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Matrices and Systems of Equations
Probably the most important problem in mathematics is that of solving a system of
linear equations. Well over 75 percent of all mathematical problems encountered in
scientific or industrial applications involve solving a linear system at some stage. By
using the methods of modern mathematics, it is often possible to take a sophisticated
problem and reduce it to a single system of linear equations. Linear systems arise in
applications to such areas as business, economics, sociology, ecology, demography, ge-
netics, electronics, engineering, and physics. Therefore, it seems appropriate to begin
this book with a section on linear systems.

1.1 Systems of Linear Equations

A linear equation in n unknowns is an equation of the form

a1x1 + a2x2 + · · · + anxn = b

where a1, a2, . . . , an and b are real numbers and x1, x2, . . . , xn are variables. A linear
system of m equations in n unknowns is then a system of the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

(1)

where the ai j ’s and the bi ’s are all real numbers. We will refer to systems of the form (1)
as m × n linear systems. The following are examples of linear systems:

(a) x1 + 2x2 = 5
2x1 + 3x2 = 8

(b) x1 − x2 + x3 = 2
2x1 + x2 − x3 = 4

(c) x1 + x2 = 2
x1 − x2 = 1
x1 = 4

1
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System (a) is a 2 × 2 system, (b) is a 2 × 3 system, and (c) is a 3 × 2 system.
By a solution of an m × n system, we mean an ordered n-tuple of numbers

(x1, x2, . . . , xn) that satisfies all the equations of the system. For example, the ordered
pair (1, 2) is a solution of system (a), since

1 · (1) + 2 · (2) = 5
2 · (1) + 3 · (2) = 8

The ordered triple (2, 0, 0) is a solution of system (b), since

1 · (2) − 1 · (0) + 1 · (0) = 2
2 · (2) + 1 · (0) − 1 · (0) = 4

Actually, system (b) has many solutions. If α is any real number, it is easily seen
that the ordered triple (2, α, α) is a solution. However, system (c) has no solution. It
follows from the third equation that the first coordinate of any solution would have to
be 4. Using x1 = 4 in the first two equations, we see that the second coordinate must
satisfy

4 + x2 = 2
4 − x2 = 1

Since there is no real number that satisfies both of these equations, the system has no
solution. If a linear system has no solution, we say that the system is inconsistent. If
the system has at least one solution, we say that it is consistent. Thus, system (c) is
inconsistent, while systems (a) and (b) are both consistent.

The set of all solutions of a linear system is called the solution set of the system.
If a system is inconsistent, its solution set is empty. A consistent system will have a
nonempty solution set. To solve a consistent system, we must find its solution set.

2 × 2 Systems
Let us examine geometrically a system of the form

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

Each equation can be represented graphically as a line in the plane. The ordered pair
(x1, x2) will be a solution of the system if and only if it lies on both lines. For example,
consider the three systems

(i) x1 + x2 = 2
x1 − x2 = 2

(ii) x1 + x2 = 2
x1 + x2 = 1

(iii) x1 + x2 = 2
−x1 − x2 = −2

The two lines in system (i) intersect at the point (2, 0). Thus, {(2, 0)} is the solution
set of (i). In system (ii) the two lines are parallel. Therefore, system (ii) is inconsistent
and hence its solution set is empty. The two equations in system (iii) both represent the
same line. Any point on this line will be a solution of the system (see Figure 1.1.1).

In general, there are three possibilities: the lines intersect at a point, they are par-
allel, or both equations represent the same line. The solution set then contains either
one, zero, or infinitely many points.
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(i) (ii) (iii)

(2, 0)

x2 x2

x1 x1
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x1

Figure 1.1.1.

The situation is the same for m × n systems. An m × n system may or may not
be consistent. If it is consistent, it must have either exactly one solution or infinitely
many solutions. These are the only possibilities. We will see why this is so in Section 2
when we study the row echelon form. Of more immediate concern is the problem of
finding all solutions of a given system. To tackle this problem, we introduce the notion
of equivalent systems.

Equivalent Systems
Consider the two systems

(a) 3x1 + 2x2 − x3 = −2
x2 = 3

2x3 = 4

(b) 3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

3x1 + 2x2 + x3 = 2

System (a) is easy to solve because it is clear from the last two equations that
x2 = 3 and x3 = 2. Using these values in the first equation, we get

3x1 + 2 · 3 − 2 = −2
x1 = −2

Thus, the solution of the system is (−2, 3, 2). System (b) seems to be more difficult
to solve. Actually, system (b) has the same solution as system (a). To see this, add the
first two equations of the system:

3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

x2 = 3

If (x1, x2, x3) is any solution of (b), it must satisfy all the equations of the system.
Thus, it must satisfy any new equation formed by adding two of its equations. There-
fore, x2 must equal 3. Similarly, (x1, x2, x3) must satisfy the new equation formed by
subtracting the first equation from the third:

3x1 + 2x2 + x3 = 2
3x1 + 2x2 − x3 = −2

2x3 = 4
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Therefore, any solution of system (b) must also be a solution of system (a). By a
similar argument, it can be shown that any solution of (a) is also a solution of (b). This
can be done by subtracting the first equation from the second:

x2 = 3
3x1 + 2x2 − x3 = −2

−3x1 − x2 + x3 = 5

Then add the first and third equations:

33x1 + 2x2 − x3 = −2
2x3 = 4

3x1 + 2x2 + x3 = 2

Thus, (x1, x2, x3) is a solution of system (b) if and only if it is a solution of system (a).
Therefore, both systems have the same solution set, {(−2, 3, 2)}.

Definition Two systems of equations involving the same variables are said to be equivalent if
they have the same solution set.

Clearly, if we interchange the order in which two equations of a system are written,
this will have no effect on the solution set. The reordered system will be equivalent to
the original system. For example, the systems

x1 + 2x2 = 4
3x1 − x2 = 2
4x1 + x2 = 6

and
4x1 + x2 = 6
3x1 − x2 = 2

x1 + 2x2 = 4

both involve the same three equations and, consequently, they must have the same
solution set.

If one equation of a system is multiplied through by a nonzero real number, this
will have no effect on the solution set, and the new system will be equivalent to the
original system. For example, the systems

x1 + x2 + x3 = 3
−2x1 − x2 + 4x3 = 1

and
2x1 + 2x2 + 2x3 = 6

−2x1 − x2 + 4x3 = 1

are equivalent.
If a multiple of one equation is added to another equation, the new system will

be equivalent to the original system. This follows since the n-tuple (x1, . . . , xn) will
satisfy the two equations

ai1x1 + · · · + ainxn = bi

a j1x1 + · · · + a jnxn = b j

if and only if it satisfies the equations

ai1x1 + · · · + ainxn = bi

(a j1 + αai1)x1 + · · · + (a jn + αain)xn = b j + αbi
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To summarize, there are three operations that can be used on a system to obtain an
equivalent system:

I. The order in which any two equations are written may be interchanged.
II. Both sides of an equation may be multiplied by the same nonzero real number.

III. A multiple of one equation may be added to (or subtracted from) another.

Given a system of equations, we may use these operations to obtain an equivalent
system that is easier to solve.

n × n Systems

Let us restrict ourselves to n × n systems for the remainder of this section. We will
show that if an n × n system has exactly one solution, then operations I and III can be
used to obtain an equivalent “strictly triangular system.”

Definition A system is said to be in strict triangular form if, in the kth equation, the coef-
ficients of the first k − 1 variables are all zero and the coefficient of xk is nonzero
(k = 1, . . . , n).

EXAMPLE 1 The system

3x1 + 2x2 + x3 = 1
x2 − x3 = 2

2x3 = 4

is in strict triangular form, since in the second equation the coefficients are 0, 1, −1,
respectively, and in the third equation the coefficients are 0, 0, 2, respectively. Because
of the strict triangular form, the system is easy to solve. It follows from the third
equation that x3 = 2. Using this value in the second equation, we obtain

x2 − 2 = 2 or x2 = 4

Using x2 = 4, x3 = 2 in the first equation, we end up with

3x1 + 2 · 4 + 2 = 1
x1 = −3

Thus, the solution of the system is (−3, 4, 2).

Any n × n strictly triangular system can be solved in the same manner as the last
example. First, the nth equation is solved for the value of xn . This value is used in the
(n − 1)st equation to solve for xn−1. The values xn and xn−1 are used in the (n − 2)nd
equation to solve for xn−2, and so on. We will refer to this method of solving a strictly
triangular system as back substitution.
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EXAMPLE 2 Solve the system
2x1 − x2 + 3x3 − 2x4 = 1

x2 − 2x3 + 3x4 = 2
4x3 + 3x4 = 3

4x4 = 4

Solution
Using back substitution, we obtain

4x4 = 4
4x3 + 3 · 1 = 3

x2 − 2 · 0 + 3 · 1 = 2
2x1 − (−1) + 3 · 0 − 2 · 1 = 1

x4 = 1
x3 = 0
x2 = −1
x1 = 1

Thus, the solution is (1, −1, 0, 1).

In general, given a system of n linear equations in n unknowns, we will use opera-
tions I and III to try to obtain an equivalent system that is strictly triangular. (We will
see in the next section of the book that it is not possible to reduce the system to strictly
triangular form in the cases where the system does not have a unique solution.)

