Math 868 — Homework 2

Due Monday, Sept. 17

- 1. Let $R = \{(x, y) | x > 0\}$ be the right half-plane and let $\Phi : \mathbf{R}^+ \times (-\pi/2, \pi/2) \to R$ be the map $\Phi(r, \theta) = (r \cos \theta, r \sin \theta)$ that changes into polar coordinates into xy coordinates. Write down $D\Phi$ and $D\Phi^{-1}$ as matrices.
- 2. (a) Suppose that $f: M \to N$ is a diffeomorphism between manifolds. Prove that at each point p, Df_p is an isomorphism of the tangent spaces.
 - (b) Using (a), prove that \mathbf{R}^k is not diffeomorphic to \mathbf{R}^n if $k \neq n$.
 - (c) If a nonempty smooth *n*-manifold is diffeomorphic to an *m*-manifold, prove that n = m (This is Problem 3-3 on page 79 in Lee's textbook)
- 3. (Lee, Problem 3-1 page 78) Suppose that $f: M \to N$ is a smooth map between manifolds with M connected and that $Df_p: T_pM \to T_{f(p)}N$ is the zero map at each $p \in M$. Prove that the image of f is a single point. *Hint:* first, for each $p \in M$, use charts around p and q = f(p) to show that f is locally constant.
- 4. Suppose that $f: M \to N$ is a smooth map between manifolds, $\phi: U \to V \subset M$ and $\psi: \hat{U} \to \hat{V} \subset N$ are charts with $U \subset \mathbf{R}^m$, $\hat{U} \subset \mathbf{R}^m$, and $f(V) \subset \hat{V}$. As in class, define

$$Df_p := D\psi \circ Dh \circ D\phi^{-1} : T_p M \to T_q N$$

where q = f(p). Prove that this definition is independent of the charts ϕ and ψ .

- 5. In class we proved that T_pM is the set of velocity vectors at p for all paths in M through p. Use this to write down two vectors in \mathbb{R}^3 that span T_pS^2 at the point p = (a, b, c) (this gives an second solution to Problem 7b on HW Set 1)
- 6. Use the matrices you found in Problem 1 above to answer Problem 4.5 on page 101 of Lee.
- 7. Fix a point p in a manifold M. Let I_p denote the set of all $f \in C^{\infty}(M)$ with f(p) = 0 and let $I_p^2 = \text{ideal generated by } \{f^2 \mid f \in I_p\}.$
 - (a) Show that I_p is an ideal in the ring $C^{\infty}(M)$ (look up the definition of 'ideal' in an algebra book if necessary) and that I_p^2 is a vector subspace of I_p .
 - (b) Using the definition of derivation, show that any derivation $X : C^{\infty}(M) \to \mathbf{R}$ at p satisfies Xf = 0 for all $f \in I_p^2$.
 - (c) Show that any quadratic function $f = ax^2 + bxy + cy^2$ on \mathbf{R}^2 lies in I_0^2 (complete the square!)
 - (d) A function f on \mathbb{R}^n vanishes to second order at the origin if there is a constant c such that $|f| \leq cr^2$ in some ball $B(0, \epsilon)$ around the origin. Prove that

 $I_0^2 = \{ f \in C^\infty(\mathbf{R}^n) \mid f \text{ vanishes to second order at the origin} \}$

Hint: As in class, it follows from the Fundamental Theorem of Calculus that we can write $f(x^1, \ldots x^n) = f(0) + \sum x^i a_i + \sum_{i,j} x^{ij} b_{ij}(x^1, \ldots x^n)$ for some smooth functions b_{ij} .

Conclusion: Clearly, part (d) implies that $I_p^2 = \{f \in C^{\infty}(M) \mid f \text{ that vanish to second order at } p\}$. Thus (b) and (d) show that any derivation $X : C^{\infty}(M) \to \mathbf{R}$ at p satisfies Xf = 0 for every functions f that vanishes to second order at p.

- 8. Consider a smooth function $f: M \to \mathbf{R}$ as a map between manifolds. Then $df_p: T_pM \to T_{f(p)}\mathbf{R}$.
 - (a) Show there is a natural identification $T_t \mathbf{R} = \mathbf{R}$, so we can consider df_p as an element of the dual space $T_p^* M$.
 - (b) Show that in coordinates $df_p = \sum \left(\frac{\partial f}{\partial x^i}\right)_p dx^i$ where $\{dx^i\}$ are the dual basis of $\{\frac{\partial f}{\partial x^i}\}$ of $T_p M$.