
Math 415 Spring 2012

An example of Principal Component Analysis

In PCA, one begins with a (large) number k of variables associated with some population,
and a set of sample data. The goal is to find a new variable X1 that is a linear combination
of the given variables and that provides the best way (amongst all linear combinations) of
separating the members of the population.

Step 1: Write the data in a table whose columns are labelled by k variables and whose
rows give the results of n samples. For an example, consider the data shown below on
the frequency of 4 particular letters occur in various languages (this data is taken from
http://en.wikipedia.org/wiki/Letter_frequency).

Frequency of Letters a k p t

French 7.6 0.05 3 7.2

German 6.5 1.2 0.8 6.1

Turkish 11.7 4.7 0.8 3.0

Mean 8.6 1.98 1.53 5.43

Step 2: “Center” the data by subtracting the mean of each column from each entry in that
column. The result is a matrix A, with the property that the mean of the entries in each
column is 0.

A =

 −1 −1.93 1.47 1.77
−2.1 −0.78 −0.73 0.67
3.1 2.71 −0.73 −2.43


This defines a linear transformation A : Rk → Rn. The images A(ei) of the basis vectors are
a collection of k points in Rn that can be visualized as a “cloud” centered at the origin.

Step 3: For the matrix S = ATA (or alternatively the covariance matrix C = AAT /(n − 1)
where n is the number of samples).

S =


56.5 −14.7 −30.7 −11.0
−14.7 20.6 9.3 −15.2
−30.7 9.3 22.1 −0.72
−11.0 −15.2 −0.72 27.0



Step 4: Diagonalize S. In fact, since S is symmetric, we know there is an orthogonal basis
{ei} in which S is diagonal with its real eigenvalues λ1, · · · , λk on the diagonal. The largest
eigenvalue is called the first principal value and the span of the corresponding eigenvector is
the first principal direction. The next larges is the second principal value, etc.

http://en.wikipedia.org/wiki/Letter_frequency


For our matrix S above, one finds that the eigenvalues are

λ1 = 80.0 λ2 = 39.9 λ3 = 6.3 λ4 = 0

and the eigenvectors are

e1 =


0.83
−0.26
−0.48
−.09

 e2 =


−0.14
−0.57
−0.09

0.8

 e3 =


0.19
−0.60
0.71
−.31

 e4 =


−0.5
−0.5
−0.5
−.5



Step 5: The first eigenvector gives the direction of the largest dispersion. The corresponding
variable

X = 0.83Fa − 0.26Fk − 0.48Fp − 0.9Ft


Fa = Measured Frequency of a

Fk = Measured Frequency of k

Fp = Measured Frequency of p

Ft = Measured Frequency of t

(that is, X = e1 · F ) is the best distinguish between these three languages using data that
samples these 4 letters.

Step 6: Including more principal directions gives more information. Select a small number m
and consider the subspace Vm spanned by the first m eigenvalues of S. The projection onto
Vm is given by m variables

X1, · · ·Xm

like the one above, and the resulting scatter plot in Rm is the best m-dimensional way to
between these three languages using data that samples these 4 letters.

What should one take for m? This is playoff between amount of data and accuracy. One
can get a sense of how much information is captured as follows.

The total standard deviation is σ =
√∑

λi, and the fraction of the total standard deviation
that is accounted for by the variation in the first m principal directions is√

λ1 + · · ·+ λm
λ1 + · · ·+ λk

For the case above, one principal direction already accounts for a large percentage of the
standard deviation, and the first two account for even more, namely√

80

80 + 39.9 + 6.3
≈ 79.9%

√
80 + 39.9

80 + 39.9 + 6.3
≈ 97.5%.

More Background. The best-fitting (“maximum likelihood”) Gaussian probability distribu-
tion for our data then has the form

P (x) = C e−
x·S−1x
n−1 = C e−

|A−1x|2
n−1



where n is the number of samples (n = 7 in the case), S−1 is the inverse of the covariance
matrix, and C is the constant that makes the integral of this function over all of R3 equal to
1. If S is diagonal in an orthonormal basis {ei} with eigenvalues {λi}, then T is diagonal with
eigenvalues {λ−1i }, and the above probability distribution has the form

P (x) = C ′ e−
Q(x)
n−1

where Q is the quadratic form whose value on x =
∑

i xiei is

Q(x) =
∑
i

λ−1i x2i .

Picturing the graph of P (x), one sees that the first eigenvector e1 gives the direction of the
largest spread in the data; this is called the first principal direction. Similarly, the first two
eigenvectors span the plane with the largest spread in the data, etc.


