
Geometry Primer

1 Connections and Curvature

This section presents the basics of calculus on vector bundles. It begins with the basic abstract
definitions, then gives some concrete geometric examples.

Let E be a (real or complex) vector bundle over a manifold M . There are three levels of
geometric structures on E:

• Metrics

• Covariant derivatives

• Second covariant derivatives. These decompose into

(i) the covariant Hessian (the symmetric part), and

(ii) the curvature (the skew-symmetric part ).

Definition A metric on a vector bundle E is a smooth choice of a hermitian inner product on
the fibers of E, that is, an h ∈ Γ(E∗ ⊗ E∗) such that

(i) h(α, β) = h(β, α) ∀α, β ∈ Γ(E),

(ii) h(α, α) ≥ 0 ∀α ∈ Γ(E) and h(α, α) = 0 iff α ≡ 0.

We will take our hermitian metrics to be conjugate linear in the second variable. When E is a
real vector bundle, (i) simply means that h is symmetric.

A metric on the tangent bundle TM is called a Riemannian metric on M .

In a local coordinate system {xi} on U ⊂ M the vector fields ∂
∂xi

give a basis of the vector
space TxM at each x ∈ U and the Riemannian metric is given by the symmetric matrix

gij = g

(
∂

∂xi
,
∂

∂xj

)
.

by the formula g =
∑

i gij(x) dxi ⊗ dxj .
Similarly, a local frame of E over U ⊂ M is a set {σα} of sections of E over U such that the

vectors {σα(x)} form a basis of the fiber π−1(x) at each x ∈ U . Write {σα} ∈ Γ(E∗) for the dual
framing (so

∑
α σ

α ·σβ = δαβ ). In such a framing the metric on E is given by the hermitian matrix

hαβ = h(σα, σβ)
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by the formula h =
∑

α hαβ σ
α ⊗ σβ, and for φ =

∑
φασα we have h(φ, φ) =

∑
hαβφ

αφβ.
A frame is orthogonal or unitary if {σ1, . . . , σ`} is an orthonormal basis for Ex at each x. Local

unitary frames always exist (start with any frame and apply the Gram-Schmidt process). In a
unitary frame, the metric is simply h =

∑
σα ⊗ σα, so the coefficients hαβ = δαβ are constant.

An inner product on a vector space V induces inner products on V ∗, on the exterior algebra
Λ∗(V ), and on tensor products of these vector spaces. Applying this on each fiber shows that a
metric on E induces metrics on E∗, Λ∗(E) and on tensor product bundles. Simple examples:

• A metric h on E gives a metric on E ⊗ E by the formula

h(α⊗ β, α⊗ β) = h(α, α) h(β, β) for α, β ∈ Γ(E)

and one on Λ2(E) by (using the convention α ∧ β = 1√
2
(α⊗ β − β ⊗ α))

h(α ∧ β, α ∧ β) = h(α, α) h(β, β)− [h(α, β)]2.

• A metric h on E gives an identification of E with E∗, and hence gives a metric on E∗. When
E = TM this identification is given in local coordinates by

∂

∂xi
7→
∑

gijdx
i and dxi 7→

∑
(g−1)ij

∂

∂xj
.

The ij component of the induced metric g∗ on T ∗M is

g∗(dxi, dxj) =
∑

g

(
(g−1)ik

∂

∂xk
, (g−1)j`

∂

∂x`

)
=
∑

gk`(g
−1)ik(g−1)j` = (g−1)ij .

A useful and standard convention is to write gij for the metric and gij for the components of
its inverse, and to omit all summation signs, agreeing that repeated indices are summed. If one
uses upper indices on the coordinate 1-forms dxi and thinks of the coordinate vector fields ∂/∂xi

as having lower indices, then all formulas are consistent in the sense that all sums are over one
upper and one lower index.

