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17. Apply the simplex method to the problem of finding a non-negative solution
of
6xy + 3wy — day — 9wy — Ty — Swy =0
—5z; — 8vy + 8y + 22, —~ 225 + Swg =0
—2x; + 62y — Szy + 8z, + 8xy + xg =0
Xyt Tyt Ty @y + @y + g = 1.

This is equivalent to Exercise 5 of Section 1.
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This section requires no more linear algebra than the concepts of a basis
and the change of basis. The material in the first four sections of Chapter I
and the first four sections of Chapter II is sufficient. It is also necessary that
the reader be familiar with the formal elementary properties of Fourier series.

Communication theory is concerned largely with signals which are uncer-
tain, uncertain to be transmitted and uncertain to be received. Therefore,
a large part of the theory is based on probability theory. However, there are
some important concepts in the theory which are purely of a vector space
nature. One is the sampling theorem, which says that in a certain class of
signals a particular signal is completely determined by its values (samples)
at an equally spaced set of times extending forever.

Although it is usually not stated explicitly, the set of functions considered
as signals form a vector space over the real numbers; that is, if f(r) and g(t)
are signals, then (f 4 g)(t) = f(¢) + g(¢) is a signal and (af )(t) = af (1),
where g is a real number, is also a signal. Usually the vector space of signals
is infinite dimensional so that while many of the concepts and theorems
developed in this book apply, there are also many that do not. In many
cases the appropriate tool is the theory of Fourier integrals. In order to bring
the topic within the context of this book, we assume that the signals persist
for only a finite interval of time and that there is a bound for the highest
frequency that will be encountered. If the time interval is of length 1, this
assumption has the implication that each signal f(r) can be represented as a
finite series of the form

N N ]
fO) = %ag + 3 a, cos 2wkt + > by sin 27kt 4.1
Je=1 =1

Formula (4.1) is in fact just a precise formulation of the vague statement
that the highest frequency to be encountered is bounded. Since the co-
efficients can be taken to be arbitrary real numbers, the set of signals under
consideration forms a real vector space V of dimension 2N + 1. We show
that f(¢) is determined by its values at 2N + 1 points equally spaced in time.
This statement is known as the finite sampling theorem.
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The classical infinite sampling theorem from communication theory
requires an assumption analogous to the assumption that the highest fre-
quencies are bounded. Only the assumption that the signal persists for a finite
interval of time is relaxed. In any practical problem some bound can be
placed on the duration of the family of signals under consideration. Thus, the
restriction on the length of the time interval does not alter the significance
or spirit of the theorem in any way.

Consider the function

N
1) = 1+ 23cos2mkt}eV. 4.2
v () 2N+1( 2, ”) *3
N
sin 7t + > 2 cos 2wkt sin 7t
p(t) = =

(2N + 1) sin 7t

N
sin wt 4+ 3'sin 2wkt + wt) — sin 27kt — 1)
k=1

(2N + 1) sin =t
_sin (2N + Dt
(2N + 1) sin mt
From (4.2) we see that w(0) = 1, and from (4.3) we see that p(j2N + 1) =0

for 0 <[jl < N.
Consider the functions

(4.3)

wl(f) = w(z — ) fork= —N, =N +1,...,N. (44)

2N +1
These 2N + 1 functions are all members of V. Furthermore, for #; =
J/(2N + 1) we see that p,(z;) = 1 while p(t;) = 0 for k 5 j. Thus, the
2N + 1 functions obtained arelinearly independent. Since V is of dimension
ON + 1, it follows that the set {p,(t)| k = —N, ..., N} is a basis of V.
These functions are called the sampling functions.

If /(1) is any element of V it can be written in the form

N
0 = 3 dapi), @5)
However, B

N
f) = szk’/}k(tj) =d,, (4.6)

Jomm

or

N
S0 = 3 S @47
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Thus, the coordinates of f(¢) with respect to the basis {y,(¢)} are (f(t_p),
..+ f(ty), and we see that these samples are sufficient to determine f(r).

