## Math 868 — Homework 11

## Due Wednesday, Dec 5

These problems relate to Chapter 15 in Lee's textbook. Reading Chapter 15 is recommended!.

- 1. Show that if a manifold M is the disjoint union of two components U and V, then its DeRham cohomology is  $H^*(M) = H^*(U) \oplus H^*(V)$ .
- 2. Read the statement and proof of the "Zigzag Lemma" on page 395-6 of Lee (also done in class). Finish the proof be verifying the statements listed in the last paragraph of the proof, namely:
  - (a) The cohomology class [a] is independent of the choices made along the way (this was partially done in class),
  - (b)  $\delta$  is linear, and
  - (c) The resulting long exact sequence is exact.
- 3. Compute the DeRham cohomology groups of the torus  $T^2$  as follows.
  - (a) Explain, in a few words, why the cylinder  $C = (0,3) \times S^1$  and the circle have the same DeRham cohomology groups  $H^p(C) = H^p(S^1)$  for p = 0, 1, 2.
  - (b)  $T^2$  can be regarded as the union of two cylinders  $C_1 = (0,3) \times S^1$  and  $C_2 = (1,4) \times S^1$ whose intersection is the disjoint union of open sets  $U = (1,2) \times S^1$  and  $V = (3,4) \times S^1$ , which are both cylinders. Draw a picture of this.
  - (c) Compute the DeRham cohomology groups  $H^p(T^2)$  for p = 0, 1, 2.
- 4. (Lee Problem 15-1) Compute the DeRham cohomology groups of  $\mathbb{R}^n$  minus two points (Use Corollary 15.19 on page 403 of Lee).
- 5. Let  $\Sigma_g$  be a compact, orientable 2-manifold of genus g;  $\Sigma_g$  is diffeomorphic to a sphere  $S^2$  with g handles attached.



Use induction (starting from the g = 0 case) and Mayer-Vietoris to prove that

 $\begin{cases} H^0(M) = \mathbf{R} \\ H^1(M) = \mathbf{R}^{2g} \\ H^2(M) = \mathbf{R}. \end{cases}$ 

- 6. Let  $(M, \omega)$  be a compact 2*n*-dimensional symplectic manifold (without boundary). In Problem 5 of Homework Set 9 you showed that the *n*-fold wedge product  $\omega^k = \omega \wedge \cdots \wedge \omega$  is a nowhere zero 2*n*-form. Thus every symplectic manifold is orientable, and  $\omega^n$  specified an orientation. Use this fact to answer Lee's Problem 15-8, namely:
  - (a) Show that  $\omega^n$  is not exact (Use Stokes' Theorem)
  - (b) Show that  $H^{2k}(M) \neq 0$  for k = 1, ..., n because  $[\omega^k] \neq 0$ .
  - (c) Show that the only sphere that admits a symplectic structure is  $S^2$ .