Math 868 — Homework 5

Due Friday, Oct 12

- 1. Prove that the orthogonal group O(n) is compact. (*Hint:* first show that if $A = (A_{ij})$ is orthogonal then $\sum_{i} A_{ij}^2 = 1$ for each i).
- 2. Verify that the tangent space to O(n) at the identity matrix I is the vector space of all skewsymmetric $n \times n$ matrices, that is, the matrices A with $A^t = -A$. (Consider paths $B(t) = I + tA + \cdots$ in O(n).)
- 3. The unitary group U(n) is the group of all $n \times n$ complex matrices A such that $A^*A = Id$, where $A^* = \overline{A}^t$ is the conjugate of the transpose (= transpose of the conjugate).
 - (a) Prove that U(n) is a Lie group (adapt the proof given in class for O(n)).
 - (b) What is the tangent space to U(n) at the identity matrix?
- 4. If G is a Lie group then, for each $g \in G$, left multiplication by g is a map $L_g : G \to G$ by $L_g h = gh$; this is smooth by the definition of Lie group.
 - (a) Show that $L_q L_h = L_{qh}$ and that L_q is a diffeomorphism.
 - (b) Prove that a group G that is locally a Lie group near $I \in G$ is a manifold ("locally a Lie group near $I \in G$ " means there is a neighborhood U of I that is diffeomorphic to an open set in \mathbb{R}^n and so that maps $U \to U$ by $g \mapsto g^{-1}$ and $g \to hg$ for h near I are smooth). (*Hint:* if $\phi: U \to G$ is a chart from an open set $U \subset \mathbb{R}^n$ with $\phi(0) = I$, then $L_g \circ \phi$ is a chart at g. Don't forget to show that the transition maps are diffeomorphisms).
 - (c) Use (b) to give a different proof that U(n) is a manifold.
- 5. Let $V = \{ai+bj+ck \in \mathbf{H}\}$ be the vector space of pure imaginary quaternions. As in class, each unit quaternion g gives a linear map $Ad_g : V \to V$ by $Ad_g(x) = gxg^{-1}$. If $g = \alpha i + \beta j + \gamma k$, write down Ad_g as a 3×3 matrix.

Solutions

- 1. Identify $Mat_n = \{n \times n \text{ real matrices}\}$ with \mathbf{R}^{n^2} and define $\Phi : Mat_n \to Mat_n$ by $\phi(A_{ij}) = (A^T A)_{ij} = \sum_j A_{ij} A_{ij}$. Then Φ is continuous (it is a quadratic polynomial!), so $O(n) = \Phi^{-1}(Id.)$ is closed. Furthermore, for each $A \in O(n)$, we have $\sum_j A_{ij}^2 = 1$, so $||A||^2 = \sum_{ij} A_{ij}^2 = n$. Thus O(n) is closed and bounded in \mathbf{R}^{n^2} , so compact.
- 2. If $A \in T_IO(n)$ there is a path B(t) in O(n) with B(0) = I and $\dot{B}(0) = A$ satisfies $B^T(t)B(t) = I$. Applying $\frac{d}{dt}$ and evaluating at t = 0 gives $0 = \dot{B}^T(0) \cdot I + I \cdot \dot{B}^T(0) = A^T + A$, so A is skew-symmetric. Thus $T_IO(n) \subset \mathfrak{o}(n) = \{n \times n \text{ skew-symmetric matrices}\}$. Conversely, if $A \in \mathfrak{o}(n)$, then $B(t) = \exp(tA) = I + tA + \frac{1}{2}t^2A^2 + \cdots$ satisfies B(0) = I, $\dot{B}(0) = A$ and

$$B^{T}(t)B(t) = \exp(tA^{T})\exp(tA) = \exp(-tA)\exp(tA) = I$$

Consequently, B(t) lies in O(n) for all t and hence $A \in T_IO(n)$. Therefore $T_IO(n) = \mathfrak{o}(n)$.

3. (a) First, U(n) is a group: if $A, B \in U(n)$ then (i) $(AB)^*(AB) = B^*A^*AB = B^*B = I$ and (ii) $A^*A = I \implies A^{-1} = A^* \implies (A^{-1})^* = A^{**} = A \implies (A^{-1})^*A^{-1} = I$. Thus $AB \in U(n)$ and $A^{-1} \in U(n)$.

Let $H(n) = \{n \times n \text{ cx. matrices } | A^* = A\}$ be the vector space of hermitian matrices and define $\Phi : \mathbf{C}^{n^2} \to H(n)$ by $\Phi(A) = A^*A$. This is smooth (it is quadratic in the entries of A), $\Phi^{-1}(Id) = U(n)$, and the image lies in H(n) since $(A^*A)^* = A^*A^{**} = A^*A$. One shows

$d\Phi_A$ is onto

exactly as was done in class for O(n) with A^T replaced everywhere by A^* . Hence U(n) is an immersed submanifold of \mathbf{C}^{n^2} . Finally, the group operations are smooth because they are restrictions of the smooth group operations of $GL(n, \mathbf{C})$ to the submanifold U(n).

