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A MORSE THEORY FOR EQUIVARIANT YANG-MILLS

THOMAS H. PARKER

0. Introduction. This paper develops a Morse theory for equivariant Yang-Mills
and Yang-Mills-Higgs fields on compact Riemannian 4-manifolds. One immediate
consequence is the first proof of the existence of nontrivial Yang-Mills-Higgs fields
on S*. Another is a topological criteria for the existence of non-self-dual Yang-Mills
fields: for appropriate Lie group actions, if the space of equivariant connections
does not retract to the equivariant moduli space, then there exist Yang-Mills
connections that are neither SD nor ASD (Theorem 3.4).

The Yang-Mills equations arise as a variational problem. Let P - M be a
principal G-bundle over a compact Riemannian manifold. Each connection 4 on
P has a curvature 2-form F4. The Yang-Mills action

(0.1) YM(A) = J |F4)2 dv
M

is a function on the space ./ of connections whose critical points are the YM fields.
More generally, we can (following the physicists) choose a hermitian vector bundle
E associated to P and define, for each connection 4 on P and each section ¢ of E,
the Yang-Mills-Higgs action

©02) e I

where p > 0is a constant, the “mass parameter”. The critical points are Yang-Mills-
Higgs (YMH) fields. (The last term, the “Higgs potential”, is included with the aim
of ensuring that the Lagrangian has nontrivial minima; without it, YMH would be
minimized by ¢ = 0.) Both (0.1) and (0.2) are invariant under the gauge group ¥
and hence descend to functions on the orbit spaces # = &//9 and § = o x4 ['(E).
One can view this situation from the perspective of Morse theory. When M is
4-dimensional, the Yang-Mills function on 4 is minimized along the moduli space
M of self-dual/anti-self-dual connections. Other, nonminimal critical points have
recently been discovered ([SSU], [SS], [Pk3]). A Morse theory for YM could
provide a conceptually simple method for obtaining such nonminimal critical YM
fields. A Morse theory for the YMH action would be even more useful because no
nontrivial YMH fields are known. Unfortunately, the usual formulations of Morse
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theory in infinite dimensions require a compactness condition, Condition C, that
fails for YM and YMH in dimension 4 (although it holds in dimensions <3). The
aim of this paper is to show that one can recover Condition C and obtain a good
Morse theory by imposing symmetry.

The key ingredient is the equivariant Sobolev theorem proved in Section 1.
Suppose that a compact Lie group H acts isometrically on a hermitian vector bundle
E — M. By completing the set I';(E) of equivariant sections in appropriate norms,
we obtain Sobolev spaces of equivariant sections. The equivariant Sobolev theorem
shows that, when all orbits have positive dimension, these spaces satisfy Sobolev
inequalities as if they were functions on a lower-dimensional manifold (even when
the orbit space is not a manifold). This gives a direct way to approach variational
PDE:s that are borderline for the Sobolev embeddings: look for solutions invariant
under an isometric group action with all orbits of dimension d > 1, and use the
equivariant Sobolev theorem to verify Condition C on the space of invariant
functions. By the work of R. Palais ([P1], [P2]), one can then apply Lusternik-
Schnirelman theory and (provided that all critical points are nondegenerate) Morse
theory. This yields points that are critical with respect to equivariant perturbations.
Under quite general circumstances this implies criticality with respect to all varia-
tions (this is the “symmetric criticality principle” [P4]). Elliptic theory then shows
that these critical points are smooth solutions of the variational equations.

When applicable, this procedure quickly reduces PDE existence theorems to
equivariant homotopy theory (e.g., finding the Lusternik-Schnirelman category of
the space of invariant functions). It can be applied to each of the important
geometric problems that involve borderline Sobolev embeddings, such as the
Yamabe and constant mean curvature equations.

When this approach is applied to the Yang-Mills equations, there are complica-
tions caused by the gauge group. An H-action on the principal bundle P defines a
space o/ of invariant connections that is preserved by a subgroup 4# < ¢ of the
gauge group. The functions (0.1) and (0.2) then descend to functions on %% =
AH/G" and &1 = oM x 4u Ty(E) respectively. In Section 3 we show that, under
appropriate conditions on the H-action, one can apply Morse theory on these
spaces to deduce the existence of YM and YMH fields. (The needed analysis is
developed in Section 2 and the appendix.) For applications we turn to the quadra-
pole bundles introduced in [ASSS]. Section 4 gives a self-contained description of
the quadrapole bundles and uses the G-index theorem to show that most admit no
SD Yang-Mills fields. These bundles are then used in Section 5 to establish the
existence of nontrivial Yang-Mills-Higgs fields on S*. Along the way, we obtain a
new proof of the result of Sadun and Segert on the existence of nonminimal
Yang-Mills fields on S*.

The equivariant Morse theory shows that topology forces the existence of at least
some critical points of the YM and YMH functions. One should bear in mind,
however, that the critical point structure of these functions depends on the geometry
(not just the topology) of the base manifold M. In [Pk3] it is shown that there exist
unstable Yang-Mills on (§%, g) for a family of equivariant metrics g that includes
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metrics arbitrarily close to the standard metic g,. These Yang-Mills fields have no
limit as g — g, and represent critical points not forced by topology.

1. The equivariant Sobolev theorem. Let (M, g) be a compact n-dimensional
Riemannian manifold and let E be a vector bundle over M with a fixed fiber metric
and compatible connection V. As usual, the Sobolev space L*?(E) is the completion
of I'(E) with respect to the norm

k 1/p
(1.1a) I8l , = (Z J lV’¢l”>
I=0 JM

where Vig = Vo Vo o VgeI'(QR T*M @ E) is the Ith covariant derivative of ¢.
The Holder spaces C**(E) are defined similarly using the norm

Lk l |VE(x) — VES(p)I
(1.1b) 19l = 2, supIVigl + sup——

where the last supremum is over all y # x contained in a normal coordinate
neighborhood of x and V'¢(y) is taken to mean the tensor at x obtained by parallel
transport along the geodesic from x to y. The following fundamental result is well
known.