EXAMPLE 3 Solve the system
x1 + 2x2 + x3 = 3

3x1 − x2 − 3x3 = −1
2x1 + 3x2 + x3 = 4

Solution
Subtracting 3 times the first row from the second row yields

−7x2 − 6x3 = −10

Subtracting 2 times the first row from the third row yields

−x2 − x3 = −2

If the second and third equations of our system, respectively, are replaced by these new
equations, we obtain the equivalent system

x1 + 2x2 + x3 = 3
−7x2 − 6x3 = −10
−x2 − x3 = −2

If the third equation of this system is replaced by the sum of the third equation and − 1
7

times the second equation, we end up with the following strictly triangular system:

x1 + 2x2 + x3 = 3
−7x2 − 6x3 = −10

− 1
7 x3 = − 4

7
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Using back substitution, we get

x3 = 4, x2 = −2, x1 = 3

Let us look back at the system of equations in the last example. We can associate
with that system a 3 × 3 array of numbers whose entries are the coefficients of the xi ’s:

⎧
⎪⎪⎪⎪⎪⎩

1 2 1
3 −1 −3
2 3 1

⎫
⎪⎪⎪⎪⎪⎭

We will refer to this array as the coefficient matrix of the system. The term matrix
means simply a rectangular array of numbers. A matrix having m rows and n columns
is said to be m × n. A matrix is said to be square if it has the same number of rows and
columns—that is, if m = n.

If we attach to the coefficient matrix an additional column whose entries are the
numbers on the right-hand side of the system, we obtain the new matrix

⎧
⎪⎪⎪⎪⎪⎩

1 2 1 3
3 −1 −3 −1
2 3 1 4

⎫
⎪⎪⎪⎪⎪⎭

We will refer to this new matrix as the augmented matrix. In general, when an m × r
matrix B is attached to an m ×n matrix A in this way, the augmented matrix is denoted
by (A|B). Thus, if

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 · · · a1n
a21 a22 · · · a2n
...

am1 am2 · · · amn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, B =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b11 b12 · · · b1r
b21 b22 · · · b2r
...

bm1 bm2 · · · bmr

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

then

(A |B) =

⎧
⎪⎪⎪⎪⎪⎪⎩

a11 · · · a1n b11 · · · b1r
...

...
am1 · · · amn bm1 · · · bmr

⎫
⎪⎪⎪⎪⎪⎪⎭

With each system of equations, we may associate an augmented matrix of the form
⎧
⎪⎪⎪⎪⎪⎪⎩

a11 · · · a1n b1
...

...
am1 · · · amn bm

⎫
⎪⎪⎪⎪⎪⎪⎭

The system can be solved by performing operations on the augmented matrix. The xi ’s
are placeholders that can be omitted until the end of the computation. Corresponding
to the three operations used to obtain equivalent systems, the following row operations
may be applied to the augmented matrix:

Elementary Row Operations

I. Interchange two rows.
II. Multiply a row by a nonzero real number.

III. Replace a row by its sum with a multiple of another row.
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Returning to the example, we find that the first row is used to eliminate the ele-
ments in the first column of the remaining rows. We refer to the first row as the pivotal
row. For emphasis, the entries in the pivotal row are all in bold type and the entire row
is color shaded. The first nonzero entry in the pivotal row is called the pivot.

(pivot a11 = 1)
entries to be eliminated

a21 = 3 and a31 = 2

}
→

⎧
⎪⎪⎪⎪⎪⎩

1 2 1 3
3 −1 −3 −1
2 3 1 4

⎫
⎪⎪⎪⎪⎪⎭

← pivotal row

By using row operation III, 3 times the first row is subtracted from the second row and
2 times the first row is subtracted from the third. When this is done, we end up with
the matrix ⎧

⎪⎪⎪⎪⎪⎩
1 2 1 3
0 −7 −6 −10
0 −1 −1 −2

⎫
⎪⎪⎪⎪⎪⎭ ← pivotal row

At this step we choose the second row as our new pivotal row and apply row opera-
tion III to eliminate the last element in the second column. This time, the pivot is −7
and the quotient −1

−7 = 1
7 is the multiple of the pivotal row that is subtracted from the

third row. We end up with the matrix
⎧
⎪⎪⎪⎪⎪⎩

1 2 1 3
0 −7 −6 −10
0 0 − 1

7 − 4
7

⎫
⎪⎪⎪⎪⎪⎭

This is the augmented matrix for the strictly triangular system, which is equivalent to
the original system. The solution of the system is easily obtained by back substitution.

EXAMPLE 4 Solve the system
4 − x2 − x3 + x4 = 0

x1 + x2 + x3 + x4 = 6
2x1 + 4x2 + x3 − 2x4 = −1
3x1 + x2 − 2x3 + 2x4 = 3

Solution
The augmented matrix for this system is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 −1 −1 1 0
1 1 1 1 6
2 4 1 −2 −1
3 1 −2 2 3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Since it is not possible to eliminate any entries by using 0 as a pivot element, we will
use row operation I to interchange the first two rows of the augmented matrix. The new
first row will be the pivotal row and the pivot element will be 1:

(pivot a11 = 1)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
2 4 1 −2 −1
3 1 −2 2 3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

← pivot row
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Row operation III is then used twice to eliminate the two nonzero entries in the first
column:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 2 −1 −4 −13
0 −2 −5 −1 −15

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Next, the second row is used as the pivotal row to eliminate the entries in the second
column below the pivot element −1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 0 −3 −2 −13
0 0 −3 −3 −15

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Finally, the third row is used as the pivotal row to eliminate the last element in the third
column:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 0 −3 −2 −13
0 0 0 −1 −2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

This augmented matrix represents a strictly triangular system. Solving by back substi-
tution, we obtain the solution (2, −1, 3, 2).

In general, if an n ×n linear system can be reduced to strictly triangular form, then
it will have a unique solution that can be obtained by performing back substitution on
the triangular system. We can think of the reduction process as an algorithm involving
n − 1 steps. At the first step, a pivot element is chosen from among the nonzero entries
in the first column of the matrix. The row containing the pivot element is called the
pivotal row. We interchange rows (if necessary) so that the pivotal row is the new first
row. Multiples of the pivotal row are then subtracted from each of the remaining n − 1
rows so as to obtain 0’s in the first entries of rows 2 through n. At the second step,
a pivot element is chosen from the nonzero entries in column 2, rows 2 through n, of
the matrix. The row containing the pivot is then interchanged with the second row of
the matrix and is used as the new pivotal row. Multiples of the pivotal row are then
subtracted from the remaining n − 2 rows so as to eliminate all entries below the pivot
in the second column. The same procedure is repeated for columns 3 through n − 1.
Note that at the second step row 1 and column 1 remain unchanged, at the third step
the first two rows and first two columns remain unchanged, and so on. At each step,
the overall dimensions of the system are effectively reduced by 1 (see Figure 1.1.2).

If the elimination process can be carried out as described, we will arrive at an
equivalent strictly triangular system after n − 1 steps. However, the procedure will
break down if, at any step, all possible choices for a pivot element are equal to 0.
When this happens, the alternative is to reduce the system to certain special echelon,
or staircase-shaped, forms. These echelon forms will be studied in the next section.
They will also be used for m × n systems, where m ̸= n.
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Figure 1.1.2.

SECTION 1.1 EXERCISES
1. Use back substitution to solve each of the following

systems of equations:

(a) x1 − 3x2 = 2
2x2 = 6

(b) x1 + x2 + x3 = 8
2x2 + x3 = 5

3x3 = 9

(c) x1 + 2x2 + 2x3 + x4 = 5
3x2 + x3 − 2x4 = 1

−x3 + 2x4 = −1
4x4 = 4

(d) x1 + x2 + x3 + x4 + x5 = 5
2x2 + x3 − 2x4 + x5 = 1

4x3 + x4 − 2x5 = 1
x4 − 3x5 = 0

2x5 = 2

2. Write out the coefficient matrix for each of the sys-
tems in Exercise 1.

3. In each of the following systems, interpret each
equation as a line in the plane. For each system,
graph the lines and determine geometrically the
number of solutions.
(a) x1 + x2 = 4

x1 − x2 = 2
(b) x1 + 2x2 = 4

−2x1 − 4x2 = 4

(c) 2x1 − x2 = 3
−4x1 + 2x2 = −6

(d) x1 + x2 = 1
x1 − x2 = 1

−x1 + 3x2 = 3

4. Write an augmented matrix for each of the systems
in Exercise 3.

5. Write out the system of equations that corresponds
to each of the following augmented matrices:

(a)
⎧
⎪⎩3 2 8

1 5 7

⎫
⎪⎭ (b)

⎧
⎪⎩5 −2 1 3

2 3 −4 0

⎫
⎪⎭

(c)

⎧
⎪⎪⎪⎪⎪⎩

2 1 4 −1
4 −2 3 4
5 2 6 −1

⎫
⎪⎪⎪⎪⎪⎭

(d)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 −3 1 2 4
3 1 −5 6 5
1 1 2 4 8
5 1 3 −2 7

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

6. Solve each of the following systems:

(a) x1 − 2x2 = 5
3x1 + x2 = 1

(b) 2x1 + x2 = 8
4x1 − 3x2 = 6

(c) 4x1 + 3x2 = 4
2
3 x1 + 4x2 = 3

(d) x1 + 2x2 − x3 = 1
2x1 − x2 + x3 = 3
−x1 + 2x2 + 3x3 = 7

(e) 2x1 + x2 + 3x3 = 1
4x1 + 3x2 + 5x3 = 1
6x1 + 5x2 + 5x3 = −3

(f) 3x1 + 2x2 + x3 = 0
−2x1 + x2 − x3 = 2

2x1 − x2 + 2x3 = −1

(g) 1
3 x1 + 2

3 x2 + 2x3 = −1
x1 + 2x2 + 3

2 x3 = 3
2

1
2 x1 + 2x2 + 12

5 x3 = 1
10

(h) x2 + x3 + x4 = 0
3x1 + 3x3 − 4x4 = 7

x1 + x2 + x3 + 2x4 = 6
2x1 + 3x2 + x3 + 3x4 = 6



1.2 Row Echelon Form 11

7. The two systems

2x1 + x2 = 3
4x1 + 3x2 = 5

and
2x1 + x2 = −1
4x1 + 3x2 = 1

have the same coefficient matrix but different right-
hand sides. Solve both systems simultaneously by
eliminating the first entry in the second row of the
augmented matrix

⎧
⎪⎩2 1 3 −1

4 3 5 1

⎫
⎪⎭

and then performing back substitutions for each of
the columns corresponding to the right-hand sides.