It is of some interest to express the elements of the basis {4, cos 2mt, .
sin 27Nt} in terms of the basis {w. (D)}

Y

N

Lo S 10
N

2 oz
N
cos 27jt = 3 cos 2mjt,w,(f) (4.8)
k=N
N
sin 2mjt = sin 27jt,p,(0).
k="

Expressing the elements of the basis {1,(1)} in terms of the basis {$, cos 2mt,
., sin 27Nt} is but a matter of the definition of the wi{1):

wk(t)=w(t— u )

2N + 1
S [1 + 2%003 27rj(t S )J
2N + 1 i=1 2N + 1
1 X 2mjk . N 2mjk . .
= 14+ 2> cos cos 2arjt 4 2> sin sin 27jt ).
2N+1( 2008 Iy 1 S8 Tt £ Py W)

(4.9)

With this interpretation, formula (4.1) is a representation of f(¢) in one

coordinate system and (4.7) is a representation of f(#) in another. To

express the coefficients in (4.1) in terms of the coefficients in (4.7) is but a
change of coordinates. Thus, we have

2 < 2njk 2 y
4= i) cos = t,) cos 2jt
" 2N + lksz( » 2N +1 2N + Iksz( 2 It @10
2 J . 2mjk 2 N _ . .
- tc Sin = t.) sin 27t )
’ 2N+1;¢22_Nf(') 2N + 1 2N+1k§th(") Tfiy

There are several ways to look at formulas (4.10). Those familiar with
the theory of Fourier series will see the a; and b, as Fourier coefficients with
formulas (4.10) using finite sums instead of integrals. Those familiar
with probability theory will see the g, as covariance coefficients between the
samples of f(¢) and the samples of cos 2mj¢ at times 7,. And we have Jjust
viewed them as formulas for a change of coordinates.

If the time interval had been of length T instead of 1, the series correspond-
ing to (4.1) would be of the form

N N
700 = tag + S a cos 3—;’5 t + b, sin 2—;75 : @.11)
k=1

Joe=1




256 Selected Applications of Linear Algebra | V1

The vector space would still be of dimension 2N + 1 and we would need
2N + 1 samples spread equally over an interval of length T, or 2N + 1)/T
samples per unit time. Since N/T = W is the highest frequency present in
the series (4.11), we see that for large intervals of time approximately 2
samples per unit time are required to determine the signal. The infinite
sampling theorem, referred to at the beginning of this section, says that if
W is the highest frequency present, then 2 samples per second suffice
to determine the signal. The spirit of the finite sampling theorem is in keeping
with the spirit of the infinite sampling theorem, but the finite sampling
theorem has the practical advantage of providing effective formulas for
determining the function f(¢) and the Fourier coefficients from the samples.

BIBLIOGRAPHY NOTES

For a statement and proof of the infinite sampling theorem see P. M. Woodward,
Probability and Information Theory, with Applications to Radar.

EXERCISES
=
1. Show that w(t, —t,) = w(m) =4, for =N <r,5s <N.
2. Show that if f(z) can be represented in the form of (4.1), then
%1
a7ﬂ=2f f(t) cos 2wkt dt, k=0,1,...,N,
-4
b2
bk=2f [ @) sin 2akt dt, k=1,...,N.
—4
Vi
3. Show thatf_%w(t) dt = m N
“4
4. Show thatﬁ%w,c(t) dt = m .

5. Show that if f(¢) can be represented in the form {4.7), then

Y N 1 ]
£%f(t)dt =k§N NI @

This is a formula for expressing an integral as a finite sum. Such a formula i
called a mechanical quadrature. Such formulas are characteristic of the theory o
orthogonal functions.
6. Show that
N

kzz_N 2N +1

c0os 27ty = O
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and
N 1
Z m—i- sin 277rz‘k = 0
Je=—IN
7. Show that
N
. z)\, '27\,-—-}_—1— cos 2nr(t — ) = Oy
and i
N 1
EN N T sin 2ar(t — 1) = 0.
T
8. Show that
N
2 1/}19([) =1,
Jpm=n N
9. Show that
N
f@O =2 FOw).
Jomzee N

10. If £(¢) and g(¢) are integrable over the interval [—3, 1], let

4
(f,8) = 2f %f (g (1) dt.

Show that if f(z) and g(¢) are elements of V, then (f, &) defines an inner product

1
in V. Show that {75 » €08 27t ..., sin 27Nt} is an orthonormal set.

11. Show that if f(¢) can be represented in the form (4.1), then
1% a02 N N

Zf fYde = — + Zakz—i— zbkz.

) 2 k=1 =1

Show that this is Parseval’s equation of Chapter V.
12. Show that

ig
2rrt p() dt = ——— |
f_%cos nrt (t) dt IN T 1
13, Show that
<3 1
J;l/zcos 2art p, (1) dt = N 1 cos 2mrty.
14. Show that
<3 i .
J;I/?Slﬂ 2mrt ’(,Uk(f) dr = m sSin 27TI‘[]C.
> 15. Show that
%1
t t)dt = ——-§ .
LA v, () (t) N 71 O

16. Using the inner product defined in Exercise 10 show that {z,uk(t)lk =
=N, ..., N}is an orthonormal set.