SOBOLEV EMBEDDING THEOREM. Let 1 < p<gq, k=1, and 0 <o < 1. Then

(i) for k —n/p =1— n/q the identity map induces a continuous inclusion
L*P(E) = L"(E), and this inclusion is compact if k > land k — n/p > | — n/q,
and

(ii) for k —n/p =1+ a the inclusion L*?(E) = C“*(E) is continuous, and it is
compact if k —n/p > 1 + a.

Next, suppose that a compact Lie group H acts isometrically on E, that is, each
h € H gives a smooth metric-preserving bundle map /: E — E covering an isometry
h: M - M. A section ¢ € I'(E) is equivariant if ¢(h(x)) = h(4(x)) for all x € M. Let
I'y(E) denote the set of all smooth equivariant sections. (A word on terminology:
these sections are equivariant for the action on E and are invariant for the induced
action on I'(E); we will use these words interchangably.)

The group also acts on the connections on E, with he H taking V to the
connection h-V defined by

(1.2) (h-V)xp = 7 (V, x(h)), VX eI(TM), ¢eTl(E).

By the devise of averaging over the group, we obtain an invariant connection
V°, which we fix once and for all. Completing the set I'y(E) with respect to the
norms (1.1)—using the invariant connection V°—we obtain Sobolev spaces L%?(E)
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and CY(E). These are closed subspaces of L*?(E) and C*(E); so the Sobolev em-
beddings of Theorem 1 restrict to corresponding embeddings for L%?(E) and C%(E).
However, when the H-orbits have positive dimension, one expects a better result:
since equivariant sections correspond, in some sense, to sections over the orbit space
M/H, the spaces L%?(E) should satisfy the Sobolev theorem with the dimension n
replaced by dim(M/H). While this is not correct, the following result shows that
equivariance does indeed yield improved Sobolev embeddings.

EQUIVARIANT SOBOLEV EMBEDDING THEOREM. Suppose that a compact Lie group
H acts isometrically on E and that each H-orbit in M has dimension >d. Then the
spaces L'P(E) and C¥(E) satisfy the Sobolev embedding theorem with n replaced by
n—d.

Proof. By the differentiable slice theorem, the orbit through each x € M has a
tubular neighborhood %, equivariantly diffeomorphic (by the exponential map) to
H xy_B,, where H, is the isotropy subgroup at x and B, is the ball of radius ¢ at
the origin in the normal space to the orbit at x. By making these balls B, smaller if
necessary, we may assume that the metric on %, is uniformly close to the product
metric on H xy_B,. Let {%,}, 1 <i <, be a finite subcover of {%,/x € M}. Write
E; for the restriction of the bundle E to %;, set

(1.3) L’;ip({Ei}) = {((151, AL @L’EP(Ei): ¢i|0iz, = ¢j|ﬂz,- vi, J},
and define C}({E,}) similarly. We then have isomorphisms
(1.4) Ly"(E) ~ Li*({E;}),  Cg(E) =~ CH({E:})

(see Theorem 4.3 [P3]). Furthermore, each equivariant section ¢ on %, pulls back
by the exponential map to an equivariant section ¢ on H x u, B.,and the L*? (resp.
C*) norm of ¢ on %, is uniformly equivalent to the L*? (resp. C¥) norm of ¢* on
H xy_B,. Together with (1.3) and (1.4), this means that it suffices to prove the
theorem for equivariant Sobolev spaces on H x_ B, with its product metric.

Now consider the restriction map I'y(H xp_S)— I'y(B), where S is the slice
Id x B,. Each equivariant section ¢ satisfies

(1.5) [p(h(x))] = lhd(x)] = |$()];

i.e., |¢| is constant on orbits. Likewise, (1.2) and the invariance of V° imply that
(Vi x#) (h(x))| = |(VZ6)(x)|. This total covariant derivative V¢ splits into compo-
nents tangent to the orbits and those tangent to the slice.To do this explicitly, we
decompose the Lie algebra of H as ) = b, @ m, where ), is the Lie algebra of
the isotropy subgroup and m is its orthogonal complement. The tangent space
T(H xy_ B,) at each point (Id, y) on the slice is then isometrically identified with
m @ T,B. Thus, if we choose an orthonormal basis {e;} of m, the corresponding
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vector fields on H x, B, are perpendicular to the slice, and we have

(1.6) Vo412 = (Vo) I* + YIVoeI?

where T denotes the component tangent to S. The last term in this expression is in
fact algebraic in ¢, as follows.

Each X € h gives a vector field X on E. Because the flow of X preserves ¢, the
Lie derivative %3¢ vanishes. On the other hand, the difference between the co-
variant derivative and the Lie derivative is a zeroth order operator. Thus, ¥y =
V¢ — %% is a smooth endomorphism of E; it and its covariant derivatives depend
only on V° and the (lifted) H-action. Therefore, (1.6) can be written as

(1.7) Vo1 = V@)1 + LI'E. (@)1

where ¢ is the restriction of ¢ to the slice. From (1.5), (1.7), and the fact that ¥ is
bounded, we see that the Ci-norm of ¢ on H x_ B, is equivalent to the C' norm of
# on the slice S. Likewise, since

f IVOgIF = V01(H/Hx)J AT
Hxy B B

the L}-?-norm of ¢ on H x ., By is equivalent to the L*?-norm of ¢ on S. Similar
statements hold higher derivatives, giving isomorphisms

L’;ip(E) = L’I‘i,f(Elslice)’ Clki(E) = C;Ix(Elslice)‘

Finally, since each H-orbit has dimension >4, each slice B; = Id x B, has dimen-
sion <n — d; so the (n — d)-dimensional Sobolev embeddings hold on  each slice.
|

The equivariant Sobolev theorem is applicable to a variety of geometric PDE
problems. In the subsequent sections we will focus on one of particular interest: the
existence of Yang-Mills and Yang-Mills-Higgs fields.