8. Solve the two systems

x1 + 2x2 − 2x3 = 1
2x1 + 5x2 + x3 = 9

x1 + 3x2 + 4x3 = 9

x1 + 2x2 − 2x3 = 9
2x1 + 5x2 + x3 = 9

x1 + 3x2 + 4x3 = −2

by doing elimination on a 3 × 5 augmented matrix
and then performing two back substitutions.

9. Given a system of the form

−m1x1 + x2 = b1

−m2x1 + x2 = b2

where m1, m2, b1, and b2 are constants,
(a) Show that the system will have a unique solu-

tion if m1 ̸= m2.
(b) Show that if m1 = m2, then the system will be

consistent only if b1 = b2.
(c) Give a geometric interpretation of parts (a) and

(b).

10. Consider a system of the form

a11x1 + a12x2 = 0
a21x1 + a22x2 = 0

where a11, a12, a21, and a22 are constants. Explain
why a system of this form must be consistent.

11. Give a geometrical interpretation of a linear equa-
tion in three unknowns. Give a geometrical de-
scription of the possible solution sets for a 3 × 3
linear system.

1.2 Row Echelon Form

In Section 1 we learned a method for reducing an n×n linear system to strict triangular
form. However, this method will fail if, at any stage of the reduction process, all the
possible choices for a pivot element in a given column are 0.

EXAMPLE 1 Consider the system represented by the augmented matrix
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
−1 −1 0 0 1 −1
−2 −2 0 0 3 1

0 0 1 1 3 −1
1 1 2 2 4 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

← pivotal row

If row operation III is used to eliminate the nonzero entries in the last four rows of the
first column, the resulting matrix will be

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 2 2 5 3
0 0 1 1 3 −1
0 0 1 1 3 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

← pivotal row

At this stage, the reduction to strict triangular form breaks down. All four possible
choices for the pivot element in the second column are 0. How do we proceed from
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here? Since our goal is to simplify the system as much as possible, it seems natural to
move over to the third column and eliminate the last three entries:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 1 −1
0 0 0 0 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

In the fourth column, all the choices for a pivot element are 0; so again we move on to
the next column. If we use the third row as the pivotal row, the last two entries in the
fifth column are eliminated and we end up with the matrix

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 −4
0 0 0 0 0 −3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The coefficient matrix that we end up with is not in strict triangular form; it is in
staircase, or echelon, form. The horizontal and vertical line segments in the array for
the coefficient matrix indicate the structure of the staircase form. Note that the vertical
drop is 1 for each step, but the horizontal span for a step can be more than 1.

The equations represented by the last two rows are

0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −4
0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −3

Since there are no 5-tuples that could satisfy these equations, the system is inconsistent.

Suppose now that we change the right-hand side of the system in the last example
so as to obtain a consistent system. For example, if we start with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
−1 −1 0 0 1 −1
−2 −2 0 0 3 1

0 0 1 1 3 3
1 1 2 2 4 4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

then the reduction process will yield the echelon form augmented matrix
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 0
0 0 0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The last two equations of the reduced system will be satisfied for any 5-tuple. Thus,
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the solution set will be the set of all 5-tuples satisfying the first three equations,

x1 + x2 + x3 + x4 + x5 = 1
x3 + x4 + 2x5 = 0

x5 = 3
(1)

The variables corresponding to the first nonzero elements in each row of the reduced
matrix will be referred to as lead variables. Thus, x1, x3, and x5 are the lead variables.
The remaining variables corresponding to the columns skipped in the reduction process
will be referred to as free variables. Hence, x2 and x4 are the free variables. If we
transfer the free variables over to the right-hand side in (1), we obtain the system

x1 + x3 + x5 = 1 − x2 − x4

x3 + 2x5 = −x4

x5 = 3
(2)

System (2) is strictly triangular in the unknowns x1, x3, and x5. Thus, for each pair
of values assigned to x2 and x4, there will be a unique solution. For example, if x2 =
x4 = 0, then x5 = 3, x3 = −6, and x1 = 4, and hence (4, 0, −6, 0, 3) is a solution to
the system.

Definition A matrix is said to be in row echelon form

(i) If the first nonzero entry in each nonzero row is 1.
(ii) If row k does not consist entirely of zeros, the number of leading zero

entries in row k + 1 is greater than the number of leading zero entries in
row k.

(iii) If there are rows whose entries are all zero, they are below the rows having
nonzero entries.

EXAMPLE 2 The following matrices are in row echelon form:
⎧
⎪⎪⎪⎪⎪⎩

1 4 2
0 1 3
0 0 1

⎫
⎪⎪⎪⎪⎪⎭ ,

⎧
⎪⎪⎪⎪⎪⎩

1 2 3
0 0 1
0 0 0

⎫
⎪⎪⎪⎪⎪⎭ ,

⎧
⎪⎪⎪⎪⎪⎩

1 3 1 0
0 0 1 3
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎭

EXAMPLE 3 The following matrices are not in row echelon form:
⎧
⎪⎪⎪⎪⎪⎩

2 4 6
0 3 5
0 0 4

⎫
⎪⎪⎪⎪⎪⎭ ,

⎧
⎪⎩0 0 0

0 1 0

⎫
⎪⎭ ,

⎧
⎪⎩0 1

1 0

⎫
⎪⎭

The first matrix does not satisfy condition (i). The second matrix fails to satisfy condi-
tion (iii), and the third matrix fails to satisfy condition (ii).

Definition The process of using row operations I, II, and III to transform a linear system into
one whose augmented matrix is in row echelon form is called Gaussian elimina-
tion.
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Note that row operation II is necessary in order to scale the rows so that the leading
coefficients are all 1. If the row echelon form of the augmented matrix contains a row
of the form ⎧

⎩0 0 · · · 0 1
⎫
⎭

the system is inconsistent. Otherwise, the system will be consistent. If the system is
consistent and the nonzero rows of the row echelon form of the matrix form a strictly
triangular system, the system will have a unique solution.

Overdetermined Systems

A linear system is said to be overdetermined if there are more equations than un-
knowns. Overdetermined systems are usually (but not always) inconsistent.

EXAMPLE 4 Solve each of the following overdetermined systems:
(a) x1 + x2 = 1

x1 − x2 = 3
−x1 + 2x2 = −2

(b) x1 + 2x2 + x3 = 1
2x1 − x2 + x3 = 2
4x1 + 3x2 + 3x3 = 4
2x1 − x2 + 3x3 = 5

(c) x1 + 2x2 + x3 = 1
2x1 − x2 + x3 = 2
4x1 + 3x2 + 3x3 = 4
3x1 + x2 + 2x3 = 3

Solution
By now the reader should be familiar enough with the elimination process that we can
omit the intermediate steps in reducing each of these systems. Thus, we may write

System (a):

⎧
⎪⎪⎪⎪⎪⎩

1 1 1
1 −1 3

−1 2 −2

⎫
⎪⎪⎪⎪⎪⎭ →

⎧
⎪⎪⎪⎪⎪⎩

1 1 1
0 1 −1
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

It follows from the last row of the reduced matrix that the system is inconsistent. The
three equations in system (a) represent lines in the plane. The first two lines intersect
at the point (2, −1). However, the third line does not pass through this point. Thus,
there are no points that lie on all three lines (see Figure 1.2.1).

System (b):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1
2 −1 1 2
4 3 3 4
2 −1 3 5

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1
0 1 1

5 0
0 0 1 3

2

0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Using back substitution, we see that system (b) has exactly one solution:
(0.1, −0.3, 1.5). The solution is unique because the nonzero rows of the reduced
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x2

x12

–1

Figure 1.2.1.

matrix form a strictly triangular system.

System (c):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1
2 −1 1 2
4 3 3 4
3 1 2 3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1
0 1 1

5 0
0 0 0 0
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Solving for x2 and x1 in terms of x3, we obtain

x2 = −0.2x3

x1 = 1 − 2x2 − x3 = 1 − 0.6x3

It follows that the solution set is the set of all ordered triples of the form
(1 − 0.6α, −0.2α, α), where α is a real number. This system is consistent and has
infinitely many solutions because of the free variable x3.

