Erratum for: A Morse Theory for Equivariant Yang-Mills

(1) page 347: In equation (4.2) the second term in the numerator should read $e^{-i(l+1)\theta}$. The next line should begin “Now fix an odd integer $l > 1$.

(2) page 346: The reference to (4.1) on line 10 should be to (2.4).

(3) page 345: The proof of formula (3.3) is correct only if the center of the group G is trivial. There is also some confusion between lifts and equivalence classes of lifts. The argument for a general compact group G is given below. I thank Paul Kirk for this correction.

We first show that B^H is a union A_i/G_i of connections invariant under extensions of the H action to P. Let $C(G)$ denote the center of G, which is also the center of G. Let $K = I/\sim$ parameterize the actions of extensions of H by $C(G)$ on P up to equivalence. Thus the elements of I are groups H_i which fit into exact sequences:

$$1 \to C(G) \to H_i \to H \to 1$$

Together with a lift of the H action on M to an H_i action on P. We consider H_i equivalent to H_j if there is an isomorphism $\alpha : H_i \to H_j$ and a gauge transformation $\gamma \in G$ commuting the two actions, so $\gamma h \gamma^{-1} = \alpha(h)$.

Given $i \in I$, let $A_i = \{ A \in \mathcal{A} | h \cdot A = A \forall h \in H_i \}$ and $G_i = \{ g \in G | ghg^{-1}h^{-1} \in C(G) \forall h \in H_i \}$. Then G_i acts on A_i since if $A \in A_i$, $g \in G_i$, and $h \in H_i$, then there is a $c \in C(G)$ so that $hgA = ghcA$, but $cA = A$ since $C(G)$ lies in the stabilizer of A.

Set $B_i = A_i/G_i$. It is easy to check that $B_i = B_j$ when i and j are equivalent lifts. Let A_i^* denote $A_i \cap A^*$, the irreducible invariant connections, and $B_i^* = A_i^*/G_i$. Let $B^{H*} = B^H \cap B^*$.

Lemma. The natural map $B_i^* \to B^{H*}$ is an embedding and B^{H*} is a disjoint union

$$B^{H*} = \bigcup_{i \in K} B_i^*$$

where the notation $i \in K$ means that we choose one i from each coset of K.

Proof. If $[A] \in B^{H*}$, pick a lift $A \in A$. Let $\mathcal{H}_A = \{ h \in Aut(P) | \pi(h) \in H, hA = A \}$, where $\pi : Aut(P) \to Diff(M)$. Since the stabilizer of A in G is just $C(G)$ the sequence

$$1 \to C(G) \to \mathcal{H}_A \to H \to 1$$

is exact (the third map is onto because $[A] \in B^{H*}$). Now \mathcal{H}_A is a subgroup of $Aut(P)$ and so it acts on P, extending the H action on M. Thus $\mathcal{H}_A \in I$ and a different choice of representative for $[A]$ yields an equivalent extension. Thus $\cup B_i^*$ maps onto B^{H*}. The restriction to B_i^* is 1-1 since if $g \in G$, $A, B \in A_i^*$ so that $gA = B$, then for each $h \in \mathcal{H}_i$, $hgA = hB = B = gA = ghA$ so that $[g, h]$ stabilizes A and hence $g \in G_i$. Finally, if $A \in A_i^*$ and $B \in A_j^*$ are gauge equivalent, then it is easy to see that i and j are equivalent lifts.

Remark: Given an extension H_i of the H action on M to P, we can extend the H action on B to and H_i action since if $gA = B$ and $h \in H_i$, then $hg^{-1}h^{-1} \in G$ and $(hg^{-1}h^{-1})hB = hA$, so $[hA] = [hB]$. Therefore the irreducible connections (mod gauge equivalence) left invariant by H are the union of invariant connections under various $C(G)$ extensions of the H action to P.