2. The YM and YMH functions. A standard calculation shows that the varia-
tional equations of the YM function (0.1) are the Yang-Mills equations (d4)*F4 = 0.
The variational equations for the YMH (0.2) function are computed similarly (cf.
[Pk1]). The result is a pair of coupled nonlinear PDEs in the variables (A4, ¢), the
Yang-Mills-Higgs equations

(2.12) (d*)*F + Redd“$, p( )¢> =0

(2.1b) (d*)y*d*¢ + (141> — w¢ = 0.
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The first equation involves the (4d P)*-valued 1-form given by
Redd“¢, p( )$)(X ® 0) = Reldip, p(0)$) VX ® o e [(TM ® Ad P).

Both the Lagrangian and the equations are gauge invariant and conformally
invariant.

In several cases the equations decouple, giving rather trivial solutions (A4, ¢):

(i) A 1is a Yang-Mills field, and ¢ = 0.

(ii) A is the trivial connection on the trivial bundle, and ¢ = ﬁ is the constant
function.

(iii) A is a Yang-Mills field, E is associated to P by a representation p that
contains a trivial representation (so E = E’' @ t, where t is a trivial line
bundle), and ¢ e I'(7) satisfies d*d¢ + (|¢|> — u)¢ = 0.

We will refer to solutions of types (i)—(iii) as “decoupled solutions”.

To date, no coupled solutions are known. This is in sharp contrast to the
Yang-Mills equations, where one has Taubes’s existence theorems for self-dual
solutions. The next result helps explain why the YMH equations are more difficult
than the YM equations.

PROPOSITION 2.1.  For G = SU(2) a stable Yang-Mills-Higgs field (A, ¢) on S* is
decoupled and A is SD or ASD and ¢ is constant.

Proof. Thereis a standard method, originally due to J. Simons, for checking the
stability properties of conformally invariant equations on spheres. The unit sphere
S" = R"*! has n + 1 conformal vector fields {X;} obtained by projecting the basis
vector fields 9/0x’ onto the sphere. One computes the Hessian of the Lagrangian,
evaluates on each X;, and sums on i. For a YMH field (4, ¢) on S*, one finds ([Pk2,
Cor. 3.5])

Y Hess(YMH)(X,, X,) = —4J ld*g|?.
S4

Thus, stability implies that d¢ = 0. Then by (2.1), ¢ =0 or |¢|> =y, and 4 is
Yang-Mills. In fact, A4 is a stable Yang-Mills connection (by comparison with nearby
fields (A4, ¢) with ¢ fixed). For G = SU(2) every stable YM field on $* is SD or ASD
([BL]). Moreover, if |#|* = u # 0, then ¢ is a parallel nowhere-vanishing section of
E, and so splits off a trivial line bundle 7 from E. Then either E is associated to P
by a representation p that contains a trivial representation or the connection is
reducible. But every reducible Yang-Mills connection on the trivial bundle on S* is
gauge equivalent to the trivial connection ([FU]). B

Proposition 2.1 implies that on S* there is no first-order system, analogous to the
SD/ASD equations, that gives absolute minima of the Lagrangian.! From this

!1'When M is a Kahler manifold, there is a version of the YMH Lagrangian that is minimized by the
solutions of the first-order “Bogomolny equations”.
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viewpoint the existence of YMH fields is analogous to the existence of nonminimal
Yang-Mills fields.

The simplest way to find nonminimal critical points is to construct a Morse theory
or Lusternik-Schnirelman theory. Much of the basic framework for Morse theory
for the YM and YMH functions already exists in the literature ([U], [T1], [T2],
[Pk1]). In the remainder of this section we quickly review this, presenting it in a
way that is useful for the next section and explaining why a true Morse theory does
not exist.

As in the introduction, we start with a compact oriented Riemannian 4-manifold
(M, g), aprincipal bundle P - M with compact structure group G, and an associated
vector bundle E — M. Let o/ denote the space of connections on P and let ¥ =
I'(P x4 G) be the gauge group.

These spaces have Sobolev completions o7%?, %*? constructed in the standard
manner ([FU]). We will fix somewhat unconventional norms and will omit the
superscripts. Specifically, let o/ (resp. L(E)) be the completion of the space of
connections (resp. I'(E)) in the L2 A L’ norm and let ¢ be the completion of the
gauge group in the L>2 n L3 norm. As usual, .&/* — o/ will denote the set of
irreducible connections. With these norms we have the following lemma.

LEMMA 2.2. % is a smooth Lie group, the action of 4 on o/ and L(E) is smooth,
and the YM (resp. YMH) function is a smooth %-invariant function on s/ (resp.
o/ x L(E)). Moreover, the orbit spaces B* = o/*|9 and &* = A* x4 L(E) are
smooth manifolds, &£* — #* is a smooth vector bundle, and YM and YMH descend to
smooth functions

(2.2) YM: #* - R, YMH: &* - R.