Connections

We would next like to define the “directional derivative” of a section φ ∈ Γ(E). To specify
the direction we choose a vector field X; the dirctional derivative should compare the value of φ
at x ∈M with the value at nearby points xt = expx(tX). But the naive definition

∂Xφ(x) = lim
t→0

φ(xt)− φ(x)

t

makes no sense because φ(x) and φ(xt) are in different fibers of E and cannot be subtracted. Thus
to define a derivative we need an additional geometric structure on E: an isomorphism between
nearby fibers. Actually, we need this only infinitesimally. This is what a “connection” does.

There are many definitions of connections. We will start by defining a connection as an
operator on sections with the properties expected of a directional derivative.



Definition 1.1 A covariant derivative (or connection) on E is a bilinear map

∇ : Γ(TM)⊗ Γ(E)→ Γ(E)

that assigns to each vector field X and each φ ∈ Γ(E) a “covariant directional derivative” ∇Xφ
satisfying, for each f ∈ C∞(M),

(i) ∇fXφ = f∇Xφ

(ii) ∇X(fφ) = (X · f)φ+ f∇Xφ (product rule).

Given connections on vector bundles E and F we get one on E ⊗ F by the product rule:

∇E⊗FX (φ⊗ ψ) = ∇EXφ⊗ ψ + φ⊗∇FXψ, φ ∈ Γ(E), ψ ∈ Γ(F ).

Similarly, a connection on E induces one on E∗: for φ ∈ Γ(E), α ∈ Γ(E∗), the derivative of the
function α(φ) is, according to the product rule, X ·α(φ) = (∇E∗

α)φ+α(∇Eφ), so ∇E∗
is defined

by
(∇E∗

α)φ = X · α(φ) − α(∇Eφ).

In particular, the metric h can be considered a section of the bundle E∗ ⊗ E∗. Then for
φ, ψ ∈ Γ(E), h(φ, ψ) is the trace of a section of E∗ ⊗E∗ ⊗E ⊗E so, again applying the product
rule, for any vector field X

X · h(φ, ψ) = (∇Xh)(φ, ψ) + h(∇Xφ, ψ) + h(φ,∇Xψ). (1.1)

Definition 1.2 A connection ∇ is compatible with the metric h on E if ∇h = 0.

Each vector bundle with metric admits a compatible connection (see below). The difference
of two connections is an End(E)-values 1-form (from the definition (∇−∇′)Xφ is C∞(M)-linear
in X and φ). Conversely, given a compatible connection ∇ and A ∈ Γ(T ∗M ⊗ End(E)),

∇′ = ∇+A

is a connection, which is compatible iff A ∈ Γ(T ∗M ⊗ SkewEnd(E)). Thus the space of all
compatible connections is an infinite-dimensional affine space.

Henceforth we will always assume that the connection is compatible with the metric, and will
write the metric h(α, β) as 〈α, β〉. Then (1.1) becomes

X · 〈α, β〉 = 〈∇Xα, β〉+ 〈α,∇Xβ〉.

In a local framing {σα} over a coordinate patch {xi}, the covariant derivative determines
connection forms ωαβi by

∇ ∂

∂xi
φα =

∑
ωαβi φ

β.



For a general section φ =
∑
φασα and vector field X =

∑
Xi ∂

∂xi
we then have

∇Xφ =
∑

Xi∇ ∂

∂xi
(φασα) =

∑
Xi

(
∂φα

∂xi
+ ωαβiφ

β

)
σα. (1.2)

Thus the connection forms give the difference between the covariant derivative and the ordinary
derivative in the framing. Note that it is the covariant derivative that is intrinsic; when we change
framings the operators ∂

∂xi
and the connection forms both change.

We can now prove existence. Let {Uγ , ργ} be a partition of unity where each Uγ is a local
coordinate chart over which E is trivialized by a local frame {σα}. For vector fields X =

∑
Xi ∂

∂xi

supported in one Uγ set

∇Xφ =


∑

Xi ∂φ

∂xi
on Uγ

0 outside Uγ

and for general vector fields set ∇Xφ =
∑
∇ργφ. It is easily verified that this defines a connection.

