Math 868 — Homework 7

Due Wednesday, Oct 24

- 1. Evaluate $\int_C \omega$ where $c: [0,1] \to \mathbf{R}^3$ by $c(t) = (t,t^2,t^3)$ and $\omega = y \ dx + 2x \ dy + y \ dz$.
- 2. For α = ¹/₂(x dy y dx), find
 (a) ∫_{C_R} α where C_R is the circle {x² + y² = R²} in R² with counterclockwise orientation.
 (b) ∫_T α where T is the oriented triangle in R² shown.
- 3. Determine whether each form is exact. If it is, find all functions f such that $\omega = df$.
 - (a) $\omega = xy \, dx + \frac{1}{2}x^2 \, dy$ on \mathbf{R}^2 .
 - (b) $\omega = x \, dx + xz \, dy + xy \, dz$ on \mathbf{R}^3 .
 - (c) $\omega = y \, dx$ on \mathbf{R}^2 .
 - (d) $\omega = \left(\frac{1}{x^2} + \frac{1}{y^2}\right) (y \ dx x \ dy)$ on $\{(x, y) \mid x \neq 0 \text{ and } y \neq 0\}.$

4. Let ω be the 1-form $\omega = \left(\frac{-y}{x^2+y^2}\right) dx + \left(\frac{x}{x^2+y^2}\right) dy$ on $\mathbf{R}^2 \setminus \{0\}$.

- (a) Calculate $\int_C \omega$ for any circle C around the origin.
- (b) Prove that in the half-plane $\{x > 0\}$, ω has the form df for some function f (try $\arctan(y/x)$ as a random possibility).
- (c) Prove that ω cannot be of the form dg on all of $\mathbb{R}^2 \setminus \{0\}$ for any function g.
- 5. Again let $\omega = \left(\frac{-y}{x^2+y^2}\right) dx + \left(\frac{x}{x^2+y^2}\right) dy$, now considered as a 1-form on $\mathbf{R}^3 \setminus \{z \text{axis}\}$. Find $\int_{C_1} \omega$ and $\int_{C_2} \omega$ where C_1 and C_2 are the two curves shown on the torus of radius 1 around the core circle of radius 2 in the xy plane.

6. (Bonus) Write down a 1-form η on $\{(x, y, z) \mid z \neq 0 \text{ and } x^2 + y^2 \neq 2\}$ so that the numbers $\int_{C_1} \eta$ and $\int_{C_1} \eta$ are the same as integrals of ω in Problem 5 but in the opposite order. Verify by integrating.

Solutions

1. $\frac{34}{15}$.

- 2. In both (a) and (b) the integral is equal to the area enclosed by the path.
- 3. (a) and (d) are exact. Once you find f, you can check yourself that it works.
- 4. (a) 2π (follows from 2a). (b) Good guess! (c) Contradicts theorem that says ...
- 5. Apply 4a and 4b to get the answers without calculating.