Underdetermined Systems
A system of m linear equations in n unknowns is said to be underdetermined if there are
fewer equations than unknowns (m < n). Although it is possible for underdetermined
systems to be inconsistent, they are usually consistent with infinitely many solutions.
It is not possible for an underdetermined system to have a unique solution. The reason
for this is that any row echelon form of the coefficient matrix will involve r ≤ m
nonzero rows. Thus, there will be r lead variables and n − r free variables, where
n−r ≥ n−m > 0. If the system is consistent, we can assign the free variables arbitrary
values and solve for the lead variables. Therefore, a consistent underdetermined system
will have infinitely many solutions.

EXAMPLE 5 Solve the following underdetermined systems:
(a) x1 + 2x2 + x3 = 1

2x1 + 4x2 + 2x3 = 3
(b) x1 + x2 + x3 + x4 + x5 = 2

x1 + x2 + x3 + 2x4 + 2x5 = 3
x1 + x2 + x3 + 2x4 + 3x5 = 2
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Solution

System (a):
⎧
⎪⎩1 2 1 1

2 4 2 3

⎫
⎪⎭ →

⎧
⎪⎩1 2 1 1

0 0 0 1

⎫
⎪⎭

Clearly, system (a) is inconsistent. We can think of the two equations in system (a) and
(b) as representing planes in 3-space. Usually, two planes intersect in a line; however,
in this case the planes are parallel.

System (b):

⎧
⎪⎪⎪⎪⎪⎩

1 1 1 1 1 2
1 1 1 2 2 3
1 1 1 2 3 2

⎫
⎪⎪⎪⎪⎪⎭ →

⎧
⎪⎪⎪⎪⎪⎩

1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 0 1 −1

⎫
⎪⎪⎪⎪⎪⎭

System (b) is consistent, and since there are two free variables, the system will have
infinitely many solutions. In cases such as these it is convenient to continue the elimi-
nation process and simplify the form of the reduced matrix even further. We continue
eliminating until all the terms above each leading 1 are eliminated. Thus, for sys-
tem (b), we will continue and eliminate the first two entries in the fifth column and
then the first element in the fourth column, as follows:

⎧
⎪⎪⎪⎪⎪⎩

1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 0 1 −1

⎫
⎪⎪⎪⎪⎪⎭ →

⎧
⎪⎪⎪⎪⎪⎩

1 1 1 1 0 3
0 0 0 1 0 2
0 0 0 0 1 −1

⎫
⎪⎪⎪⎪⎪⎭

→
⎧
⎪⎪⎪⎪⎪⎩

1 1 1 0 0 1
0 0 0 1 0 2
0 0 0 0 1 −1

⎫
⎪⎪⎪⎪⎪⎭

If we put the free variables over on the right-hand side, it follows that

x1 = 1 − x2 − x3

x4 = 2
x5 = −1

Thus, for any real numbers α and β, the 5-tuple

(1 − α − β, α, β, 2, −1)

is a solution of the system.

In the case where the row echelon form of a consistent system has free variables,
the standard procedure is to continue the elimination process until all the entries above
each leading 1 have been eliminated, as in system (b) of the previous example. The
resulting reduced matrix is said to be in reduced row echelon form.

Reduced Row Echelon Form

Definition A matrix is said to be in reduced row echelon form if

(i) The matrix is in row echelon form.
(ii) The first nonzero entry in each row is the only nonzero entry in its column.
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The following matrices are in reduced row echelon form:

⎧
⎪⎩1 0

0 1

⎫
⎪⎭ ,

⎧
⎪⎪⎪⎪⎪⎩

1 0 0 3
0 1 0 2
0 0 1 1

⎫
⎪⎪⎪⎪⎪⎭ ,

⎧
⎪⎪⎪⎪⎪⎩

0 1 2 0
0 0 0 1
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎭ ,

⎧
⎪⎪⎪⎪⎪⎩

1 2 0 1
0 0 1 3
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎭

The process of using elementary row operations to transform a matrix into reduced row
echelon form is called Gauss–Jordan reduction.

EXAMPLE 6 Use Gauss–Jordan reduction to solve the system

−x1 + x2 − x3 + 3x4 = 0
3x1 + x2 − x3 − x4 = 0
2x1 − x2 − 2x3 − x4 = 0

Solution

⎧
⎪⎪⎪⎪⎪⎩

−1 1 −1 3 0
3 1 −1 −1 0
2 −1 −2 −1 0

⎫
⎪⎪⎪⎪⎪⎭ →

⎧
⎪⎪⎪⎪⎪⎩

−1 1 −1 3 0
0 4 −4 8 0
0 1 −4 5 0

⎫
⎪⎪⎪⎪⎪⎭

→
⎧
⎪⎪⎪⎪⎪⎩

−1 1 −1 3 0
0 4 −4 8 0
0 0 −3 3 0

⎫
⎪⎪⎪⎪⎪⎭ →

⎧
⎪⎪⎪⎪⎪⎩

1 −1 1 −3 0
0 1 −1 2 0
0 0 1 −1 0

⎫
⎪⎪⎪⎪⎪⎭

row
echelon
form

→
⎧
⎪⎪⎪⎪⎪⎩

1 −1 0 −2 0
0 1 0 1 0
0 0 1 −1 0

⎫
⎪⎪⎪⎪⎪⎭ →

⎧
⎪⎪⎪⎪⎪⎩

1 0 0 −1 0
0 1 0 1 0
0 0 1 −1 0

⎫
⎪⎪⎪⎪⎪⎭

reduced
row echelon
form

If we set x4 equal to any real number α, then x1 = α, x2 = −α, and x3 = α. Thus, all
ordered 4-tuples of the form (α, −α, α, α) are solutions of the system.

APPLICATION 1 Traffic Flow
In the downtown section of a certain city, two sets of one-way streets intersect as shown
in Figure 1.2.2. The average hourly volume of traffic entering and leaving this section
during rush hour is given in the diagram. Determine the amount of traffic between each
of the four intersections.

Solution
At each intersection, the number of automobiles entering must be the same as the
number leaving. For example, at intersection A, the number of automobiles entering is
x1 + 450 and the number leaving is x2 + 610. Thus,

x1 + 450 = x2 + 610 (intersection A)
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450
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600520

480 390
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x2

x3

x4

Figure 1.2.2.

Similarly,
x2 + 520 = x3 + 480 (intersection B)
x3 + 390 = x4 + 600 (intersection C)
x4 + 640 = x1 + 310 (intersection D)

The augmented matrix for the system is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 0 0 160
0 1 −1 0 −40
0 0 1 −1 210

−1 0 0 1 −330

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

The reduced row echelon form for this matrix is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 −1 330
0 1 0 −1 170
0 0 1 −1 210
0 0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

The system is consistent, and since there is a free variable, there are many possible
solutions. The traffic flow diagram does not give enough information to determine x1,
x2, x3, and x4 uniquely. If the amount of traffic were known between any pair of inter-
sections, the traffic on the remaining arteries could easily be calculated. For example,
if the amount of traffic between intersections C and D averages 200 automobiles per
hour, then x4 = 200. Using this value, we can then solve for x1, x2, and x3:

x1 = x4 + 330 = 530
x2 = x4 + 170 = 370
x3 = x4 + 210 = 410
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APPLICATION 2 Electrical Networks
In an electrical network, it is possible to determine the amount of current in each branch
in terms of the resistances and the voltages. An example of a typical circuit is given in
Figure 1.2.3.

i3

A B

9 volts

8 volts

4 ohms
2 ohms

2 ohms3 ohms

i1

i2

Figure 1.2.3.

The symbols in the figure have the following meanings:

A path along which current may flow

An electrical source

A resistor

The electrical source is usually a battery (with a voltage measured in volts) that drives
a charge and produces a current. The current will flow out from the terminal of the
battery that is represented by the longer vertical line. The resistances are measured in
ohms. The letters represent nodes and the i’s represent the currents between the nodes.
The currents are measured in amperes. The arrows show the direction of the currents.
If, however, one of the currents, say i2, turns out to be negative, this would mean that
the current along that branch is in the direction opposite that of the arrow.

To determine the currents, the following rules are used:

Kirchhoff’s Laws
1. At every node, the sum of the incoming currents equals the sum of the outgoing

currents.
2. Around every closed loop, the algebraic sum of the voltage gains must equal

the algebraic sum of the voltage drops.

The voltage drops E for each resistor are given by Ohm’s law,

E = iR

where i represents the current in amperes and R the resistance in ohms.
Let us find the currents in the network pictured in Figure 1.2.3. From the first law,

we have
i1 − i2 + i3 = 0

−i1 + i2 − i3 = 0
(node A)
(node B)
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By the second law,
4i1 + 2i2 = 8
2i2 + 5i3 = 9

(top loop)
(bottom loop)

The network can be represented by the augmented matrix
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 1 0
−1 1 −1 0

4 2 0 8
0 2 5 9

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

This matrix is easily reduced to row echelon form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 1 0
0 1 − 2

3
4
3

0 0 1 1
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Solving by back substitution, we see that i1 = 1, i2 = 2, and i3 = 1.

Homogeneous Systems
A system of linear equations is said to be homogeneous if the constants on the right-
hand side are all zero. Homogeneous systems are always consistent. It is a trivial
matter to find a solution; just set all the variables equal to zero. Thus, if an m × n ho-
mogeneous system has a unique solution, it must be the trivial solution (0, 0, . . . , 0).
The homogeneous system in Example 6 consisted of m = 3 equations in n = 4 un-
knowns. In the case that n > m, there will always be free variables and, consequently,
additional nontrivial solutions. This result has essentially been proved in our discussion
of underdetermined systems, but, because of its importance, we state it as a theorem.

