Notes on Inner Product Spaces

Let V be a vector space with an inner product \langle , \rangle (see the textbook for the definition). These notes give some of the basic facts and properties in an order a bit different from the one in the textbook.

Distance Function. In an inner product space V , we define the distance between two vectors \bf{v} and w to be

$$
d(\mathbf{v}, \mathbf{w}) = \sqrt{\|\mathbf{v} - \mathbf{w}\|^2}.
$$

This makes V into a metric space, i.e. V is a set with a distance function $V \times V \to \mathbb{R}$ that satisfies, for all \mathbf{v}, \mathbf{w} and \mathbf{u} in V ,

- 1. $d(\mathbf{v}, \mathbf{v}) \geq 0$ with equality if and only if $\mathbf{v} = 0$.
- 2. $d(\mathbf{v}, \mathbf{w}) = d(\mathbf{w}, \mathbf{v}).$
- 3. (Triangle inequality) $d(\mathbf{v}, \mathbf{w}) \leq d(\mathbf{v}, \mathbf{u}) + d(\mathbf{u}, \mathbf{w})$

The distance function allows us to talk about converging sequences of vectors in V ; more on this below.

Orthonormal Bases

Definition. Let V be a vector space with an inner product. A set an *orthogonal set* if $\langle v_i, v_j \rangle = 0$ for all $i \neq j$, and is $\{v_1, \ldots, v_n\}$ is an *orthonormal set* if

$$
\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}
$$

The concise equation $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{ij}$ means that each \mathbf{v}_i is a unit vector and is orthogonal to all the other v's.

Theorem 0.1. Orthonormal sets are linearly independent.

Proof. Suppose that $\{v_1, v_2, ...\}$ is an orthonormal set and that $\sum_i x^i v_i = 0$. Then for each j, $0 = \langle \mathbf{v}_j, 0 \rangle = \langle \mathbf{v}_j, \sum x^i \mathbf{v}_i \rangle = \sum x^i \langle \mathbf{v}_j, \mathbf{v}_i \rangle = x^j$. Thus the set is linearly independent. \square

Note that if dim $V = n$, any orthogonal set has at most n vectors, and if it has n vectors then it is a basis.

Fourier Coefficients. Orthonormal bases are especially convenient because the coordinates of a vector are found by simply taking inner products.

Theorem. Let V be a finite-dimensional inner product space with an orthonormal basis $\{e_1, e_2, \ldots\}$. Then for each $\mathbf{v} \in V$

$$
\mathbf{v} = \sum_{\text{all } n} x^i \mathbf{e}_i \qquad \text{where } x^i = \langle \mathbf{e}_i, \mathbf{v}, \rangle.
$$
 (0.1)

Furthermore, if $\mathbf{v} = \sum_{\text{all } n} x^i \mathbf{e}_i$ and $\mathbf{w} = \sum_{\text{all } n} y^i \mathbf{e}_i$, then

$$
\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i} \bar{x}^{i} y^{i}.
$$
 (0.2)

Proof. Because $\{e_1, e_2, \dots\}$ is a basis, **v** has a unique expansion $\mathbf{v} = \sum x^i e_i$. But taking the inner product with \mathbf{e}_j gives $\langle \mathbf{e}_j, \mathbf{v} \rangle = \langle \mathbf{e}_j, \sum x^i \mathbf{e}_i \rangle = \sum x^i \langle \mathbf{e}_j, \mathbf{e}_i \rangle = x^j$. The last statement follows similarly:

$$
\langle \mathbf{v}, \mathbf{w} \rangle = \Big\langle \sum_i x^i \mathbf{e}_i, \sum_j y^j \mathbf{e}_j \Big\rangle = \sum_i \sum_j \bar{x}^i y^j \langle \mathbf{e}_i, \mathbf{e}_j \rangle = \sum_i \sum_j \bar{x}^i y^j \delta_{ij} = \sum_i \bar{x}^i y^i.
$$

The numbers $x^i = \langle \mathbf{e}_i, \mathbf{v} \rangle$ are often called the "Fourier coefficients of \mathbf{v} " for reasons that will become clear soon. Note that according to [\(0.2\)](#page-0-0) the inner product of any two vectors is the (complex) dot product of their Fournier coefficients.

Projections.

 \Box

Definition. Let V be an inner product space (possibly infinite-dimensional). Given a vector $\mathbf{v} \in V$ and a subspace $W \subset V$ with an orthonormal basis $\{w_1, \ldots, w_k\}$, the *orthogonal projection of* v onto W is the vector

$$
\text{Proj}_W(\mathbf{v}) = \sum \langle \mathbf{w}_j, \mathbf{v} \rangle \mathbf{w}_j.
$$

Proposition. Proj_W(**v**) is the vector in W closest to **v**.