(b) Repeating Problem 2 above, with A^T replaced everywhere by A^* , shows that $T_I U(n)$ is the space $\mathfrak{u}(n) = \{n \times n \text{ cx. matrices } | A^* = -A \}$ of skew-hermitian matrices.

Alternatively, one can show $T_I U(n) \subset \mathfrak{u}(n)$ and then use a dimension count. For this, note that if A = B + Ci then $A^* = A$ iff B is symmetric and C is skew-symmetric. Hence

$$\dim H(n) = \frac{n(n+1)}{2} + \frac{n(n-1)}{2} = n^2 \quad \text{and similarly} \quad \dim \mathfrak{u}(n) = n^2.$$

- 4. (a) For any $x, g, h \in G$ we have $L_g L_h(x) = L_g(hx) = ghx = L_{gh}(x)$. As special cases we get $L_g L_{g^{-1}}(x) = x$ and $L_{g^{-1}} L_g(x) = x$. Thus $L_g L_h = L_{gh}$ and L_g is a diffeomorphism with inverse $L_{g^{-1}}$.
 - (b) By assumption there is a neighborhood U of $I \in G$ and a chart $\phi: U \to V \subset \mathbb{R}^n$ on which the group operations are smooth. For each $g \in G$ set $U_g = L_g(U)$ and let $\phi_g: U_g \to V$ by $\phi_g = \phi \circ L_{g^{-1}}$. Then U_g is a neighborhood of g and ϕ_g is a bijection because it is the composition of two bijection). Define an atlas by

$$\mathcal{A} = \{ (U_g, \phi_g) \mid g \in G \}.$$

These U_g cover G. We will show that whenever $U_g \cap U_h \neq \emptyset$ the transition map $\phi_h^{-1}\phi_g$: $U_g \cap U_h \to U_g \cap U_h$ is smooth. For this, first note that

$$\phi_h \phi_g^{-1} = \phi \circ L_{h^{-1}} \ (\phi \circ L_{g^{-1}})^{-1} = \phi \circ L_{h^{-1}} \circ L_g \circ \phi^{-1} = \phi \circ L_{h^{-1}g} \circ \phi^{-1}.$$

This looks smooth, but be careful: we do not know that L_g is smooth or even continuous for $g \notin U$. To deal with this problem, fix $x \in U_g \cap U_h$. Since $x \in U_h = L_h U$ we have $h^{-1}x \in U$, so $L_{h^{-1}x}$ is smooth by the hypothesis. Similarly, since $x \in U_g$ we have $g^{-1}x \in U$, so $L_{g^{-1}x}$ is smooth and hence so is its inverse. Therefore

$$L_{h^{-1}g} = L_{(h^{-1}x)(x^{-1}g)} = L_{h^{-1}x} \circ \left(L_{g^{-1}x}\right)^{-1}$$

is smooth. This shows that all transition maps are smooth, so \mathcal{A} defines a differentiable structure on G.

- (c) The exponential map $A \mapsto e^A$ for skew-hermitian A is a map $\exp : \mathfrak{u}(n) \to U(n)$ with $\exp(0) = I$ and $d \exp_0 = Id$. By the Inverse Function Theorem it is a local diffeomorphism at the identity. This means that there is a neighborhood U of $I \in U(n)$ and a chart $\exp^{-1} : U \to V \subset \mathbf{R}^m$ where $m = \dim U(n)$. Therefore U(n) is a manifold by part (b).
- 5. If g = ai + bj + ck is a pure imaginary unit quaternion then $g\bar{g} = 1$, so $g^{-1} = \bar{g} = -g$. Then

$$\begin{aligned} gig^{-1} &= (ai + bj + ck)i(-ai - bj - ck) &= (ai + bj + ck)(a - bk + cj) \\ &= (a^2 - b^2 - c^2)i + 2abj + 2ack \\ gjg^{-1} &= (ai + bj + ck)j(-ai - bj - ck) &= (ai + bj + ck)(ak + b - ci) \\ &= 2abi + (-a^2 + b^2 - c^2)j + 2bck \\ gkg^{-1} &= (ai + bj + ck)k(-ai - bj - ck) &= (ai + bj + ck)(-aj + bi + c) \\ &= 2aci + 2bcj + (-a^2 - b^2 + c^2)i. \end{aligned}$$

Hence

$$Ad_g = \begin{pmatrix} a^2 - b^2 - c^2 & 2ab & 2ac \\ 2ab & -a^2 + b^2 - c^2 & 2bc \\ 2ac & 2bc & -a^2 - b^2 + c^2 \end{pmatrix}$$