Theorem 1.2.1 An m × n homogeneous system of linear equations has a nontrivial solution if n > m.

Proof A homogeneous system is always consistent. The row echelon form of the matrix can
have at most m nonzero rows. Thus there are at most m lead variables. Since there are
n variables altogether and n > m, there must be some free variables. The free variables
can be assigned arbitrary values. For each assignment of values to the free variables,
there is a solution of the system.

APPLICATION 3 Chemical Equations
In the process of photosynthesis, plants use radiant energy from sunlight to convert
carbon dioxide (CO2) and water (H2O) into glucose (C6H12O6) and oxygen (O2). The
chemical equation of the reaction is of the form

x1CO2 + x2H2O → x3O2 + x4C6H12O6

To balance the equation, we must choose x1, x2, x3, and x4 so that the numbers of
carbon, hydrogen, and oxygen atoms are the same on each side of the equation. Since
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carbon dioxide contains one carbon atom and glucose contains six, to balance the car-
bon atoms we require that

x1 = 6x4

Similarly, to balance the oxygen, we need

2x1 + x2 = 2x3 + 6x4

and finally, to balance the hydrogen, we need

2x2 = 12x4

If we move all the unknowns to the left-hand sides of the three equations, we end up
with the homogeneous linear system

x1 − 6x4 = 0
2x1 + x2 − 2x3 − 6x4 = 0

2x2 − 12x4 = 0

By Theorem 1.2.1, the system has nontrivial solutions. To balance the equation, we
must find solutions (x1, x2, x3, x4) whose entries are nonnegative integers. If we solve
the system in the usual way, we see that x4 is a free variable and

x1 = x2 = x3 = 6x4

In particular, if we take x4 = 1, then x1 = x2 = x3 = 6 and the equation takes the form

6CO2 + 6H2O → 6O2 + C6H12O6

APPLICATION 4 Economic Models for Exchange of Goods
Suppose that in a primitive society the members of a tribe are engaged in three oc-
cupations: farming, manufacturing of tools and utensils, and weaving and sewing of
clothing. Assume that initially the tribe has no monetary system and that all goods and
services are bartered. Let us denote the three groups by F , M , and C , and suppose that
the directed graph in Figure 1.2.4 indicates how the bartering system works in practice.

The figure indicates that the farmers keep half of their produce and give one-fourth
of their produce to the manufacturers and one-fourth to the clothing producers. The
manufacturers divide the goods evenly among the three groups, one-third going to
each group. The group producing clothes gives half of the clothes to the farmers and
divides the other half evenly between the manufacturers and themselves. The result is
summarized in the following table:

F M C

F 1
2

1
3

1
2

M 1
4

1
3

1
4

C 1
4

1
3

1
4
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M C

F

1
2

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
2

Figure 1.2.4.

The first column of the table indicates the distribution of the goods produced by the
farmers, the second column indicates the distribution of the manufactured goods, and
the third column indicates the distribution of the clothing.

As the size of the tribe grows, the system of bartering becomes too cumbersome
and, consequently, the tribe decides to institute a monetary system of exchange. For
this simple economic system, we assume that there will be no accumulation of capital
or debt and that the prices for each of the three types of goods will reflect the values of
the existing bartering system. The question is how to assign values to the three types
of goods that fairly represent the current bartering system.

The problem can be turned into a linear system of equations using an economic
model that was originally developed by the Nobel Prize-winning economist Wassily
Leontief. For this model, we will let x1 be the monetary value of the goods produced
by the farmers, x2 be the value of the manufactured goods, and x3 be the value of all
the clothing produced. According to the first row of the table, the value of the goods
received by the farmers amounts to half the value of the farm goods produced, plus
one-third the value of the manufactured products and half the value of the clothing
goods. Thus, the total value of goods received by the farmer is 1

2 x1 + 1
3 x2 + 1

2 x3. If
the system is fair, the total value of goods received by the farmers should equal x1, the
total value of the farm goods produced. Hence, we have the linear equation

1
2

x1 + 1
3

x2 + 1
2

x3 = x1

Using the second row of the table and equating the value of the goods produced and
received by the manufacturers, we obtain a second equation:

1
4

x1 + 1
3

x2 + 1
4

x3 = x2
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Finally, using the third row of the table, we get

1
4

x1 + 1
3

x2 + 1
4

x3 = x3

These equations can be rewritten as a homogeneous system:

− 1
2 x1 + 1

3 x2 + 1
2 x3 = 0

1
4 x1 − 2

3 x2 + 1
4 x3 = 0

1
4 x1 + 1

3 x2 − 3
4 x3 = 0

The reduced row echelon form of the augmented matrix for this system is
⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 − 5
3 0

0 1 −1 0
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

There is one free variable: x3. Setting x3 = 3, we obtain the solution (5, 3, 3), and the
general solution consists of all multiples of (5, 3, 3). It follows that the variables x1,
x2, and x3 should be assigned values in the ratio

x1 : x2 : x3 = 5 : 3 : 3

This simple system is an example of the closed Leontief input–output model.
Leontief’s models are fundamental to our understanding of economic systems. Mod-
ern applications would involve thousands of industries and lead to very large linear
systems. The Leontief models will be studied in greater detail later, in Section 8 of
Chapter 6.

SECTION 1.2 EXERCISES
1. Which of the matrices that follow are in row eche-

lon form? Which are in reduced row echelon form?

(a)
⎧
⎪⎩1 2 3 4

0 0 1 2

⎫
⎪⎭ (b)

⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 0 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

(c)

⎧
⎪⎪⎪⎪⎪⎩

1 3 0
0 0 1
0 0 0

⎫
⎪⎪⎪⎪⎪⎭ (d)

⎧
⎪⎪⎪⎪⎪⎩

0 1
0 0
0 0

⎫
⎪⎪⎪⎪⎪⎭

(e)

⎧
⎪⎪⎪⎪⎪⎩

1 1 1
0 1 2
0 0 3

⎫
⎪⎪⎪⎪⎪⎭ (f)

⎧
⎪⎪⎪⎪⎪⎩

1 4 6
0 0 1
0 1 3

⎫
⎪⎪⎪⎪⎪⎭

(g)

⎧
⎪⎪⎪⎪⎪⎩

1 0 0 1 2
0 1 0 2 4
0 0 1 3 6

⎫
⎪⎪⎪⎪⎪⎭ (h)

⎧
⎪⎪⎪⎪⎪⎩

0 1 3 4
0 0 1 3
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎭

2. The augmented matrices that follow are in row ech-
elon form. For each case, indicate whether the cor-
responding linear system is consistent. If the sys-
tem has a unique solution, find it.

(a)

⎧
⎪⎪⎪⎪⎪⎩

1 2 4
0 1 3
0 0 1

⎫
⎪⎪⎪⎪⎪⎭ (b)

⎧
⎪⎪⎪⎪⎪⎩

1 3 1
0 1 −1
0 0 0

⎫
⎪⎪⎪⎪⎪⎭

(c)

⎧
⎪⎪⎪⎪⎪⎩

1 −2 4 1
0 0 1 3
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎭

(d)

⎧
⎪⎪⎪⎪⎪⎩

1 −2 2 −2
0 1 −1 3
0 0 1 2

⎫
⎪⎪⎪⎪⎪⎭

(e)

⎧
⎪⎪⎪⎪⎪⎩

1 3 2 −2
0 0 1 4
0 0 0 1

⎫
⎪⎪⎪⎪⎪⎭
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(f)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 3 8
0 1 2 7
0 0 1 2
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

3. The augmented matrices that follow are in reduced
row echelon form. In each case, find the solution
set of the corresponding linear system.

(a)

⎧
⎪⎪⎪⎪⎪⎩

1 0 0 −2
0 1 0 5
0 0 1 3

⎫
⎪⎪⎪⎪⎪⎭ (b)

⎧
⎪⎪⎪⎪⎪⎩

1 4 0 2
0 0 1 3
0 0 0 1

⎫
⎪⎪⎪⎪⎪⎭

(c)

⎧
⎪⎪⎪⎪⎪⎩

1 −3 0 2
0 0 1 −2
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎭

(d)
⎧
⎪⎩1 2 0 1 5

0 0 1 3 4

⎫
⎪⎭

(e)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 5 −2 0 3
0 0 0 1 6
0 0 0 0 0
0 0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(f)

⎧
⎪⎪⎪⎪⎪⎩

0 1 0 2
0 0 1 −1
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎭

4. For each of the systems in Exercise 3, make a list
of the lead variables and a second list of the free
variables.

5. For each of the systems of equations that follow,
use Gaussian elimination to obtain an equivalent
system whose coefficient matrix is in row echelon
form. Indicate whether the system is consistent. If
the system is consistent and involves no free vari-
ables, use back substitution to find the unique solu-
tion. If the system is consistent and there are free
variables, transform it to reduced row echelon form
and find all solutions.
(a) x1 − 2x2 = 3