If the frame {σα} is unitary, then the coefficients of the metric H are constant on each Uγ .
Consequently ∇h = 0, so the connections is compatible with h.

In the special case where E is the tangent bundle we can impose an additional requirement
on the connection. A connection ∇ on TM is called torsion-free or symmetric if

∇XY −∇YX = [X,Y ] for all X,Y ∈ Γ(TM).

The following fact, often called the Fundamental Lemma of Riemannian Geometry, shows that
these two conditions determine a connection.

Lemma 1.3 On a manifold with Riemannian metric g, there is a unique connection ∇ on TM ,
the “Levi-Civita connection”, that is (a) compatible with the metric, and (b) torsion free.

Proof. For any three vector fields X,Y, Z, condition (a) requires that

X · g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ).

Computing X · g(Y, Z) + Y · g(Z,X)− Z · g(X,Y ) using this formula and condition (b) yields

2g(∇XY,Z) = X · g(Y, Z) + Y · g(Z,X)− Z · g(X,Y ) (1.3)

−g(X, [Y,Z])− g(Y, [X,Z])− g(Z, [X,Y ]).

Both sides are linear in Z and g is non-degenerate. Uniqueness follows because the righthand
side depends only on g. Conversely, requiring that this hold for all Z defines ∇XY . One checks
directly that this defines a torsion free connection with ∇g = 0. �

In local coordinates on a Riemannian manifold we can write the metric as {gij}. Taking
coordinate vector fields X = ∂

∂xi
and Y = ∂

∂xj
, we have [X,Y ] = 0 and, from (1.3)

∇ ∂

∂xi

∂

∂xj
=
∑
l

Γ`ij
∂

∂x`



where Γlij are the Christoffel symbols

Γlij =
∑ 1

2
glk
(
∂gjk
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)
.

For general vector fields X =
∑
Xi ∂

∂xi
and Y =

∑
Y j ∂

∂xj
we have, as in (1.2),

∇XY =
∑

Xi

(
∂Y j

∂xi
+ Y kΓjik

)
∂

∂xj
.

Again, the Christoffel symbols and the operators ∂
∂xi

depend on the coordinates, but the covariant
derivative does not.

A connection (on any vector bundle) gives a way of parallel transporting sections along curves.
Fix a smooth curve γ : [a, b]→M from x = γa to y = γb and a vector ξ in the fiber Ex at x. We
can then solve the initial value problem

∇T ξt = 0 with ξa = ξ (1.4)

where T = γ̇ is the tangent vector to γ(t). Evaluating the solution at t = b yields a vector ξb ∈ Ey.
This process defines a linear map

Pγ : Ex → Ey

called the parallel transport of ξ along γ.

Remark 1.4 To show the existence and uniqueness of solutions of (1.4), cover γ with finitely
many coordinate patches {Ui} on which E is trivialized. In the trivialization on Ui the above
equation has the form ∑

T i
(
∂ξα

∂xi
+ ξβωαβi

)
= 0. (1.5)

Hence in each patch we can begin at γc ∈ Ui−1 ∩ Ui and, by the fundamental theorem of ODEs,
find a unique solution for t ∈ [c, d] where γd ∈ Ui ∩ Ui+1.

Having integrated, we can differentiate again and see that the connection is infinitestimal
parallel transport

(∇Xξ)p = lim
t→0

P−tξ(pt)− ξ(p)
t

(1.6)

where P−t denotes parallel transport along the path xt = exp(tX) from pt back to p.

Proof. Along γ(t) = exp(tX) the solution to the parallel transport equation (1.4) can be written
in local frame around p ∈M as ξ =

∑
ξα(t)σα. The Taylor series of the coefficients is

ξα(t) = ξα(0) + tXi∂ξ
α

∂xi
+O(t2)

and, since ξ satisfies the parallel transport equation (1.5), we have

Pt(η
α) = ηα(0)− tXiωαβη

β +O(t2).