Proof. Choose an orthonormal basis $\{e_1, \ldots, e_k\}$ of W (see Gram-Schmidt below) and consider the function

$$
D(x^1, \cdots x^k) = \left\| v - \sum x^i \mathbf{e}_i \right\|,
$$

which is the distance from **v** to an arbitrary vector $\mathbf{w} = \sum x^i \mathbf{e}_i$ in W. Expanding by the bilinear property and completing the square, we have

$$
\left\|v - \sum x^i \mathbf{e}_i\right\|^2 = \|\mathbf{v}\|^2 - 2\sum x^i \langle \mathbf{e}_i, \mathbf{v} \rangle + \sum_i \sum_j x^i x^j \langle \mathbf{e}_i, \mathbf{e}_j \rangle
$$

$$
= \sum_i |x^i - \langle \mathbf{e}_i, \mathbf{v} \rangle|^2 + \|\mathbf{v}\|^2 - \sum_i |\langle \mathbf{e}_i, \mathbf{v} \rangle|^2
$$

$$
= \sum_i |x^i - \langle \mathbf{e}_i, \mathbf{v} \rangle|^2 + C
$$
 (0.3)

where C is a constant independent of the numbers x^i . Thus $D(\mathbf{x}) \geq C$ with equality if and only if $x^i = \langle \mathbf{v}, \mathbf{e}_i \rangle$ for all *i*. \Box

Corollary (Bessel's inequality). If $\mathbf{v} = \sum x^i \mathbf{e}_i$ then $\sum_i |x^i|^2 \leq ||\mathbf{v}||^2$.

Proof. Take $x^i = \langle \mathbf{e}_i, \mathbf{v} \rangle$ rangle in [\(0.3\)](#page-1-0), noting that the left-hand side is non-negative. \square

Note that (0.2) shows that Bessel's inequality is actually an equality when V is finite-dimensional. But the infinite-dimensional case is especially interesting – see below.

The Gram-Schmidt Process. Given a basis $\{u_1, \ldots, u_n\}$ of an inner product space, we can form an orthonormal basis $\{e_1, \ldots e_n\}$ by these steps:

- 1. Normalize \mathbf{u}_1 by setting $\mathbf{e}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|^2}$ $\frac{\mathbf{u}_1}{\|\mathbf{u}_1\|}$.
- 2a. Replace \mathbf{u}_2 by the component of \mathbf{u}_2 orthogonal to \mathbf{e}_1 by setting $\mathbf{v}_2 = \mathbf{u}_2 \langle \mathbf{e}_1, \mathbf{u}_2 \rangle \mathbf{e}_1$.
- 2b. Normalize \mathbf{v}_2 by setting $\mathbf{e}_2 = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|}$ $\frac{u_2}{\|\mathbf{u}_2\|}$.
- 3a. Replace \mathbf{u}_3 by the component of \mathbf{u}_3 orthogonal to $W_2 = \text{span}(\mathbf{e}_1, \mathbf{e}_2)$ by setting

$$
\mathbf{v}_3 = \mathbf{u}_3 - \langle \mathbf{e}_1, \mathbf{u}_3 \rangle \mathbf{e}_1 - \langle \mathbf{e}_2, \mathbf{u}_3 \rangle \mathbf{e}_2.
$$

3b. Normalize v_3 , etc.

Thus at the k^{th} step we calculate

$$
\mathbf{v}_k = \mathbf{u}_k - \left(\langle \mathbf{e}_1, \mathbf{u}_k \rangle \mathbf{e}_1 + \langle \mathbf{e}_2, \mathbf{u}_k \rangle \mathbf{e}_2 + \dots + \langle \mathbf{e}_{k-1}, \mathbf{u}_k \rangle \mathbf{e}_{k-1} \right)
$$

and then set $\mathbf{e}_k = \frac{\mathbf{v}_k}{\|\mathbf{v}_k\|}$.

Tips: When applying the Gram-Schmidt process with specific vectors, it is helpful to:

- (i) Pull out common factors. For example, write $\sqrt{2}(1,1,1)$ instead of $(\sqrt{2},$ √ 2, √ 2).
- (ii) Erase the common factor before normalizing. For example, the normalization of $(\sqrt{2},$ √ 2, √ 2) is the same as the normalization of $(1, 1, 1)$, which is much easier to compute.