2x1 − x2 = 9
(b) 2x1 − 3x2 = 5

−4x1 + 6x2 = 8

(c) x1 + x2 = 0
2x1 + 3x2 = 0
3x1 − 2x2 = 0

(d) 3x1 + 2x2 − x3 = 4
x1 − 2x2 + 2x3 = 1

11x1 + 2x2 + x3 = 14

(e) 2x1 + 3x2 + x3 = 1
x1 + x2 + x3 = 3

3x1 + 4x2 + 2x3 = 4

(f) x1 − x2 + 2x3 = 4
2x1 + 3x2 − x3 = 1
7x1 + 3x2 + 4x3 = 7

(g) x1 + x2 + x3 + x4 = 0
2x1 + 3x2 − x3 − x4 = 2
3x1 + 2x2 + x3 + x4 = 5
3x1 + 6x2 − x3 − x4 = 4

(h) x1 − 2x2 = 3
2x1 + x2 = 1

−5x1 + 8x2 = 4

(i) −x1 + 2x2 − x3 = 2
−2x1 + 2x2 + x3 = 4

3x1 + 2x2 + 2x3 = 5
−3x1 + 8x2 + 5x3 = 17

(j) x1 + 2x2 − 3x3 + x4 = 1
−x1 − x2 + 4x3 − x4 = 6

−2x1 − 4x2 + 7x3 − x4 = 1

(k) x1 + 3x2 + x3 + x4 = 3
2x1 − 2x2 + x3 + 2x4 = 8

x1 − 5x2 + x4 = 5

(l) x1 − 3x2 + x3 = 1
2x1 + x2 − x3 = 2

x1 + 4x2 − 2x3 = 1
5x1 − 8x2 + 2x3 = 5

6. Use Gauss–Jordan reduction to solve each of the
following systems:

(a) x1 + x2 = −1
4x1 − 3x2 = 3

(b) x1 + 3x2 + x3 + x4 = 3
2x1 − 2x2 + x3 + 2x4 = 8
3x1 + x2 + 2x3 − x4 = −1

(c) x1 + x2 + x3 = 0
x1 − x2 − x3 = 0

(d) x1 + x2 + x3 + x4 = 0
2x1 + x2 − x3 + 3x4 = 0

x1 − 2x2 + x3 + x4 = 0

7. Give a geometric explanation of why a homoge-
neous linear system consisting of two equations in
three unknowns must have infinitely many solu-
tions. What are the possible numbers of solutions
of a nonhomogeneous 2 × 3 linear system? Give a
geometric explanation of your answer.
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8. Consider a linear system whose augmented matrix
is of the form

⎧
⎪⎪⎪⎪⎪⎩

1 2 1 1
−1 4 3 2

2 −2 a 3

⎫
⎪⎪⎪⎪⎪⎭

For what values of a will the system have a unique
solution?

9. Consider a linear system whose augmented matrix
is of the form

⎧
⎪⎪⎪⎪⎪⎩

1 2 1 0
2 5 3 0

−1 1 β 0

⎫
⎪⎪⎪⎪⎪⎭

(a) Is it possible for the system to be inconsistent?
Explain.

(b) For what values of β will the system have in-
finitely many solutions?

10. Consider a linear system whose augmented matrix
is of the form

⎧
⎪⎪⎪⎪⎪⎩

1 1 3 2
1 2 4 3
1 3 a b

⎫
⎪⎪⎪⎪⎪⎭

(a) For what values of a and b will the system have
infinitely many solutions?

(b) For what values of a and b will the system be
inconsistent?

11. Given the linear systems

(a) x1 + 2x2 = 2
3x1 + 7x2 = 8

(b) x1 + 2x2 = 1
3x1 + 7x2 = 7

solve both systems by incorporating the right-hand
sides into a 2 × 2 matrix B and computing the re-
duced row echelon form of

(A |B) =
⎧
⎪⎩1 2 2 1

3 7 8 7

⎫
⎪⎭

12. Given the linear systems

(a) x1 + 2x2 + x3 = 2
−x1 − x2 + 2x3 = 3
2x1 + 3x2 = 0

(b) x1 + 2x2 + x3 = −1
−x1 − x2 + 2x3 = 2
2x1 + 3x2 = −2

solve both systems by computing the row echelon
form of an augmented matrix (A |B) and perform-
ing back substitution twice.

13. Given a homogeneous system of linear equations,
if the system is overdetermined, what are the possi-
bilities as to the number of solutions? Explain.

14. Given a nonhomogeneous system of linear equa-
tions, if the system is underdetermined, what are
the possibilities as to the number of solutions? Ex-
plain.

15. Determine the values of x1, x2, x3, and x4 for the
following traffic flow diagram:

x4

x1

x2

x3

380

430 450

400540

420 470

420

16. Consider the traffic flow diagram that follows,
where a1, a2, a3, a4, b1, b2, b3, b4 are fixed positive
integers. Set up a linear system in the unknowns x1,
x2, x3, x4 and show that the system will be consis-
tent if and only if

a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4

What can you conclude about the number of auto-
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mobiles entering and leaving the traffic network?

x1 a4b1

x4

a3

b4

x3a2 b3

x2

a1

b2

17. Let (c1, c2) be a solution of the 2 × 2 system

a11x1 + a12x2 = 0
a21x1 + a22x2 = 0

Show that, for any real number α, the ordered pair
(αc1, αc2) is also a solution.

18. In Application 3, the solution (6, 6, 6, 1) was ob-
tained by setting the free variable x4 = 1.
(a) Determine the solution corresponding to x4 =

0. What information, if any, does this solution
give about the chemical reaction? Is the term
“trivial solution” appropriate in this case?

(b) Choose some other values of x4, such as 2, 4, or
5, and determine the corresponding solutions.
How are these nontrivial solutions related?

19. Liquid benzene burns in the atmosphere. If a cold
object is placed directly over the benzene, water
will condense on the object and a deposit of soot
(carbon) will also form on the object. The chemi-
cal equation for this reaction is of the form

x1C6H6 + x2O2 → x3C + x4H2O

Determine values of x1, x2, x3, and x4 to balance
the equation.

20. Nitric acid is prepared commercially by a series of
three chemical reactions. In the first reaction, nitro-
gen (N2) is combined with hydrogen (H2) to form
ammonia (NH3). Next, the ammonia is combined
with oxygen (O2) to form nitrogen dioxide (NO2)
and water. Finally, the NO2 reacts with some of the
water to form nitric acid (HNO3) and nitric oxide
(NO). The amounts of each of the components of

these reactions are measured in moles (a standard
unit of measurement for chemical reactions). How
many moles of nitrogen, hydrogen, and oxygen are
necessary to produce 8 moles of nitric acid?

21. In Application 4, determine the relative values of
x1, x2, and x3 if the distribution of goods is as de-
scribed in the following table:

F M C

F 1
3

1
3

1
3

M 1
3

1
2

1
6

C 1
3

1
6

1
2

22. Determine the amount of each current for the fol-
lowing networks:
(a)

A B

3 ohms

16 volts

2 ohms
2 ohms

i1

i2

i3

(b)

A B

2 ohms

20 volts 4 ohms

2 ohms i1

i2

i3

(c)

A B

4 ohms

8 volts

4 ohms

5 ohms

2 ohms

C D

i1

i4i3

10 volts
i6

i2

i5
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1.3 Matrix Arithmetic

In this section, we introduce the standard notations used for matrices and vectors and
define arithmetic operations (addition, subtraction, and multiplication) with matrices.
We will also introduce two additional operations: scalar multiplication and transposi-
tion. We will see how to represent linear systems as equations involving matrices and
vectors and then derive a theorem characterizing when a linear system is consistent.

The entries of a matrix are called scalars. They are usually either real or complex
numbers. For the most part, we will be working with matrices whose entries are real
numbers. Throughout the first five chapters of the book, the reader may assume that
the term scalar refers to a real number. However, in Chapter 6 there will be occasions
when we will use the set of complex numbers as our scalar field.

Matrix Notation

If we wish to refer to matrices without specifically writing out all their entries, we will
use capital letters A, B, C , and so on. In general, ai j will denote the entry of the matrix
A that is in the i th row and the j th column. We will refer to this entry as the (i, j)
entry of A. Thus, if A is an m × n matrix, then

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 · · · a1n
a21 a22 · · · a2n
...

am1 am2 · · · amn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We will sometimes shorten this to A = (ai j ). Similarly, a matrix B may be referred to
as (bi j ), a matrix C as (ci j ), and so on.

Vectors

Matrices that have only one row or one column are of special interest, since they are
used to represent solutions of linear systems. A solution of a system of m linear equa-
tions in n unknowns is an n-tuple of real numbers. We will refer to an n-tuple of real
numbers as a vector. If an n-tuple is represented in terms of a 1 × n matrix, then we
will refer to it as a row vector. Alternatively, if the n-tuple is represented by an n × 1
matrix, then we will refer to it as a column vector. For example, the solution of the
linear system

x1 + x2 = 3
x1 − x2 = 1

can be represented by the row vector (2, 1) or the column vector
⎧
⎪⎩2

1

⎫
⎪⎭.

In working with matrix equations, it is generally more convenient to represent the
solutions in terms of column vectors (n × 1 matrices). The set of all n × 1 matrices of
real numbers is called Euclidean n-space and is usually denoted by Rn . Since we will
be working almost exclusively with column vectors in the future, we will generally
omit the word “column” and refer to the elements of Rn as simply vectors, rather than
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as column vectors. The standard notation for a column vector is a boldface lowercase
letter, as in

x =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
x2
...

xn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

For row vectors, there is no universal standard notation. In this book, we will
represent both row and column vectors with boldface lowercase letters, and to distin-
guish a row vector from a column vector we will place a horizontal arrow above the
letter. Thus, the horizontal arrow indicates a horizontal array (row vector) rather than
a vertical array (column vector).