Replacing t by −t and η by ξα(t), we see that the RHS of (1.6) is

lim
t→0

1

t

(
ξα(0) + tXi∂ξ

α

∂xi
+ tXiωαβ ξ

β − ξα(0)

)
= Xi

(
∂ξα

∂xi
+ ωαβ ξ

β

)
σα = (∇Xξ)p .

�

Caution While the limit (1.6) looks very similar to the limit defining the Lie derivative LXY ,
the two are unrelated. In particular, parallel transport is dependent on the choice a Riemannian
metric, while the Lie derivative is defined solely in terms of the vector fields X and Y .

The definition of compatibility has the following two important consequences.

Lemma 1.5 When the connection is compatible with the metric,

1. Parallel transport is an isometry, and

2. We have the pointwise inequality
|d|ξ|| ≤ |∇ξ|.

Proof. (1) Given a path γ(t) and vectors ξ0, η0 in the fiber of E at γ(0), extend ξ0, η0 to vector
fields ξt, ηt that are parallel along γ. Then for all t we have

d

dt
〈ξt, ηt〉 = T · 〈ξt, ηt〉 = 〈∇T ξt, ψt〉+ 〈ξt,∇T ηt〉 = 0.

Thus inner products are preserved by parallel transport.

(2) For a quick proof, note that the equation df2 = 2fdf gives d|ξ|2 = 2|ξ|d|ξ|, while compatibility
with the metric gives |d|ξ|2| = |2〈ξ,∇ξ〉| ≤ 2|ξ||∇ξ|. Combining these gives the inequality in (2).

For a more enlightening proof, use polar coordinates in the fiber: on the set Ω where φ 6= 0,
set φ = ξ

|ξ| . Then ξ = |ξ|φ and differentiating the equation |φ|2 = 1 shows that 2〈φ,∇φ〉 = 0.
Hence

|∇ξ|2 = |∇(|ξ|φ)|2 = |d|ξ|φ+ |ξ| · ∇φ |2 = |d|ξ||2 |φ|2 + 2|ξ| d|ξ| 〈φ,∇φ〉+ |ξ|2|∇φ|2

= |d|ξ||2 + |ξ|2|∇φ|2

≥ |d|ξ||2,

so (2) holds on Ω and hence everywhere. �



Covariant Second Derivatives

A connection on E
Γ(E)

∇−→ Γ(T ∗M ⊗ E)

together with the Levi-Civita connection on T ∗M gives a connection on T ∗M ⊗ E. The compo-
sition

Γ(E)
∇−→ Γ(T ∗M ⊗ E)

∇−→ Γ(T ∗M ⊗ T ∗M ⊗ E)

is the covariant second derivative. Since

∇X(∇Y ξ) = ∇X(∇ξ(Y ))) = (∇X∇ξ)(Y ) +∇ξ(∇XY )

= (∇2ξ)(X,Y ) + (∇ξ)(∇XY )

the covariant second derivative is given by

(∇2ξ)(X,Y ) = ∇X∇Y ξ −∇∇XY ξ for X,Y ∈ Γ(TM), ξ ∈ Γ(E).

This expression is C∞(M)–bilinear in both X and Y .

Taking minus the trace of the covariant second derivative (in analogy with d∗d = −
∑
∂i∂i in

euclidean space) gives a second order operator

−tr∇2 : Γ(E)→ Γ(E)

called the trace Laplacian. It is the same as the composition of ∇ with its adjoint ∇∗ (exercise),
and is given in a local orthonormal frame {ei} by

−tr∇2ξ = −
∑

(∇ei∇ei −∇∇iei) ξ.

