Homework Set 8

due Friday, March 23

Do the following problems. You may use a calculator to find the square roots and cosines. Minimize the number of decimal places.

- 1. Find the length of $\mathbf{u} = (7, 11)$, $\mathbf{v} = (2, 3, 4)$ and $\mathbf{w} = (2, 3, 4, 5)$.
- 2. Find the angle between (a) $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (2, 3, 4)$, (b) $\mathbf{u} = (1, -1, 2, -2)$ add $\mathbf{v} = (2, 3, 4, 5)$.
- 3. For each pair of vectors, determine whether the angle between them is acute (< 90°), obtuse (> 90°) or right.
 - (a) $\mathbf{u} = (2, -2)$ and $\mathbf{v} = (5, 4)$.
 - (b) $\mathbf{u} = (2, 3, 4)$ and $\mathbf{v} = (2, -8, 5)$.
 - (c) $\mathbf{u} = (1, -1, 1, -1)$ and $\mathbf{v} = (3, 4, 5, 3)$.
- 4. For which choice of k are the vectors $\mathbf{u} = (2, 3, 4)$ and $\mathbf{v} = (1, k, 1)$ orthogonal?
- 5. Consider the vectors $\mathbf{u} = (1, 1, 1, \dots, 1)$ and $\mathbf{v} = (1, 0, 0, 0, \dots, 0)$ in \mathbb{R}^n . Determine the angle between then for n = 2, 3, 4 and find the limit of this angle as $n \to \infty$.
- 6. Find the orthogonal projection of $\mathbf{u} = (49, 49, 49)$
 - (a) onto the vector $\mathbf{v} = (2, 3, 6)$
 - (b) onto the subspace spanned by $\mathbf{v} = (2, 3, 6)$ and $\mathbf{w} = (3, -6, 2)$.
- 7. Find the orthogonal projection of $\mathbf{u} = (1, 0, 0, 0)$ onto the subspace of \mathbb{R}^4 spanned by $\mathbf{v}_1 = (1, 1, 1, 1)$, $\mathbf{v}_2 = (1, 1, -1, -1)$ and $\mathbf{v}_3 = (1, -1, -1, 1)$.
- 8. Let **v** be a vector in \mathbb{R}^n . Prove that the set

$$\mathbf{v}^{\perp} = \{ \mathbf{w} \in \mathbb{R}^n \, | \, \mathbf{w} \text{ is orthogonal to } \mathbf{v} \}$$

is a subspace of \mathbb{R}^n (called the *orthogonal subspace to* **v**).

- 9. Consider the vector $\mathbf{v} = (1, 2, 3, 4)$ in \mathbb{R}^4 . Find a basis of the subspace of \mathbb{R}^4 consisting of all vectors perpendicular to \mathbf{v} .
- 10. Five students took aptitude exams in English, mathematics and science. Their scores are shown below. Find the correlation coefficients r_{EM} , r_{ES} and r_{MS} between the three pairs of variables. Which ones are positively/negatively correlated?

Student	English	Math	Science
S1	61	53	53
S2	63	73	78
S3	78	61	82
S4	65	84	96
S5	63	59	71
Mean	66	66	76

- 11. Section 6.1 of the textbook, do Problems 4, 5, 6.
- 12. Section 6.2 of the textbook, do Problems 3, 5, 6, 7.

13. Let V be the space C[-1, 1] of all continuous real-valued functions on the interval [-1, 1], and define an inner product on V by

$$\langle f,g \rangle = \int_{-1}^{1} f(x)g(x) \, dx.$$
 (0.1)

Find a polynomial p(x) of degree 2 that is orthogonal to 1 and x. Find a polynomial q(x) of degree 3 that is orthogonal to 1, x and x^2 . Are p and q orthogonal?

In the two problem, suppose that V is a vector space with an inner product and use the formulas below for the "angle" θ between two vectors $\mathbf{v}, \mathbf{w} \in V$ and the projection of \mathbf{w} onto \mathbf{v} :

$$\cos\theta = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \cdot \|\mathbf{w}\|} \qquad \operatorname{Proj}_{\mathbf{v}}(\mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|^2} \mathbf{v}.$$

- 15. Let V be the space $\mathcal{C}[0,4]$ with the L^2 inner product (like (0.1) above but integrating from 0 to 4).
 - (a) What is the angle between the functions $f(x) = \frac{1}{2}x$ and $g(x) = \sqrt{x}$?
 - (b) Decompose g as a vector parallel to f and one perpendicular to f, i.e. find a constant c and a function h with g = af + h and $\langle f, h \rangle = 0$.
- 16. Similarly, let V be the space $\mathcal{C}[-\pi,\pi]$ with the L^2 inner product (integrate from $-\pi$ to π).
 - (a) Find $\langle \sin x, \cos x \rangle$, $\langle \sin x, 1 \rangle$ and $\langle \cos x, 1 \rangle$ where 1 whose value at every x is 1.
 - (b) What is the projection of the function $f(x) = x^2$ onto the subspace spanned by 1 and $\cos x$?

Hint:
$$\int x^2 \cos x \, dx = (x^2 - 2) \sin x + 2x \cos x = C$$
.

17. In \mathbb{R}^3 with the euclidean inner product, the vectors $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (-2, 1, 1)$ and $\mathbf{v}_3 = (0, 1, -1)$ are orthogonal (not orthonormal!). Use the inner product (i.e. the dot product) to write the vector $\mathbf{w} = (-3, 7, 2)$ as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.