Math 868 — Homework 9

Due Monday, Nov 12

These problems relate to Chapter 12 in Lee's textbook. All vector spaces are real vector spaces.

- 1. Do Problem 12-6 in Lee, page 320. (In part (c) $\iota: S^2 \to \mathbf{R}^3$ is the inclusion).
- 2. Do Problem 12-7 on the same page.
- 3. In class we showed that \mathcal{L}_X is a derivation and d and ι_X are both skew-derivations on $\Omega^* M$. Use these facts to and Lemma 31.2 from class to:
 - (a) Prove that $d\iota_X + \iota_X d$ is a derivation.
 - (b) Prove the Cartan formula $\mathcal{L}_X = d\iota_X + \iota_X d$. (This is easier than the proof in Lee page
- 4. Read Lee pages 314-319 on symplectic vector spaces and symplectic manifolds. Do Exercise 12.7 on page 314.
- 5. Prove that on a manifold M of dimension 2n, a 2-form $\omega \in \Omega^2(M)$ is a symplectic form if and only if

$$d\omega = 0$$
 and and each point $p \in M$ $(\omega \wedge \dots \wedge \omega)_p \neq 0$.

Hint: You need only show that this last condition is equivalent to ω being non-degenerate at each point p. Thus this is actually a linear algebra problem, which is easy using standard form.

- 6. Do Problem 12-9 in Lee, page 321.
- 7. Do Problem 12-14 in Lee, page 322.