Unlike second derivatives in euclidean space, covariant second derivatives do not commute.
The expression that measures the failure to commute

(∇2ξ)(X,Y )− (∇2ξ)(Y,X) = ∇X∇Y ξ −∇∇XY ξ −∇Y∇Xξ +∇∇YXξ
= ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ.

C∞(M)– linear in X,Y and ξ. This last fact, which is easily verified, means that the difference
of these second order operators is a zeroth order operator, i.e. a tensor.

Definition The curvature of a connection ∇ is the tensor F ∈ Γ(T ∗M ⊗ T ∗M ⊗ End(E)) given,
for X,Y ∈ Γ(TM), by

F (X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] (1.7)

When ∇ is the Levi-Civita connection of a Riemannian metric g, the curvature is denoted R(X,Y )
and is called the Riemannian curvature of (M, g).



Proposition 1.6 (Symmetries of the curvature) Let ∇ be a connection on E →M compat-
ible with a metric 〈 , 〉. Then for all vector fields X,Y, Z and sections ξ, η ∈ Γ(E),

(a) F (X,Y ) = −F (Y,X)

(b) 〈F (X,Y )ξ, ξ〉 = −〈ξ, F (X,Y )ξ〉

(c) (∇XF )(Y,Z) + (∇Y F )(Z,X) + (∇ZF )(X,Y ) = 0

When E = TM , the Riemannian curvature R has an additional symmetry:

(d) R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0

Properties (a) and (b) show that the curvature can be considered as a 2-form with values in
the bundle of skew-hermitian (skew-symmetric in the real case) endomorphisms of E, that is

F ∈ Γ(Λ2(T ∗M)⊗ SkewEnd(E))

In (c) we are using the connection on this bundle obtained from the Levi-Civita connection on
T ∗M and the given one on E. Properties (c) and (d) are called, respectively, the second and first
Bianchi identities.

Proof. Symmetry (a) is obvious from the definition of F . For (b), note that

〈∇X∇Y ξ, ξ〉 = X · 〈∇Y ξ, ξ〉 − 〈∇Y ξ,∇Xξ〉
= X · Y · 〈ξ, ξ〉 −X · 〈ξ,∇Y ξ〉 − Y · 〈ξ,∇Xξ〉+ 〈ξ,∇Y∇Xξ〉.

Hence

〈F (X,Y )ξ, ξ〉 = 〈(∇X∇Y −∇Y∇X −∇[X,Y ])ξ, ξ〉
= (X · Y − Y ·X − [X,Y ]) · 〈ξ, ξ〉+ 〈ξ, (∇Y∇X −∇X∇Y −∇[Y,X])ξ〉.

Then (b) follows after noting that [X,Y ]f = XY f − Y Xf for f ∈ C∞(M).

The remaining two symmetries follow from the Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 ∀X,Y, Z ∈ Γ(TM).

(The proof is straightforward: using [X,Y ] = XY −Y X the lefthand side expands to a sum of 12
terms, which cancel.) For (d) we expand R(X,Y )Z +R(Y,Z)X +R(Z,X)Y using the definition
(1.7) of curvature and the fact that the Levi-Civita connection is torsion-free. The result is

(∇X∇Y Z−∇Y∇XZ −∇[X,Y ]Z) + (∇Y∇ZX −∇Z∇YX −∇[Y,Z]X)

+(∇Z∇XY −∇X∇ZY −∇[Z,X]Y )

= (∇X([Y,Z])−∇[Y,Z]X) + (∇Y ([Z,X])−∇[Z,Y ]Y ) + (∇Z([X,Y ])−∇[X,Y ]Z)

= [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The proof of (c) is similar. �

Notice that each of the equations in Proposition 1.6 is tensorial, that is, linear over C∞(M)
in each of their variables. To prove tensorial formulas, it is sufficient to fix an (arbitary) point p



and verify the formula at p for the basis vectors of some trivialization. Often, the proof can be
considerably shortened by a clever choice of trivialization. As an example, here is a second proof
of formula (d) of Proposition 1.6.

