Changing Bases

Suppose that $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ and $\{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n\}$ are two bases of a vector space V. Given a vector $\mathbf{v} \in V$, we can write $\mathbf{v} = \sum x^i e_i$ and form the column vector

$$\mathbf{v}_{\mathbf{e}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{\mathbf{e}}$$
This is the coordinate vector of \mathbf{v} in the basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$. We can write $\mathbf{v} \longleftrightarrow_{\mathbf{e}} \mathbf{v}_{\mathbf{e}}$

When the same vector **v** is expanded in the basis $\{\mathbf{f}_1, \mathbf{f}_2, \ldots, \mathbf{f}_n\}$ it has different coefficients

$$\mathbf{v} \longleftrightarrow_{\mathbf{f}} \mathbf{v}_{\mathbf{f}} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{\mathbf{f}}$$

How are the y's related to the x's?

Finding the coordinates in a new basis: The coordinate vectors \mathbf{v}_{e} and \mathbf{v}_{f} are related by

 $\mathbf{v}_f = P_{\mathbf{fe}}\mathbf{v_e}$ Note how the subscripts are arranged.

where $P_{\mathbf{fe}}$ and its inverse $P_{\mathbf{ef}} = P_{\mathbf{fe}}^{-1}$ are the **change-of-basis matrices** defined by $P_{\mathbf{ef}} =$ the matrix whose i^{th} column is $[\mathbf{f}_i]_e$.

Finding the matrix in a new basis: If a linear transformation $L: V \to V$ has matrix A_{ee} in the basis $\{e_1, e_2, \ldots, e_n\}$, then its matrix in the basis $\{f_1, f_2, \ldots, f_n\}$ is

$$A_{\mathbf{ff}} = P_{\mathbf{fe}}A_{\mathbf{ee}}P_{\mathbf{ef}} = P_{\mathbf{fe}}^{-1}A_{\mathbf{ee}}P_{\mathbf{fe}}.$$
 Note how the subscripts are arranged.

Example. (i) Let **v** be the vector whose coordinates are $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$ in the standard basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ of \mathbb{R}^2 . What are its coordinates in the basis $\{\mathbf{f}_1, \mathbf{f}_2\}$ where $\mathbf{f}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ and $\mathbf{f}_2 = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$?

(ii) If $L : \mathbb{R}^2 \to \mathbb{R}^2$ is given by $\begin{pmatrix} 2 & 3 \\ 1 & 7 \end{pmatrix}$ in the standard basis, what is it in the basis $\{\mathbf{f}_1, \mathbf{f}_2\}$?

Solution: P_{ef} is the matrix whose columns are the **f**'s, so $P_{ef} = \begin{pmatrix} 3 & -3 \\ 1 & 4 \end{pmatrix}$. Then P_{fe} is its inverse, so (use our trick for writing down the inverse of a 2 × 2 matrix) $P_{fe} = \frac{1}{15} \begin{pmatrix} 4 & 3 \\ -1 & 3 \end{pmatrix}$. Then

(i)
$$P_{\mathbf{fe}}\mathbf{v}_e = \frac{1}{15}\begin{pmatrix} 4 & 3\\ -1 & 3 \end{pmatrix} \begin{pmatrix} 5\\ -2 \end{pmatrix} = \frac{1}{15}\begin{pmatrix} 14\\ -11 \end{pmatrix}$$

(ii)
$$P_{\mathbf{fe}}^{-1}AP_{\mathbf{fe}} = \begin{pmatrix} 3 & -3\\ 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3\\ 1 & 7 \end{pmatrix} \frac{1}{15} \begin{pmatrix} 4 & 3\\ -1 & 3 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} 4 & 3\\ -1 & 3 \end{pmatrix} \begin{pmatrix} 9 & 6\\ 10 & 25 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} 24 & -27\\ -7 & 111 \end{pmatrix}$$

Math 415

Homework Set 3

due Friday, Feb 3

- 1. Do Problems 15, 16, 17, and 18 on page 42 of Sadun's book.
- 2. Use Gaussian Elimination to solve the following two linear systems (ie do row operations on the augmented matrix).
- 3. In this exercise, you are given a basis $\mathbf{f} = {\mathbf{f}_1, \mathbf{f}_2}$ for \mathbb{R}^2 (or for \mathbb{R}^3) and the **e**-coordinates of a vector \mathbf{v} . Find $P_{\mathbf{e}\mathbf{f}}$, $P_{\mathbf{f}\mathbf{e}}$ and \mathbf{v}_f . Follow the method described on the back of this page.

(a)
$$\mathbf{f}_1 = \begin{pmatrix} 3\\2 \end{pmatrix}, \mathbf{f}_2 = \begin{pmatrix} 4\\3 \end{pmatrix}, \text{ and } \mathbf{v}_{\mathbf{e}} = \begin{pmatrix} 2\\5 \end{pmatrix}.$$

(b) $\mathbf{f}_1 = \begin{pmatrix} 1\\3 \end{pmatrix}, \mathbf{f}_2 = \begin{pmatrix} 3\\1 \end{pmatrix}, \text{ and } \mathbf{v}_{\mathbf{e}} = \begin{pmatrix} 3\\7 \end{pmatrix}.$
(c) $\mathbf{f}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \mathbf{f}_2 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}, \mathbf{f}_3 = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \text{ and } \mathbf{v}_{\mathbf{e}} = \begin{pmatrix} 5\\-2\\3 \end{pmatrix}.$

- 4. Do Problem 3 in Section 3.3.
- 5. Do Problem 7 in Section 3.3.
- 6. Read Section 3.4 in the textbook (on infinite dimensional matrices) and do Problems 1, 2, and 3 in that section.

Note: Problem 3 asks you to first find the composition $L_1 \circ L_2$ of the linear transformations in Problems 1 and 2 (as transformations, not matrices) in both orders. Then is asks you to compare with the products of the matrices.