For example,

x⃗ = (x1, x2, x3, x4) and y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1
y2
y3
y4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

are row and column vectors with four entries each.
Given an m × n matrix A, it is often necessary to refer to a particular row or

column. The standard notation for the j th column vector of A is a j . There is no
universally accepted standard notation for the i th row vector of a matrix A. In this
book, since we use horizontal arrows to indicate row vectors, we denote the i th row
vector of A by a⃗i .

If A is an m × n matrix, then the row vectors of A are given by

a⃗i = (ai1, ai2, . . . , ain) i = 1, . . . , m

and the column vectors are given by

a j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 j
a2 j
...

amj

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

j = 1, . . . , n

The matrix A can be represented in terms of either its column vectors or its row vectors:

A = (a1, a2, . . . , an) or A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a⃗1
a⃗2
...

a⃗m

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Similarly, if B is an n × r matrix, then

B = (b1, b2, . . . , br ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b⃗1

b⃗2
...

b⃗n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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EXAMPLE 1 If

A =
⎧
⎪⎩ 3 2 5

−1 8 4

⎫
⎪⎭

then

a1 =
⎧
⎪⎩ 3

−1

⎫
⎪⎭ , a2 =

⎧
⎪⎩2

8

⎫
⎪⎭ , a3 =

⎧
⎪⎩5

4

⎫
⎪⎭

and

a⃗1 = (3, 2, 5), a⃗2 = (−1, 8, 4)

Equality

For two matrices to be equal, they must have the same dimensions and their corre-
sponding entries must agree.

Definition Two m × n matrices A and B are said to be equal if ai j = bi j for each i and j .

Scalar Multiplication

If A is a matrix and α is a scalar, then αA is the matrix formed by multiplying each of
the entries of A by α.

Definition If A is an m × n matrix and α is a scalar, then αA is the m × n matrix whose (i, j)
entry is αai j .

For example, if

A =
⎧
⎪⎩4 8 2

6 8 10

⎫
⎪⎭

then
1
2

A =
⎧
⎪⎩2 4 1

3 4 5

⎫
⎪⎭ and 3A =

⎧
⎪⎩12 24 6

18 24 30

⎫
⎪⎭

Matrix Addition

Two matrices with the same dimensions can be added by adding their corresponding
entries.

Definition If A = (ai j ) and B = (bi j ) are both m × n matrices, then the sum A + B is the
m × n matrix whose (i, j) entry is ai j + bi j for each ordered pair (i, j).
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For example,
⎧
⎪⎩3 2 1

4 5 6

⎫
⎪⎭ +

⎧
⎪⎩2 2 2

1 2 3

⎫
⎪⎭ =

⎧
⎪⎩5 4 3

5 7 9

⎫
⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

2
1
8

⎫
⎪⎪⎪⎪⎪⎭ +

⎧
⎪⎪⎪⎪⎪⎩

−8
3
2

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

−6
4

10

⎫
⎪⎪⎪⎪⎪⎭

If we define A − B to be A + (−1)B, then it turns out that A − B is formed by
subtracting the corresponding entry of B from each entry of A. Thus,

⎧
⎪⎩2 4

3 1

⎫
⎪⎭ −

⎧
⎪⎩4 5

2 3

⎫
⎪⎭ =

⎧
⎪⎩2 4

3 1

⎫
⎪⎭ + (−1)

⎧
⎪⎩4 5

2 3

⎫
⎪⎭

=
⎧
⎪⎩2 4

3 1

⎫
⎪⎭ +

⎧
⎪⎩−4 −5

−2 −3

⎫
⎪⎭

=
⎧
⎪⎩2 − 4 4 − 5

3 − 2 1 − 3

⎫
⎪⎭

=
⎧
⎪⎩−2 −1

1 −2

⎫
⎪⎭

If O represents the matrix, with the same dimensions as A, whose entries are all 0,
then

A + O = O + A = A

We will refer to O as the zero matrix. It acts as an additive identity on the set of all
m × n matrices. Furthermore, each m × n matrix A has an additive inverse. Indeed,

A + (−1)A = O = (−1)A + A

It is customary to denote the additive inverse by −A. Thus,

−A = (−1)A

Matrix Multiplication and Linear Systems
We have yet to define the most important operation: the multiplication of two matrices.
Much of the motivation behind the definition comes from the applications to linear
systems of equations. If we have a system of one linear equation in one unknown, it
can be written in the form

ax = b (2)

We generally think of a, x , and b as being scalars; however, they could also be treated
as 1 × 1 matrices. Our goal now is to generalize equation (2) so that we can represent
an m × n linear system by a single matrix equation of the form

Ax = b

where A is an m × n matrix, x is an unknown vector in Rn , and b is in Rm . We consider
first the case of one equation in several unknowns.
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Case 1. One Equation in Several Unknowns
Let us begin by examining the case of one equation in several variables. Consider, for
example, the equation

3x1 + 2x2 + 5x3 = 4

If we set

A =
⎧
⎩3 2 5

⎫
⎭ and x =

⎧
⎪⎪⎪⎪⎪⎩

x1
x2
x3

⎫
⎪⎪⎪⎪⎪⎭

and define the product Ax by

Ax =
⎧
⎩3 2 5

⎫
⎭

⎧
⎪⎪⎪⎪⎪⎩

x1
x2
x3

⎫
⎪⎪⎪⎪⎪⎭ = 3x1 + 2x2 + 5x3

then the equation 3x1 + 2x2 + 5x3 = 4 can be written as the matrix equation

Ax = 4

For a linear equation with n unknowns of the form

a1x1 + a2x2 + · · · + anxn = b

if we let

A =
⎧
⎩a1 a2 . . . an

⎫
⎭ and x =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
x2
...

xn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and define the product Ax by

Ax = a1x1 + a2x2 + · · · + anxn

then the system can be written in the form Ax = b.
For example, if

A =
⎧
⎩2 1 −3 4

⎫
⎭ and x =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2
1

−2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

then
Ax = 2 · 3 + 1 · 2 + (−3) · 1 + 4 · (−2) = −3

Note that the result of multiplying a row vector on the left by a column vector on the
right is a scalar. Consequently, this type of multiplication is often referred to as a scalar
product.
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Case 2. M Equations in N Unknowns
Consider now an m × n linear system

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

(3)

It is desirable to write the system (3) in a form similar to (2)—that is, as a matrix
equation

Ax = b (4)

where A = (ai j ) is known, x is an n × 1 matrix of unknowns, and b is an m × 1 matrix
representing the right-hand side of the system. Thus, if we set

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 · · · a1n
a21 a22 · · · a2n
...

am1 am2 · · · amn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, x =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
x2
...

xn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1
b2
...

bm

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and define the product Ax by

Ax =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

then the linear system of equations (3) is equivalent to the matrix equation (4).
Given an m × n matrix A and a vector x in Rn , it is possible to compute a product

Ax by (5). The product Ax will be an m × 1 matrix—that is, a vector in Rm . The rule
for determining the i th entry of Ax is

ai1x1 + ai2x2 + · · · + ainxn

which is equal to a⃗i x, the scalar product of the i th row vector of A and the column
vector x. Thus,

Ax =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a⃗1x
a⃗2x
...

a⃗nx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EXAMPLE 2

A =
⎧
⎪⎩4 2 1

5 3 7

⎫
⎪⎭ , x =

⎧
⎪⎪⎪⎪⎪⎩

x1
x2
x3

⎫
⎪⎪⎪⎪⎪⎭

Ax =
⎧
⎪⎪⎪⎩

4x1 + 2x2 + x3

5x1 + 3x2 + 7x3

⎫
⎪⎪⎪⎭
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EXAMPLE 3

A =
⎧
⎪⎪⎪⎪⎪⎩

−3 1
2 5
4 2

⎫
⎪⎪⎪⎪⎪⎭ , x =

⎧
⎪⎩2

4

⎫
⎪⎭

Ax =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

−3 · 2 + 1 · 4
2 · 2 + 5 · 4
4 · 2 + 2 · 4

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

=
⎧
⎪⎪⎪⎪⎪⎩

−2
24
16

⎫
⎪⎪⎪⎪⎪⎭

EXAMPLE 4 Write the following system of equations as a matrix equation of the form Ax = b:

3x1 + 2x2 + x3 = 5
x1 − 2x2 + 5x3 = −2

2x1 + x2 − 3x3 = 1

Solution
⎧
⎪⎪⎪⎪⎪⎩

3 2 1
1 −2 5
2 1 −3

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

x1
x2
x3

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

5
−2

1

⎫
⎪⎪⎪⎪⎪⎭

An alternative way to represent the linear system (3) as a matrix equation is to
express the product Ax as a sum of column vectors:

Ax =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn
a21x1 + a22x2 + · · · + a2nxn

...
am1x1 + am2x2 + · · · + amnxn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= x1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11
a21
...

am1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ x2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a12
a22
...

am2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ · · · + xn

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1n
a2n
...

amn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Thus, we have
Ax = x1a1 + x2a2 + · · · + xnan (6)

Using this formula, we can represent the system of equations (3) as a matrix equation
of the form

x1a1 + x2a2 + · · · + xnan = b (7)

EXAMPLE 5 The linear system
2x1 + 3x2 − 2x3 = 5
5x1 − 4x2 + 2x3 = 6

can be written as a matrix equation

x1

⎧
⎪⎩2

5

⎫
⎪⎭ + x2

⎧
⎪⎩ 3

−4

⎫
⎪⎭ + x3

⎧
⎪⎩−2

2

⎫
⎪⎭ =

⎧
⎪⎩5

6

⎫
⎪⎭
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Definition If a1, a2, . . . , an are vectors in Rm and c1, c2, . . . , cn are scalars, then a sum of the
form

c1a1 + c2a2 + · · · + cnan

is said to be a linear combination of the vectors a1, a2, . . . , an .

