Math 415

Homework Set 2

due Friday, Jan 27

- 1. Let $V = C^{\infty}(\mathbb{R})$ be the vector space of all functions that have derivatives of all orders. Let $D: V \to V$ be the derivative (i.e. $Df = \frac{df}{dx}$).
 - (a) What is the kernel of D?
 - (b) Let D^2 be the second derivative. What is the kernel of D^2 ?
 - (c) What is the kernel of $D^n: V \to V$?
- 2. With V and D as above, let L = D I where I is the identity transformation of V to V.
 - (a) What is ker L? Answer by completing the sentence: ker L is the set of all functions in V such that
 - (b) Same question for L = D aI for any real number a.
- 3. Let $L: V \to W$ be a linear transformation. Fix a vector in w_0 and think about solving the equation $Lv = w_0$ for the unknown v. Suppose that v_0 is one solution. Show that every other solution is of the form $v = v_0 + u$ where $u \in \ker L$.
- 4. Let V and D be as in Problem 1 and let g by an arbitrary element of V. Explain how the problem of solving the differential equation

$$a\frac{d^2f}{dx^2} + b\frac{df}{dx} + cf = g$$

fits into the abstract situation described in Problem 3.

The next 5 problems are Problems 6-10 for Section 2.3 in Sadun's book. Notation: $\mathbb{R}_d[t]$ denotes the vector space of all polynomials of degree $\leq d$ in the variable t with real coefficients, and $M_{m,n}$ denotes the vector space of all $m \times n$ matrices with real entries.

- 5. Let $V = \mathbb{R}_2[t]$. Determine whether the vectors $\mathbf{b}_1 = 1 + t + t^2$, $\mathbf{b}_2 = 1 + 2t + 3t^2$, $\mathbf{b}_3 = 1 + 4t + 9t^2$ are linearly independent, span V, and/or are a basis.
- 6. Let V be the subspace of $\mathbb{R}_3[t]$ consisting of all polynomials **p** with $\mathbf{p}(0) = 0$. Determine whether the vectors

$$\mathbf{b}_1 = t^2 - t$$
 $\mathbf{b}_2 = t^3 + t^2 + t$ $\mathbf{b}_3 = 2t^3 - 5t^2 - 7t$

are linearly independent, span V, and/or are a basis.

7. Let V be the subspace of $\mathbb{R}_3[t]$ consisting of all polynomials **p** with $\mathbf{p}(1) = 0$. Determine whether the vectors

$$\mathbf{b}_1 = t^2 - t$$
 $\mathbf{b}_2 = t^3 + t^2 + t - 3$ $\mathbf{b}_3 = 2t^3 - 5t^2 - 7t + 10$

are linearly independent, span V, and/or are a basis.

- 8. In $M_{2,2}$, are the matrices $\mathbf{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\mathbf{A}_2 = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$, $\mathbf{A}_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ linear independent, a spanning set, and/or a basis?
- 9. Let V be the subspace of $M_{2,2}$ consisting of all symmetric matrices, i.e. those of the form

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

What is the dimension of V? Find a basis.

The remaining problems are taken from Section 3.2 of Sadun's book and Section 3 of Treil's book (your class notes form Monday should allow you to do these).

10. For each linear transformation below find its matrix.

(a)
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} y\\ x \end{pmatrix}$.
(b) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x+2y\\ 2x-5y\\ 7y \end{pmatrix}$.

- (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ by counterclockwise rotation through 45 degrees.
- 11. Find 3×3 matrices representing the transformations of \mathbb{R}^3 which:
 - (a) project every vector to the xy plane,
 - (b) reflect every vector through the xy plane
 - (c) rotate the xy plane counterclockwise through 30° , leaving the z-axis fixed.
- 12. Let $V = \mathbb{R}_3[t]$ and let $D: V \to V$ be the differentiation transformation $Df = \frac{df}{dt}$. Using the standard basis $\{1, t, t^2, t^3\}$ of V (in that order!),
 - (a) Write down the matrix for D (done in class and in Sadun's Section 3.2).
 - (b) Write down the matrix for the second derivative transformation $L(f) = \frac{d^2f}{dt^2}$. Show by matrix multiplication that $L = D^2$.
 - (c) Use your answers to parts (a) and (b) to write down the matrix for the transformation T defined by

$$(Tf)(t) = 2f(t) + 3f'(t) - 4f''(t)$$