Proof. The 4-dimensional Sobolev embedding L!'®> = C° means that the ele-
ments of 4 are continuous, and therefore L??2 n L' is a Banach algebra. The
statements of the first sentence follow exactly as in Section 1 of [U] and Section 4
of [Pk1]. The remaining statements follow from a slice theorem as in Section 3 of
[FU] and Section 4 of [Pk1]. ®

We can also use the Sobolev norm to make #* and £* into Riemannian manifolds.
At each V € o there is a natural identification T/ = L2 n L5(T*M ® Ad(P)),
where Ad(P) is the adjoint bundle of P. One can then define an inner product on
Ty s/ by

(2.3) (X, Yy, = J VAX,VAY ) + (X, Y).
M

This defines a smooth %-invariant Riemannian metric on .7, and there is a similar
L'? metric on .o/ x L(E). (These metrics are not complete since .o/ is defined using
a norm stronger that L''2)) These metrics descend, defining smooth Riemannian
metrics on #* and &* by the requirement that &/* — £* and &/* x L(E) > &* be
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Riemannian submersions. We can then construct the gradient vector fields of the
functions (2.2).

For Morse theory in infinite dimensions, one also needs a compactness condi-
tion, Condition C. Suppose f is a function on a Riemannian manifold X that is
bounded below. A sequence {x;} € X is Palais-Smale if {| f(x;)|} is bounded and if
{I(grad f), 1} = 0 as i - oo. The function f satisfies Condition C if every Palais-
Smale sequence in X has a convergent subsequence. This insures that the downward
gradient flow lines of f converge. When it holds, the usual results of Morse and
Lusternik-Schnirelman theory follow ([P1], [P2]).

Condition C fails for the YM and YMH functions and fails in a very specific way.
The following result is proved in the appendix; it is an extension of a result of
Uhlenbeck, Sedlacek, and Taubes.

THEOREM 2.3. Let {V', ¢'} € & be an Palais-Smale sequence for the Yang-Mills-
Higgs function on a bundle P — M (using the L''? norm on &). Then there is a finite
set of points {x,}, consisting of exactly those points x € M with

(2.4) lim lim supj [F'1? + V91> + |g|* # 0
B(x,¢)

£=0 i—w

and gauge transformations {g'} €  such that a subsequence of the {g'- V'} converges

strongly in L2 on M — {x,} to a smooth critical point (V, §) on a bundle P' - M.

This falls short of Condition C in several respects. First, the convergence in the
conclusion is too weak: & is complete in the L*'? N L norm, but sequences that
converge in L!'? may not have a limit. Second, convergence fails at a finite set of
points, and the limit connection can be on a topologically different bundle—this is
the well-known “bubbling” phenomenon. There is also the problem that the L*:2
Riemannian metric on #* is not complete. We will see next that all three of these
difficulties are avoided under an equivariance assumption.

3. Equivariant connections. We now return to the situation of Section 1 and
consider a compact Lie group H acting smoothly and isometrically on M. Suppose
that this action preserves orientation and that h*P ~ P for all h € H. Then for each
h € H there is a bundle automorphism v,: P — P covering h. This y, is unique up to
a gauge transformation; so there is a well-defined action of H on # given by
[V]+ [y,° V]. Let " denote the fixed set of this action.

There is an alternative way of describing the action of H on 4. Let Aut(P) be the
space of all bundle automorphisms of P. There is an obvious projection n from
Aut(P) to the difftomorphism group on M and an exact sequence

(3.1) {1} > 9 > Aut(P) 5 Diff(M).

A lift of the H-action is a homomorphism H — Aut(P) covering the action of H on
M. (In Section 1 we assumed a lift as given.) Each lift gives an action of H on ./
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and hence an action on # that clearly agrees with the one defined above. The
relation between these two descriptions has been clarified by Fintushel-Stern ([FS])
and Braam-Matic ([BM]) and goes as follows.

Let Auty = Aut(P) be the preimage of H < Diff(M) under n. Given a fixed point
[A] € #", choose a representative 4 € o/ with covariant derivative V4. Then the
action of Auty on &/ has a stabilizer #,, and there is an exact sequence of
finite-dimensional Lie groups

(3.2) {1} %, > #,5H-{1}

where 4, = ker = {y e 4|V4y = 0}. A lift of the action is exactly a splitting of this
sequence, and we say that two such lifts are equivalent if they differ by conjugation
by an element of 4. Since #,. , = y#,y~", the equivalence class of the lift is indepen-
dent of the representative V of the gauge orbit.

Let I be a set parameterizing equivalence classes of H-lifts. For each ie I let
¥ < o/* be the set of irreducible connections fixed by the H-action labeled by i,
and ¥ the subgroup of gauge transformations that commute with that lift. If
[A] € #" is irreducible, then %, = 1d; so there exists a unique lift by (3.2). Further-
more, if two connections 4, A’ € &7 invariant under this lift are related by A’ = g- A
for some g € ¥, then the action h;: P — P of each h € H satisfies h,gV = h,V' =V’ =
gV = gh,V; so [h;, g](V) = V. But then V([A;, g]) = 0; so [h;, g] € 4, = Id, which
means that g € 4. Thus, the irreducible part of 4" is a disjoint union

(3.3) (B*) = .~U1 (X/%) = BF.

iel
Letting &; denote the restriction of & — % to £ yields an analogous decomposition

(3.4) (E*) = UI (&*/%) = UI &

The following theorem constructs our Morse theory for equivariant connections.

THEOREM 3.1.  Suppose that a compact Lie group H acts smoothly and isometri-
cally on M as orientation preserving diffeomorphisms. Suppose also that (i) h*P =~ P
Vh € H, (i) all H-orbits have dimension at least one, and (iii) B” contains no reducible
connections. Then

(a) B; (resp. &) is a smooth closed submanifold of % (resp. &) and is a complete
Riemannian manifold with respect to the L''? metric (2.3),

(b) on BH (resp. &H) the Yang-Mills (resp. Yang-Mills-Higgs) are smooth functions
that satisfy Condition C and hence satisfy Morse and Lusternik-Schnirelman
theory, and

(c) the critical points are smooth YM (resp. YM H) fields.