It follows from equation (6) that the product Ax is a linear combination of the
column vectors of A. Some books even use this linear combination representation as
the definition of matrix vector multiplication.

If A is an m × n matrix and x is a vector in Rn , then

Ax = x1a1 + x2a2 + · · · + xnan

EXAMPLE 6 If we choose x1 = 2, x2 = 3, and x3 = 4 in Example 5, then
⎧
⎪⎩5

6

⎫
⎪⎭ = 2

⎧
⎪⎩2

5

⎫
⎪⎭ + 3

⎧
⎪⎩ 3

−4

⎫
⎪⎭ + 4

⎧
⎪⎩−2

2

⎫
⎪⎭

Thus, the vector
⎧
⎪⎩5

6

⎫
⎪⎭ is a linear combination of the three column vectors of the coef-

ficient matrix. It follows that the linear system in Example 5 is consistent and

x =
⎧
⎪⎪⎪⎪⎪⎩

2
3
4

⎫
⎪⎪⎪⎪⎪⎭

is a solution of the system.

The matrix equation (7) provides a nice way of characterizing whether a linear sys-
tem of equations is consistent. Indeed, the following theorem is a direct consequence
of (7).

Theorem 1.3.1 Consistency Theorem for Linear Systems
A linear system Ax = b is consistent if and only if b can be written as a linear combi-
nation of the column vectors of A.

EXAMPLE 7 The linear system
x1 + 2x2 = 1

2x1 + 4x2 = 1

is inconsistent, since the vector
⎧
⎪⎩1

1

⎫
⎪⎭ cannot be written as a linear combination of the

column vectors
⎧
⎪⎩1

2

⎫
⎪⎭ and

⎧
⎪⎩2

4

⎫
⎪⎭. Note that any linear combination of these vectors

would be of the form

x1

⎧
⎪⎩1

2

⎫
⎪⎭ + x2

⎧
⎪⎩2

4

⎫
⎪⎭ =

⎧
⎪⎩ x1 + 2x2

2x1 + 4x2

⎫
⎪⎭

and hence the second entry of the vector must be double the first entry.
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Matrix Multiplication
More generally, it is possible to multiply a matrix A times a matrix B if the number
of columns of A equals the number of rows of B. The first column of the product is
determined by the first column of B; that is, the first column of AB is Ab1, the second
column of AB is Ab2, and so on. Thus the product AB is the matrix whose columns
are Ab1, Ab2, . . . , Abn:

AB = (Ab1, Ab2, . . . , Abn)

The (i, j) entry of AB is the i th entry of the column vector Ab j . It is determined
by multiplying the i th row vector of A times the j th column vector of B.

Definition If A = (ai j ) is an m × n matrix and B = (bi j ) is an n × r matrix, then the product
AB = C = (ci j ) is the m × r matrix whose entries are defined by

ci j = a⃗i b j =
n∑

k=1

aikbk j

EXAMPLE 8 If

A =
⎧
⎪⎪⎪⎪⎪⎩

3 −2
2 4
1 −3

⎫
⎪⎪⎪⎪⎪⎭ and B =

⎧
⎪⎩−2 1 3

4 1 6

⎫
⎪⎭

then

AB =
⎧
⎪⎪⎪⎪⎪⎩

3 −2
2 4
1 −3

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎩−2 1 3

4 1 6

⎫
⎪⎭

=
⎧
⎪⎪⎪⎪⎪⎩

3 · (−2) − 2 · 4 3 · 1 − 2 · 1 3 · 3 − 2 · 6
2 · (−2) + 4 · 4 2 · 1 + 4 · 1 2 · 3 + 4 · 6
1 · (−2) − 3 · 4 1 · 1 − 3 · 1 1 · 3 − 3 · 6

⎫
⎪⎪⎪⎪⎪⎭

=
⎧
⎪⎪⎪⎪⎪⎩

−14 1 −3
12 6 30

−14 −2 −15

⎫
⎪⎪⎪⎪⎪⎭

The shading indicates how the (2, 3) entry of the product AB is computed as a scalar
product of the second row vector of A and the third column vector of B. It is also
possible to multiply B times A, however, the resulting matrix B A is not equal to AB.
In fact, AB and B A do not even have the same dimensions, as the following multipli-
cation shows:

BA =
⎧
⎪⎩−2 · 3 + 1 · 2 + 3 · 1 − 2 · (−2) + 1 · 4 + 3 · (−3)

4 · 3 + 1 · 2 + 6 · 1 4 · (−2) + 1 · 4 + 6 · (−3)

⎫
⎪⎭

=
⎧
⎪⎩−1 −1

20 −22

⎫
⎪⎭
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EXAMPLE 9 If

A =
⎧
⎪⎩3 4

1 2

⎫
⎪⎭ and B =

⎧
⎪⎪⎪⎪⎪⎩

1 2
4 5
3 6

⎫
⎪⎪⎪⎪⎪⎭

then it is impossible to multiply A times B, since the number of columns of A does not
equal the number of rows of B. However, it is possible to multiply B times A.

BA =
⎧
⎪⎪⎪⎪⎪⎩

1 2
4 5
3 6

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎩3 4

1 2

⎫
⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

5 8
17 26
15 24

⎫
⎪⎪⎪⎪⎪⎭

If A and B are both n × n matrices, then AB and BA will also be n × n matrices,
but, in general, they will not be equal. Multiplication of matrices is not commutative.

EXAMPLE 10 If

A =
⎧
⎪⎩1 1

0 0

⎫
⎪⎭ and B =

⎧
⎪⎩1 1

2 2

⎫
⎪⎭

then

AB =
⎧
⎪⎩1 1

0 0

⎫
⎪⎭

⎧
⎪⎩1 1

2 2

⎫
⎪⎭ =

⎧
⎪⎩3 3

0 0

⎫
⎪⎭

and

BA =
⎧
⎪⎩1 1

2 2

⎫
⎪⎭

⎧
⎪⎩1 1

0 0

⎫
⎪⎭ =

⎧
⎪⎩1 1

2 2

⎫
⎪⎭

Hence, AB ̸= BA.

APPLICATION 1 Production Costs
A company manufactures three products. Its production expenses are divided into three
categories. In each category, an estimate is given for the cost of producing a single
item of each product. An estimate is also made of the amount of each product to be
produced per quarter. These estimates are given in Tables 1 and 2. At its stockholders’
meeting, the company would like to present a single table showing the total costs for
each quarter in each of the three categories: raw materials, labor, and overhead.

Table 1 Production Costs per Item (dollars)

Product

Expenses A B C

Raw materials 0.10 0.30 0.15
Labor 0.30 0.40 0.25
Overhead and miscellaneous 0.10 0.20 0.15
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Table 2 Amount Produced per Quarter

Season

Product Summer Fall Winter Spring

A 4000 4500 4500 4000
B 2000 2600 2400 2200
C 5800 6200 6000 6000

Solution
Let us consider the problem in terms of matrices. Each of the two tables can be repre-
sented by a matrix, namely,

M =
⎧
⎪⎪⎪⎪⎪⎩

0.10 0.30 0.15
0.30 0.40 0.25
0.10 0.20 0.15

⎫
⎪⎪⎪⎪⎪⎭

and

P =
⎧
⎪⎪⎪⎪⎪⎩

4000 4500 4500 4000
2000 2600 2400 2200
5800 6200 6000 6000

⎫
⎪⎪⎪⎪⎪⎭

If we form the product MP , the first column of MP will represent the costs for the
summer quarter:

Raw materials: (0.10)(4000) + (0.30)(2000) + (0.15)(5800) = 1870
Labor: (0.30)(4000) + (0.40)(2000) + (0.25)(5800) = 3450
Overhead and
miscellaneous: (0.10)(4000) + (0.20)(2000) + (0.15)(5800) = 1670

The costs for the fall quarter are given in the second column of MP:

Raw materials: (0.10)(4500) + (0.30)(2600) + (0.15)(6200) = 2160
Labor: (0.30)(4500) + (0.40)(2600) + (0.25)(6200) = 3940
Overhead and
miscellaneous: (0.10)(4500) + (0.20)(2600) + (0.15)(6200) = 1900

Columns 3 and 4 of MP represent the costs for the winter and spring quarters, respec-
tively. Thus, we have

MP =
⎧
⎪⎪⎪⎪⎪⎩

1870 2160 2070 1960
3450 3940 3810 3580
1670 1900 1830 1740

⎫
⎪⎪⎪⎪⎪⎭

The entries in row 1 of MP represent the total cost of raw materials for each of the four
quarters. The entries in rows 2 and 3 represent the total cost for labor and overhead,
respectively, for each of the four quarters. The yearly expenses in each category may
be obtained by adding the entries in each row. The numbers in each of the columns
may be added to obtain the total production costs for each quarter. