Math 868 — Homework 10

Due Wednesday, Nov 21

These problems relate to Chapters 13 and 14 in Lee's textbook. All vector spaces are real vector spaces.

1. Prove that the rank of $\omega \in \Lambda^2 V$ is rank $\omega = 2 \max\{k \mid \omega^k \neq 0\}$ where ω^k means $\underline{\omega \wedge \cdots \wedge \omega}$.

k times

- 2. Read Lee pages 325-329. Do Problem 13-1 of page 346.
- 3. Read Lee pages 40 -42 on smooth covering maps (read through the statement of Proposition 2.12).
 - (a) Copy down the definition of "smooth covering map".
 - (b) Do Problem 13-2 on page 346.
- 4. Do Problem 13-3 on page 346.
- 5. Do Problem 13-5 on page 347.
- 6. (a) Show that any open subset of an orientable manifold is orientable and that the product of twp orientable manifolds is orientable.
 - (b) Do Problem 14-1 on page 382.
- 7. Evaluate $\int_S x \, dy \wedge dz + y \, dx \wedge dy$ where S is the oriented surface parameterized by $\phi : [0,1] \times [0,1] \to \mathbf{R}^3$ by $\phi(u,v) = (u+v, u^2 v^2, uv)$ and oriented by $dx \wedge dy$.
- 8. Let H be the upper hemisphere $\{(x, y, z) \mid x^2 + y^2 + z^2 = 1, z \ge 0\}$. Evaluate

$$\int_{\partial H} (x+y) \, dz + (y+z) \, dx + (x+z) \, dy$$

directly and by Stokes' Theorem. (Use orientation form $dx \wedge dy$.)

9. Let R be a region in R^3 oriented by $dx \wedge dy \wedge dz$. Show that the volume of R is

$$\frac{1}{3} \int_{\partial R} z \, dx \wedge dy + x \, dy \wedge dz + y \, dz \wedge dx$$

and use this to compute the volume of the ball B_R of radius R in \mathbb{R}^3 .