Proof. Since reducible connections in & — %" are isolated, we can restrict
attention to a neighborhood of #*, and then a general result of Palais, Lemma 3.2
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below, gives (a), except for the completeness assertion. Completeness follows pro-
vided each ., is a closed submanifold of o (with its L''2 n L® topology). Fix a
connection V' € o/;. Then the correspondence Vi— A = V — V' is a bounded linear
isomorphism between .«; and the space

LLY*(T*M ® Ad P)

of H-invariant Ad P-valued 1-forms. But L};? <> L''> A L® is bounded by the
equivariant Sobolev theorem. Thus, &7, = &/ is a closed linear subspace. The argu-
ment for & is identical.

Condition C follows easily from Theorem 2.3. For equivariant pairs (4, ¢) € &%,
the integrand of (4.1) is an invariant function. Hence, {x,} is an invariant set, which
must be empty since there are no zero-dimensional orbits. Furthermore, the equi-
variant Sobolev embedding L ? = L° shows that L!:? convergence of equivariant
connections implies convergence in & Since & is closed, the limit lies in &7.

We can therefore apply the general constructions of Morse and Lusternik-
Schnirelman theory ([P1], [P2]) on & to obtain points critical with respect to
equivariant variations. But Lemma 3.2 also says that the symmetric criticality
principal holds; so these are critical points with respect to all variations. Smoothness
then follows by elliptic regularity. [ |

Lemma 3.2 ([P4], §4-5). Let H be a compact Lie group acting smoothly on a
smooth Banach manifold X. If f: X — R is a smooth H-invariant function, then the
set X < X of fixed points is a smooth closed invariant submanifold and the symmetric
criticality principle holds. ]

Later, applying Theorem 3.1, we will use the following simple criterion.

LemMMa 3.3, When G = SU(2), the assumptions of Theorem 3.1 hold provided H
is connected, — c,(P) is not the square of an element in H*(M; Q)¥, and all H-orbits
have dimension at least one.

Proof. Since H is connected, each h e H preserves the orientation and the
homotopy class of the classifying map of P; so h*P =~ P. An equivariant reducible
SU(2) connection reduces P to an S* bundle Q whose first Chern class c,(Q) lies in
H?(M; Q)" and satisfies ¢,(Q) ¢,(Q) = —c,(P)[M]. O

The Morse Theorem 3.1 reduces the existence of nonminimal YM fields to a homo-
topy problem. (It has similar implications for YMH fields; see Section 5 below.)

THEOREM 3.4.  Under the conditions of Theorem 3.1, if the inclusion
MY = BH

of the invariant self-dual moduli space into #" is not a homotopy equivalence, then
there are nonminimal Yang-Mills fieldson P. 0O
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The moduli space .#" is finite-dimensional; so if one could show that #¥ has
infinite cohomological dimension, it would force the existence of nonminimal Yang-
Mills fields. (In fact, dim .#" is at most the dimension of .# given by the standard
index formula; so one only needs a nonzero cohomology class in high dimension.)
It would be interesting to have a practical method of computing H*(%*) and to
carry through this argument in some specific examples.

In subsequent sections we will apply this general result to SU(2) actions on the
4-sphere. For this we need specific equivariant bundles over S*.

4. Quadrapole bundles. Quadrapole bundles are a family of SU(2)-equivariant
quaternionic line bundles over $* that originally arose in quantum mechanics
[ASSS]. Sadun and Segert [ SS] have used explicit ODE computations to show that
most of these bundles admit no SD or ASD Yang-Mills fields. Here we give a
topological proof of that result.

First, recall the structure of the representation ring of SU(2). The irreducible
representations of SU(2) are the symmetric powers D, = Sym' C? of the usual
representation on C? and all representations are unitary. The dimension of D, is
I + 1; for I even it is orthogonal and real (i.e., it is the complexification of a real
representation Dj,), and for [ odd it is symplectic and quaternionic. Tensor products
decompose according to the Clebsch-Gordan formula

4.1) Dy ® Dy = Dyiyjy @ Dijv1—2y2 D @ Dy -

This can also be viewed in terms of characters. Fix an orthonormal basis {A4,, A,, A3}
of su(2) with A, = diag(i, —i) and consider the maximal torus T = {exp(6A4,)|0 <
0 < 2=n}. Each SU(2) representation decomposes into complex one-dimensional
irreducible representations L, of T labeled by their characters e™®. The character of
the representation D), is

QiIHDO _ ,-ilf

el _ o -

(42) X(Duz) — eilo + ei(l—Z)O 4+ e—iw =
Now fix an odd integer ! and consider D} x Dy, = R®> x H'*'2 The restriction
to the unit sphere is a trivial vector bundle

E, — S4 % IH]H-I/Z

over §* with SU(2) action. We can identify D}, with the space Sym?(su(2)) of traceless
symmetric endomorphisms of the Lie algebra and hence can consider x € S* as a
real symmetric matrix x¥ on su(2) with g € SU(2) acting by x> (Ad g)x(Ad g)~*.
Then

3
(4.3) H(x) = Z xUpi(4;)p(4;)

i,j=1

~
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is an equivariant section of End ;4(E;) over S which, moreover, has no degenerate
eigenvalues. (See [ASSS].) Hence, E, decomposes into a direct sum of quaternionic
line bundles (the eigenspaces of H). These are the quadrapole bundles.

Each p,(A4;) is (complex) skew-hermitian; so H(x) has real eigenvalues. Thus, each
quadrapole bundle is specified by ! and the order of its eigenvalue (e.g., “jth from
the bottom™). A more convenient labeling scheme is obtained by considering the
action of T. The weights of the representation D, are {0, +2, +4}. Thus, T fixes a
line; so there are two antipodal fixed points {p, —p} on S*. At these points T acts
as an endomorphism of the fiber that commutes with H, splitting each eigenspace
into a pair of conjugate complex lines. Such pairs are labeled by the positive weights
{1,3,5,...1} of Dy,. Thus, to each quadrapole bundle there is a pair of positive odd
integers m, n which describe the action of T on the fibers at p and —p. We denote
this quadrapole bundle by E,,,,.

