Chapter 2

Vector Spaces and Bases

This chapter and the next are an
bra. The reader is expected to be
operations such as matrix multipl
terminants and finding inverses. However, no prior knowledge of vec-
tor spaces, bases, dimension, or linear transformations is assumed.
That material is covered quickly from the beginning.

overview of elementary linear alge-
already familiar with basic matrix
ication, row reduction, taking de-

2.1 Vector Spaces

Linear algebra is the study of vector spaces. A vector space is a
set whose elements (called vectors, naturally) can be added to each
other and multiplied by scalars, such that the usual rules (such as
X4y = Yy +x") apply. By scalars we usually mean real numbers, in
which case we say we are dealing with a reqg/ vector space. Sometimes
by scalars we mean complex numbers, in which case we are dealing
with a complez vector space.

In principle, we could consider scalars that belong to an arbitr
field, not just to R or C. Algebraic geometers, number theorists
and computer scientists often consider vector spaces over finite fields
or over the rational numbers, In this book, however, we will only
consider real and complex vector spaces.

For completeness, the axioms for a vector space are listed on
page 10. Instead of dwelling on the axioms, however, consider some

ary
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1. The set of all real n-tuples x = |, together with the
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is a real vector space denoted R™. Since columns are difficult
to type, we will usually write x = (z1,....2,)7. The super-
script “T”, which stands for “transpose”, indicates that we are
thinking of the n numbers forming a column rather than a row.
(The reason for making x a column rather than a row is so we
can take the product Ax, where A is an m x n matrix.)

2. If in example 1 we allow the entries z; and the scalars ¢ to

be complex numbers, then we have a complex vector space
denoted C™.

3. Let M,,, be the space of real n x m matrices. Matrices can be
added and multiplied by real numbers, so M,,, is a real vector
space.

4. Let C°[0,1] be the set of continuous real-valued functions on
the closed interval [0,1]. Continuous functions may be added
and multiplied by real numbers, yielding other continuous func-
tions, so C°[0, 1] is a real vector space.

In examples 3 and 4, we considered real-valued matrices and func-
tions to obtain real vector spaces. If we instead consider complex-
valued matrices or functions, we obtain a complex vector space

With these examples under our belts, we now examine the formal
definition:

Definition Let V be a set on which addition and scalar multipli-
cation are defined. (That is, if x and y are elements of V., and ¢
is a scalar, then x +y and cx are elements of V.) If the following
eight azioms are satisfied by all elements X, y. and z of V and all
scalars a and b, then V is called a vector space and the elements of
V' are called vectors. If these azioms apply to multiplication by real
scalars, then V is called a real vector space. If the azioms apply to
multiplication by complex scalars, then V is a complex vector space.
1. Commutativity of addition: X +v = v -+ x.
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3. Additive identity: There exists q vector, denoted 0, such that,
for every vector x, 0 + x = x.

4. Additive inverses: For every vector x there exists a vector (—x)
such that x + (—x) = 0,

5. First distributive law: a(x +y) = ax + ay.

6. Second distributive law: (a+b)x = ax + bx,

7. Multiplicative identity: 1(x) = x.

&. Relation to ordinary multiplication: (ab)x = a(bx).

In practice, checking these axioms is a tedious and often pointless
task. Addition and scalar multiplication are usually defined in a
straightforward way that makes these axioms obvious. What is far
less obvious is that addition and scalar multiplication make sense
as operations on V. One must check that the sum of two arbitrary
elements of V is in V and that the product of an arbitrary scalar
and an arbitrary element of 1 isin V.

Definition A set S is closed under addition if the sum of any two
elements of S is in S, and is closed under scalar multiplication if
the product of an arbitrary scalar and an arbitrary element of § is

I
[

Frequently we consider s, subset W of a vector space V. In this
case, addition and scalar multiplication are already defined, and al-

With this in mind we consider a few more examples of vector

Spaces, as well as some sets that are not vector spaces. See Figure
2.1.

/Let W = {x ¢ R|zy + 24 = 0}. The sum of any two vectors
in Wis in W, and any scalar multiple of a vector in Wisin
W. (Check this!) W is & subspace of the vector space R?,

2. More generally. let. 4 he anv fvard o o o -
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Figure 2.1: Four subsets of R?

3. Let R[t] be the set of all real-valued polynomials in a fixed
variable t. Polynomials are continuous functions on [0,1]. so
R[t] is a subset of C?[0,1]. The sum of two polynomials is a
polynomial, as is the product of scalar and a polynomial, so
R[t] is a subspace of CY[0,1].

4. Let Ry[t] be the set of real polynomials of degree n or less.
For n < m, Ry[t] is a subspace of Rp,[t], and Ry, [t] is always a
subspace of R[t].

. Instead of considering polynomials with real coefficients, we
could consider polynomials with complex coefficients to get
examples of complex vector spaces. The space of polynomials
with complex coefficients is usually denoted C[t].

o

\Let W = {x € R?|z1 + x9 = 1}. W' is not a vector space,
as the sum of two elements of W', or a scalar multiple of an
element of W', is typically not in W’. (Again, check this!)
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cLet Z2 = {x ¢ R2|z; and x4y are integers }. Z2 is closed under
addition, but not under scalar multiplication. 72 is a subset of
2, but not a subspace.

- The set {x € B?|z12, = 0} is the union of the coordinate axes
M R This set is closed under scalar multiplication but not
under addition, and so is not a subspace of R2.

Finally, notice that length is not an essential property of a vector.
What is the length of 5 polynomial, or of g continuous function? It is
true that many vector spaces come equipped with a notion of length,
and this concept can be extremely useful. However, many vector
spaces do not come so equipped. In Chapters 2-5 we concentrate on
those operations that make sense in all vector spaces. In Chapters 6
and beyond we examine what more can be done when a vector Space
has an inner product and a notion of length.

Exercises
Explain why each of the following sets is or is not a vector space.
L {xeR?z < T9}.
2. {xeR*z; 4+ 29 = 0 and T1 Is rational. }
3. {xeRn}x%+'~~+x£:1}.
4. {x e R"|z? 2x§+~~+x2}.

33 +- 4y = 0.
1 -2
6. All vectors in R? of the form al 1 ) +e| 5 |, where ¢

-3 2
and ¢ are arbitrary real numbers.

7. All vectors in a vector space V of the form C1V + cow, where v
and w are fixed vectors in V and ¢; and C2 are arbitrary scalars.

8. All polynomials p(t) € R[t] such that p(3) = 0.
9. All polynomials p(t) € R[t] such that p(3) = 1.
10. All non-negative functions in %o, 1].
11. All polynomials in Rs[t] with integer coefficients.
12. Let X be an arbitrary set. Is the set of all integer-valned fimn.




