}^{\nabla}_\gamma: E_p \to E_q
$$

defined by $\mathcal{H}^{\nabla}_{\gamma}(\xi_0) = \xi(1)$ where $\xi(t)$ is the unique section of E along γ that satisfied $\nabla_{\dot{\gamma}}\xi = 0$ and $\xi(0) = \xi_0$. Show that $\mathcal{H} = \mathcal{H}_{\gamma}^{\nabla}$ is

- (a) linear
- (b) unitary: $\langle \mathcal{H}\xi, \mathcal{H}\eta \rangle = \langle \xi, \eta \rangle \quad \forall \xi, \eta \in E_p$, and
- (c) gauge-equivariant: $\mathcal{H}_{\gamma}^{g \cdot \nabla} = g(q) \circ \mathcal{H}_{\gamma}^{\nabla} \circ g(p)^{-1} \quad \forall g \in G.$

Exerecise 2. Given a principal G-bundle $P \to M$ and a representation $\rho : G \to End(V)$ of G on a vector space V , we can form the associated vector bundle

$$
E = P \times_{\rho} V = \left\{ (p, v) \in P \times V \mid (p, v) \sim (pg, \rho(g^{-1})v) \right\}
$$

(a) Prove that the space of sections of E can be identified with the set of all smooth equivariant maps from P to V :

$$
\Gamma(E) = \left\{ \phi : P \to V \middle| \phi(pg) = \rho(g^{-1})\phi(p) \quad \forall g \in G \right\}
$$

(b) Suppose that $\rho' : G \to End(V')$ is another representation of G and that $\phi : V \to V'$ is a Gequivariant map (i.e. $\phi(\rho(g)v) = \rho'(g)\phi(v)$ $\forall g \in G, v \in V$). Prove that ϕ induces a bundle map

 $\Phi: E \to E'$

where $E = P \times_{\rho} V$ and $E' = P \times_{\rho'} V'$.

Exerecise 3. Let $\pi : P \to M$ be a principal G-bundle and let

$$
ad(P) = P \times_{Ad} \mathfrak{g}
$$

be the vector bundle associated to P by the Adjoint representation $Ad: G \to End(\mathfrak{g})$. Recall Definition 2: A connection on P is a g-valued 1-form ω on P that satisfies

- (i) $\omega(\iota_* A) = A$ for all $A \in \mathfrak{g}$ where $\iota_* : \mathfrak{g} \to TP$ is the map induced by the right G-action on P.
- (ii) $(R_g)_*\omega = Ad(g^{-1})\omega \quad \forall g \in G.$

(cf. the Kobayahsi-Nomizu handout, page 64). Using this definition, show that the difference of two connection 1-forms is an element of $\Omega^1(adP)$, that is, an $ad(P)$ -valued 1-form on M.

It follows that the the space of connections $\mathcal A$ on P is an (infinite-dimensional) affine space modeled on $\Omega^1(adP).$

Exerecise 4. Given complex representations (ρ_1, V) and (ρ_2, W) of a Lie group G, let $Hom^G(V, W)$ denote the vector space of equivariant maps $\phi: V \to W$ (i.e. maps satisfying $\phi(\rho_1(g)v) = \rho_2(g)\phi(v)$ for all $g \in G, v \in V$). Schur's Lemma states that If V and W are irreducible then

$$
Hom^G(V, W) = \begin{cases} \mathbb{C} & \text{if } V \cong W \\ 0 & \text{otherwise.} \end{cases}
$$

(a) Prove Schur's Lemma (Hint: show that ker ϕ and $im\phi$ are G-invariant subspaces).

(b) Let Δ_1 be the 3-dimensional irreducible representation of $G = SU(2)$. Use the Clebsch-Gordon decomposition to show that there is a non-trivial G-equivariant map

$$
\Delta_1 \to \text{Hom}(\Delta_{\frac{k}{2}}, \Delta_{\frac{\ell}{2}})
$$

if and only if $k - \ell = \pm 2$.

(c) The group $Spin(4)$ is isomorphic to $SU(2) \times SU(2)$. Hence, under the isomorphism $Spin(4)$ $SU^+(2) \times SU^-(2)$, the irreducible complex representations are of the form $\Delta_{\frac{k}{2}}^+ \otimes \Delta_{\frac{\ell}{2}}^-$ with the obvious notation. In this notation, the complexification of the standard representation V_1 of $Spin(4)$ on \mathbb{R}^4 is $\Delta_{\frac{1}{2}} \otimes \Delta_{\frac{1}{2}}$. Extend part (a) above to characterize the space of non-trivial G-equivariant maps

$$
\Delta_1 \to \text{Hom}(V, W)
$$

where V and W are complex irreducible representations of $G = Spin(4)$.