Remark. The numbers m, n, and [ are related as follows. In the adjoint represen-
tation, exp(6A,) € T fixes 4, and rotates the plane (4,, A;) by an angle of 26. The
fixed points are therefore

so /6H(£p) = +[3p(4,)p(4;) — . p(4)p(4)]. But p(d,) = diag(1,3,5...1),
and the term involving the summation is I(l + 1)-Id; so H(p) is diagonal. Hence,
the jth eigenvalue of H(p) (resp. H(— p)) corresponds to the eigenvalue m = 2j — 1
(resp. n = 1 + 2 — 2j) of p)(A4,). Thus,

4.4) m+n=I0+1.

Each connection A on E = E,,, has two associated operators that are of funda-
mental importance in gauge theory: the Dirac operator

4.5) Dy TA*"®E)-»T(A"®E)

and the self-duality operator

4.6) D =d¥ +d,: Q'(Ad E) - Q°(Ad E) ® Q*(Ad E).

(Here, A, are the spin bundles and Q?(Ad E) is the space of p-forms with values in
the adjoint bundle Ad E = {L € Homy(E, E)|L* = — L}.) When A is an equivariant
connection, these operators are SU(2)-invariant (the SU(2) action on S$* lifts

uniquely to the spin bundle), and hence their indices

index D = ker D — coker D



A MORSE THEORY FOR EQUIVARIANT YANG-MILLS 349

lie in the representation ring of SU(2). In fact, both operators are real; so the indices
are formal linear combinations of real representations. We will determine these
indices explicitly by applying the G-index theorem of Atiyah and Singer.

As above, the action of T gives the decomposition D5 = 1@ L, @ L,. Fix an
orientation on Dj. Then the induced orientations on T,5* and T_,S* are opposite,
and hence the normal bundles at the fixed points are

4.7) N,=L,®L,=—-N_,.
Applying the G-spin theorem [AS], we have

ch,(E)[p] chy(E)[—p]

(48) y(index D)(g) = 4 sinh(i0) sinh(2i0) 4 sinh(if) sinh(2if)

(eimB + e—imO) _ (eino + e—ino)

(4.9) = (e® — e—iO)(eZiO — ¢ 210

One of the numbers (m + n)/2, (m — n)/2 is odd—call it a—and the other is even—
call it 2.

(eiao _ e—iat))(eZiﬂl) _ e—Zi/}O)

1 = - . . .
(4 0) (ele _ e—.o)(ezzo _ e—2t0)
B (eiao . e—iaO) B Bistl (e(Zs—l)iO _ e—(2s-1)i0
@.11) - m s; (=1) o0 _ o0 :

This is recognizable as the character of a virtual representation that we will denote
R(a, B). It is defined for integers «, f, with « odd. From (4.10) we have R(a, 8) =
—R(—a, f) = —R(2, —B) = R(2p, /2) and R(, 0) = 0, and for o, > 0 (4.11) and
(4.2) show that

(4.12) R(a, B) = Dy_1)p ® [Dg—y — Dy + Dy y—-£1].

This can, of course, be written as a formal sum of irreducibles using (4.1).
The self-duality operator is equivalent ([AHS, §6]) to the Dirac operator

4.13) P:TA* ® A ® AdE)—» (A" ® A~ ® Ad E).

Hence its index is given by (4.8) with E replaced by A~ ® Ad E. From (4.7) we have
A’N,=1@®L,and A2N_,=1® L. ButA"® A~ = 1 @ A%; 50

A;=L1®L_1 A:p=L3@L_3.
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Also noting that Ad E, , = Sym? E , as T-representations, we have

ch, (A" ® 4d E)[p] ch,(A~ ® Ad E)[—p]
4 sinh(i0) sinh(2i0) 4 sinh(i0) sinh(2i0)

x(index D)(g) =

(eio + e—iO)(eZimo +1+ e—ZimO) _ (eaio + e-—3i0)(62in0 +1+ e-—ZinO)
= (€ — e ) (20 — ¢~ 20)

B (eiao _ e—iao)(eZibo _ e—2ib0) (eico _ e—-icO)(eZidO _ e—ZidO) {
- (eio _ e—iO)(eZiO _ e—ZiO) + (eio _ e—iO)(eZiO _ e—2i0) -

wherea=m—n—1,2b=m+n+2,c=m—n+ 1,and 2d = m + n — 2. Using
(4.10)—(4.12), we can again express this in terms of the characters of representations
R(a, B). This establishes the following theorem.

THEOREM 4.1.  For an equivariant connection on the bundle E,,,

(4.13) index B, = R(x, f),
(4.14) index D, = R(a, b) + R(c, d) — 1

where o, B, a, b, ¢, and d are as defined above.

The dimension of these virtual representations can be expressed in terms of the
instanton number k = —c,(E) using the ordinary index theorem. The well-known
result is that dim index P = k and dim index D = 8k — 3 ([AHS, §7,10]). Since
dim R(e, ) = |af], (4.13) and (4.14) both yield

(4.15) k= —colBp) = ap ="

Examples

(1) E;, hask = 1,index P = R(1, 1) = 1, and index D = R(1,3) + R(3,1) — 1 =
D,. (This bundle supports the standard round k = 1 self-dual instanton on S*.)

(2) Es  hask=3,index P =R(3, 1)=D,, and index D =R(3,4)+ R(5,2) — 1 =
D, + D; + D,.

(3) Eyy o hask =9, index P = D, and index D = Dy, + Dy + Dg + Dg — 1.

