
Notes on Inner Product Spaces

Let V be a vector space with an inner product 〈 , 〉 (see the textbook for the definition). These
notes give some of the basic facts and properties in an order a bit different from the one in the
textbook.

Distance Function. In an inner product space V , we define the distance between two vectors v
and w to be

d(v,w) =
√
‖v −w‖2.

This makes V into a metric space, i.e. V is a set with a distance function V ×V → R that satisfies,
for all v,w and u in V ,

1. d(v,v) ≥ 0 with equality if and only if v = 0.

2. d(v,w) = d(w,v).

3. (Triangle inequality) d(v,w) ≤ d(v,u) + d(u,w)

The distance function allows us to talk about converging sequences of vectors in V ; more on
this below.

Orthonormal Bases

Definition. Let V be a vector space with an inner product. A set an orthogonal set if 〈vi,vj〉 = 0
for all i 6= j, and is {v1, . . . ,vn} is an orthonormal set if

〈vi,vj〉 = δij =

{
1 i = j

0 i 6= j

The concise equation 〈vi,vj〉 = δij means that each vi is a unit vector and is orthogonal to all the
other v’s.

Theorem 0.1. Orthonormal sets are linearly independent.

Proof. Suppose that {v1,v2, . . . } is an orthonormal set and that
∑

i x
ivi = 0. Then for each j,

0 = 〈vj , 0〉 = 〈vj ,
∑
xivi〉 =

∑
xi〈vj ,vi〉 = xj . Thus the set is linearly independent. �

Note that if dimV = n, any orthogonal set has at most n vectors, and if it has n vectors then
it is a basis.

Fourier Coefficients. Orthonormal bases are especially convenient because the coordinates of
a vector are found by simply taking inner products.

Theorem. Let V be a finite-dimensional inner product space with an orthonormal basis {e1, e2, . . . }.
Then for each v ∈ V

v =
∑
all n

xi ei where xi = 〈ei,v, 〉. (0.1)

Furthermore, if v =
∑

all n x
i ei and w =

∑
all n y

i ei, then

〈v,w〉 =
∑
i

x̄iyi. (0.2)



Proof. Because {e1, e2, . . . } is a basis, v has a unique expansion v =
∑
xi ei. But taking the

inner product with ej gives 〈ej ,v〉 = 〈ej ,
∑
xiei〉 =

∑
xi〈ej , ei〉 = xj . The last statement follows

similarly:

〈v,w〉 =
〈∑

i

xiei,
∑
j

yjej

〉
=
∑
i

∑
j

x̄iyj 〈ei, ej〉 =
∑
i

∑
j

x̄iyj δij =
∑
i

x̄iyi.

�

The numbers xi = 〈ei,v〉 are often called the “Fourier coefficients of v” for reasons that will
become clear soon. Note that according to (0.2) the inner product of any two vectors is the
(complex) dot product of their Fournier coefficients.

Projections.

Definition. Let V be an inner product space (possibly infinite-dimensional). Given a vector v ∈ V
and a subspace W ⊂ V with an orthonormal basis {w1, . . . ,wk}, the orthogonal projection of v
onto W is the vector

ProjW (v) =
∑
〈wj ,v〉 wj .

v

y

P

W

Proposition. ProjW (v) is the vector in W closest to v.

Proof. Choose an orthonormal basis {e1, . . . , ek} of W (see Gram-Schmidt below) and consider the
function

D(x1, · · ·xk) =
∥∥∥v −∑xiei

∥∥∥ ,
which is the distance from v to an arbitrary vector w =

∑
xiei in W . Expanding by the bilinear

property and completing the square, we have∥∥∥v −∑xiei

∥∥∥2 = ‖v‖2 − 2
∑

xi〈ei,v〉+
∑
i

∑
j

xixj〈ei, ej〉

=
∑
i

∣∣xi − 〈ei,v〉∣∣2 + ‖v‖2 −
∑
i

|〈ei,v〉|2 (0.3)

=
∑
i

∣∣xi − 〈ei,v〉∣∣2 + C

where C is a constant independent of the numbers xi. Thus D(x) ≥ C with equality if and only if
xi = 〈v, ei〉 for all i.

�

Corollary (Bessel’s inequality). If v =
∑
xiei then

∑
i |xi|2 ≤ ‖v‖2.



Proof. Take xi = 〈ei,vrangle in (0.3), noting that the left-hand side is non-negative. �

Note that (0.2) shows that Bessel’s inequality is actually an equality when V is finite-dimensional.
But the infinite-dimensional case is especially interesting – see below.

The Gram-Schmidt Process. Given a basis {u1, . . . ,un} of an inner product space, we can
form an orthonormal basis {e1, . . . en} by these steps:

1. Normalize u1 by setting e1 =
u1

‖u1‖
.

2a. Replace u2 by the component of u2 orthogonal to e1 by setting v2 = u2 − 〈e1,u2〉 e1.

2b. Normalize v2 by setting e2 =
u2

‖u2‖
.

3a. Replace u3 by the component of u3 orthogonal to W2 = span(e1, e2) by setting

v3 = u3 − 〈e1,u3〉 e1 − 〈e2,u3〉 e2.

3b. Normalize v3, etc.

Thus at the kth step we calculate

vk = uk −
(
〈e1,uk〉 e1 + 〈e2,uk〉 e2 + · · ·+ 〈ek−1,uk〉 ek−1

)
and then set ek =

vk

‖vk‖
.

Tips: When applying the Gram-Schmidt process with specific vectors, it is helpful to:

(i) Pull out common factors. For example, write
√

2(1, 1, 1) instead of (
√

2,
√

2,
√

2).

(ii) Erase the common factor before normalizing. For example, the normalization of (
√

2,
√

2,
√

2)
is the same as the normalization of (1, 1, 1), which is much easier to compute.


