Homework Set 1

due Friday, Jan 13

The first 5 problems are taken from Sadun's book (circled problems on the scan download) with minor notation and wording changes.

- 1. Show that $W = \{(x, y) \in \mathbb{R}^2 | x + y = 0\}$ is closed under addition and scalar multiplication, and hence is a subspace of \mathbb{R}^2 .
- 2. Show that $S = \{(x, y) \in \mathbb{R}^2 | x + y = 1\}$ is not a vector space.
- 3. Show that $S = \{(x, y) \in \mathbb{R}^2 | xy = 0\}$ (which is the union of the two coordinate axes) is not a vector space.
- 4. Is the set S of all vectors (x, y, z, w) in \mathbb{C}^4 that satisfy x+y = z-w and x+2y+3z+4w = 0 a vector space? Why or why not?
- 5. Show that $L^2(\mathbb{R}) =$ the set of all functions $f : \mathbb{R} \to \mathbb{R}$ such that $\int_{-\infty}^{\infty} |f(x)|^2 dx < \infty$ is a vector space. *Hint:* Square the integrand and use the fact that $|ab| \leq |a| \cdot |b|$ for all real numbers a, b.
- 6. Find 3 qualitatively different examples of maps between vector spaces that are not linear transformations.
- 7. Let *I* be the indefinite integration on the space C[0, 1] of all continuous functions defined on the interval [0, 1]. Thus $(If)(x) = \int_0^x f(t) dt$. Show that *I* is a linear operator.
- 8. Let $\mathbb{R}[x]$ be the vector space of all polynomials in x (of any degree) with real coefficients. Show that the operator $D = \frac{d^2}{dx^2} + 17\frac{d}{dx}$ is a linear transformation $D : \mathbb{R} \to \mathbb{R}$.
- 9. Show that the projection $P : \mathbb{R}^3 \to \mathbb{R}^2$ defined by P(x, y, z) = (x, y) is a linear transformation.
- 10. Prove that (a) the composition of two linear transformations is a linear transformation, and (b) The inverse of a linear transformation (if it exists) is a linear transformation.
- 11. Prove that the image of a linear transformation $T: V \to W$ is a subspace of W.