COROLLARY 4.2 (see [SS]). There are no equivariant SD or ASD connections on
E,, for m,n > 1, and the trivial connection is equivariant only on E, ,.

Proof. By reversing orientation if necessary, we may assume that k > 0. Then
m = n and E,,, admits no ASD connections. If there is an equivariant SD connec-
tion, the vanishing theorem for the self-duality operator on S* ([AHS, §6]) shows
that coker D, is the space Hj of covariant constant sections of Ad E.

For k = 0 we have dim HS < 3 with equality if and only if A4 is the trivial con-
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nection. But (4.15) shows the k = 0 case hasm = nand index D = R(—1,m + 1) +
R(l,m—-1)—1=-D,+ D,_; — 1.Since dim D,, = 2m + 1, the only possible SD
connection is the trivial connection on E, ;. Conversely, the trivial connection
occurs only when k = 0, and it is then self-dual.

For k > 0 all connections are irreducible; so H = 0 and index D is an actual
representation. Now by (4.1) the trivial representation 1 occurs in D, ® D, if and
only if r = t. Hence the coefficient of 1 in R(2r + 1, t) is the coefficient of D, in

tL (—1)*s71D,, which (—1)"*"*! if t > r and 0 otherwise. It follows that when
n > 1 the trivial representation occurs with coefficient — 1 in (4.14); so the index is
not an actual representation. This leaves only the cases (m, 1). O

Bor, Sadun, and Segert have shown that self-dual equivariant connections exist
on the remaining bundles E,, , and E, , ([BSS]).

5. Applications of the Morse theory. The equivariant Morse theory constructed
in Section 3 applies to the quadrapole bundles and gives existence results for YM
and YMH fields. In fact, we will use only the most immediate consequence of the
Morse theory: the existence of a minimum in each component of %%,

Each quadrapole bundle E,,, is a lift of the action of SU(2) on the unit sphere in
D,. This action on §* factors through SO(3) and is easily analysed. (See [B, §1.4].)
The principal orbits are 3-dimensional, and there are two exceptional orbits each
diffeomorphic to RP2. At a point on a principal orbit, the isotropy group is
conjugate to the quaternionic subgroup Q = {+1, +i, +j, +k} (considering SU(2)
as the unit quaternions), and the isotropy representation is the sum R @ V, where
i, j, k act trivially on R and as reflections through perpendicular lines in V =~ R3.
Consequently,

(i) all orbits have dimension at least two, and

(ii) a reducible connection on E,,, gives a decomposition E,,, = L® L, where L
is a complex line bundle. The curvature F of L is then a real-valued 2-form invariant
under the isotropy subgroup. But at a point x in a principal orbit

(AAT*SH)2 = (V@ AV = V@ V2 = {0};

so F vanishes at such x and hence everywhere. Thus, the only reducible connection
is the trivial connection, and this appears only on E; by Corollary 4.2.

Now fix a principal bundle P over S* with instanton number k = —c,(P). For
each positive odd factor « of k # 0, we get, as in (4.10) and (4.15), an associated pair
of integers m, n and a quadrapole bundle E,,,. This specifies a lift of the above SU(2)
action to P, different « give different lifts, and there are no reducible equivariant
connections. For k = 0 there is a distinct quadrapole bundle E,,, for each positive
odd integer, and the only reducible equivariant connection is the trivial connection
of E, ;. Thus, excluding the (1, 1) bundle, (3.3) reads

(5.1 B =\)B, fork+#0, B >5|) By fork=0.

alk m>1
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Corollary 4.2 shows that, for k # +1, #" B2 = @ for at least one . Thus,
Theorem 3.4 (or direct minimization on each 4,) immediately gives a result of Sadun
and Segert.

COROLLARY 5.2 ([SS]). Every principal SU(2) bundle P over S* with c,(P) # +1
admits an irreducible nonminimal Yang-Mills field. W

The SU(2) actions specified by the quadrapole bundles induce actions on each
vector bundle E — M associated to P, giving a decomposition like (3.4) covering
(5.1). Again, the Morse theory immediately gives critical points, but now we must
take care that these are not the uncoupled solutions described in Section 2. We will
call E nontrivial if it is associated to P by a representation that contains no invariant
lines.

COROLLARY 5.3.  Let P be a principal SU(2) bundle over S* and let E be a nontrivial
associated bundle. Then there is a Yang-Mills-Higgs field on (P, E). This YMH field
is not one of the uncoupled solutions of Section 2, and its connection is irreducible.

Proof. By Theorem 3.1 there exists a minimum of the YMH function on each
component of &%, and this is a YMH field on a quadrapole bundle. We will show
that it is nontrivial (i.e. ¢ # 0) when the mass parameter y is large.

Choose A € " and set C = YM(A). Then

ME = {[A] € B7| A is Yang-Mills and YM(A) < C}

is nonempty and compact because Y M satisfies Condition C on #%. Let A, denote
the Laplacian V*V of the connection A4 acting on L} %(E). The eigenvalues of A, are
continuous functions of the connection; so there is a constant M such that the first
eigenvalue satisfies 1,(A,) < M VA € #¥. Choose p > M/2. Then at each 4 e 4"
the first eigenfunction  of A, satisfies

Hess YMH 4,0\, ¥) = L« VA2 = 2ulyl? = (4, — 2p) L ly|* <o.

Thus, the fields (4, ¢) € & with ¢ = 0 are never minimal in 4. H

By Proposition 2.1 these fields are all unstable critical points of the YMH
function; so the action, although minimal amongst equivariant fields, can be reduced
by perturbations in nonequivariant directions.

APPENDIX

This appendix presents the proof of Theorem 2.3. In the Yang-Mills case (¢ = 0)
this is due to K. Uhlenbeck, with refinements by S. Sedlacek and C. Taubes. The
extension to the Higgs case requires only a technical addition to the existing
argument (Lemma A.2 below) and the removable singularity theorem of [Pk1].