Proof. Fix p ∈ M and local coodinates {xi} around p. It suffices to verify (d) for the basis
vector fields X = ∂

∂xi
, Y = ∂

∂xj
and Z = ∂

∂xk
. For these, we have [X,Y ] = [X,Z] = [Y,Z] = 0, so

by the definition of curvature, expression (d) is

∇X∇Y Z −∇Y∇XZ +∇Y∇ZX −∇Z∇YX +∇Z∇XY −∇X∇ZY.

But the connection is torsion-free, so the fact that [X,Y ] = 0 implies that ∇XY = ∇YX; similarly
∇XZ = ∇ZX and ∇Y Z = ∇ZY . Hence the 6 terms above cancel in pairs, leaving 0. �

Exercises

(1.1) Use a partition of unity to prove that the set

Metric(M) = {all Riemannian metrics on the manifold M}

is a non-empty convex cone (without vertex) in the vector space Γ(Sym2(T ∗M)).

(1.2) Let ∇ and ∇′ be connections compatible with a metric 〈 , 〉 on a vector bundle E. Prove:

(a) For any f ∈ C∞(M), ∇′′ = f∇+ (1− f)∇′ is a connection compatible with the metric.

(b) ∇−∇′ = A is an End(E)-valued 1-form (i.e., an element of Γ(T ∗M ⊗ End(E)) that is skew-
hermitian when E is complex and skew-symmetric when E is real.

(c) Conversely, with ∇ and A as in (b), show that ∇′ = ∇ + A is a connection compatible with
the metric.

Note that (b) and (c) show that

A = {all compatible connections on E}

is an infinite-dimensional affine space modeled on Γ(T ∗M ⊗SkewEnd(E)) where SkewEnd(E) is the
bundle of skew-hermitian endomorphisms of E.

Hint: For (b), use the fact that any C∞(M)-linear map Φ : Γ(E)→ Γ(F ) arises in this way from a
bundle map φ : E → F by composition: Φ(fξ) = fΦ(ξ) ∀f ∈ C∞(M).

(1.3) Let ∇ be the Levi-Civita connection of a Riemannian manifold (M, g). In a local coordinate system
{xi}, we write the metric as

g =
∑

gij dx
i ⊗ dxj

and define the Christoffel symbols by

∇ ∂

∂xi

∂

∂xj
=
∑

Γk
ij

∂

∂xk
.



(a) Show that ∇i = ∂i + Γk
ij , i.e. for vector fields X =

∑
Xi ∂

∂xi and Y =
∑
Y j ∂

∂xj

∇XY =
∑

Xi

(
∂

∂xi
+ Γk

ijY
j

)
∂

∂xk
.

(b) Show that the torsion-free condition implies that Γk
ij = Γk

ji.

The components of the Riemannian curvature tensor R are defined by∑
Ri

jk`

∂

∂xi
= R

(
∂

∂xk
,
∂

∂x`

)
∂

∂xj

(c) Derive the classical expression Ri
jkl =

∑
(∂kΓi

`j − ∂`Γi
kj) + (Γm

`jΓ
i
km − Γm

kjΓ
i
`m)

(1.4) Let ∇ and ∇′ be two connections on a vector bundle E → M . Write ∇′ = ∇ + A where A is an
End(E)-valued 1-form. Show that the curvatures of ∇ and ∇′ are related by

F∇
′

= F∇ + d∇A+ [A,A]

where d∇ : Γ(T ∗M) ⊗ End(E) → Γ(Λ2T ∗M ⊗ End(E)) is the covariant exterior derivative defined
by

d∇A(X,Y ) = (∇XA)(Y )− (∇YA)(X),

and [A,A] is the End(E)-valued 2-form given by [A,A](X,Y ) = A(X)A(Y )−A(Y )A(X).

(1.5) Prove the second Bianchi identity: the curvature satisfies (c) of Proposition 1.6.