Let {A’, ¢'} be a Palais-Smale sequence for YM H on & with its L*'*> Riemannian
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metric (2.2). This means that YMH(A', ¢') < C and

(A1) llgrad YMH||; » 4 = [ld(YMH)||_y 2, 4: >0

where the differential d(YMH) is, from (2.1),

(A2) d(YMH)(y, 4 = (d*F + Re<V$, p( )$), V*V¢ + (18]* — 1)4).

While our aim is a global convergence theorem, the proof proceeds by choosing a
cover {U,} of M, showing convergence on each U,, and showing that the limit fits
together to define a global limit. The first step is a covering lemma. The proof is
exactly as given by Sedlacek [S].

LEMMA A.l. For each k > 0 there exists a finite set of points {x;} = M, a
subsequence {A'}, and a countable cover {U,} of M — {x,} by geodesic balls such that

(A3) lim inff |Fi|2 + |dig)? + |'1* <x?  Va.
Um

When « is small, we can apply [U, Theorem 1.3] to obtain, for each i and a, a
L*2 A LY trivialization 1! of P over U, such that the connection form a‘ of A' in
this trivialization satisfies

(A4) d*a'=0 and |a',,<c,|Fl,<c,x  onU,.

(Here and below, c; denotes a constant depending only on the Riemannian metric
on M.) The {z}} also trivialize E. Thus, on each U, we have a sequence {a'} of
g-valued 1-forms and a sequence {¢‘} of R"valued functions.

LeMMA A.2.  For eacha there is a subsequence {a', ¢'} that converges in Li;2(U,).

Proof. Fix a and x € U = U,. Since the action is bounded and gauge invariant,
the sequence {(a’, #’)} is bounded in L!?(U). Hence, there is a subsequence that
converges weakly in L!:2 and strongly in L. By (A.4) the limit (a, #) € L*? satisfies
d*a=0 and |(a, )l , <lim|(@’, ¢')ll;,2 < c2k. Set &' =(a’ — a, ¢’ — ¢). Then
{¢%} is bounded in L2, ¢! — 0 in L2, and we must show that ¢/ —> 0 in Lj;2.

Fix a ball B = B(x, d) with B, = B(x, 26) = U and fix a smooth bump function
0 < p < 1 supported on B, with § = 1 on B and |df| < 4/6. Then

"~
€13, 28 < 2 | 1> + |d*a’]? + | €72
JB

r

(A.5) <y | BlAE? + 1P
U

LY

sa | CErd*desy — CdB A &, dETy + 1P

o
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For large i the last two terms are bounded by

. 4 . . .
(A.6) (llé'llz +5 ||€‘I|1,z> S PES (1 + c—?) [ P

In the gauge 1} we have d' = d + a', and (with abbreviated notation)

(A7) (&, d*dE?y =&, (dY* diE + 2a'-dE — (d*a')-& + at-ai- &)

Using the Holder and Sobolev inequalities, each of the last three terms in this
expression are bounded by c;k [|E|3,, for some c;.

Given ¢ > 0, we can combine (A.5)—(A.7), use the weak convergence &'— 0, and
choose L large enough that

(A8)  NIENE 28 <o+ ekl + f(é", dy*d'a’, ¢")>  Vi>L.

Now Fi = d'a’ — a'-a'; so using (A.2), we have

(d)* di(d), ¢') = (@')*F' + (@')* d'¢’ — (d')* d'(a*a') = d(YMH) — B
where
(A.9) B =dig'¢' + (14" — w¢' + (d')* d'(a*-a’).

Since L''? and L™!'2 are dual spaces, (A.1) gives
J(fi, d(YMH)') < &1, 2,0 1d(YMH)Y||_; 5 e <& Vi>L'.

By repeatedly substituting d’ = d + a‘ and (a', ¢') = &' + (a, 4), (A.9) can be written
as a sum of terms of three types: (i) terms of the form &'A, where 4 € L2 is
independent of i, which therefore have vanishing limit since &' — 0, (ii) terms of the
form ¢'BEY, which can be bounded by c,k||&||3 5, and (iii) the term p|&|%, which
has limit 0. Thus,

(A.10) 1811,2 < 36 + eskllEflly,,  Vix>L".

Because this constant ¢ is universal, we can use Lemma A.1 to choose « at the
beginning so that csx < 1/2. Then (A.10) shows that ¢ > 0in L"'2. W

Applying Lemma A.2 to each U, and taking a diagonal subsequence yields a
subsequence that converges in L''? on each U, to a limit (a,, 4,) with d*a, = 0. On
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each nonempty U, n U, the transition functions defined by t} = gz satisfy

(A.11) Uy = Gap@p9ap + Gap Wup

for each i. A bootstrap argument (see [S, Lemma 3.5]) and a clever estimate of
Taubes ([T1, Lemma A1]) then give the convergence of the transition functions
in L»?~ C° The limit {g,;} preserves the cocycle condition g,z94,9,, = 1 on
UnUnl,.

On each U, the limit connection is a weak solution to d*a = 0 and the YMH
equations. Together, these are an elliptic system, and standard bootstrap arguments
then show that a € C* (see [Pk1]). Then (A.11) implies that the {g,,} are smooth.
Hence, the data {U,, y,4, a,} define a smooth YMH field on a smooth bundle over
M — {x,}. The C° convergence g.; — g,5 implies that this bundle is isomorphic to
P over M — {x,} (Lemma 3.2 of [U]). Thus, we have found a subsequence of the
original sequence on P that convergence in L''?(K)for K == M — {x,} to a smooth
YMH field on M — {x,}. Finally, by the removable singularity theorem ([Pk1]),
this extends to a smooth YMH field on a new bundle P'.
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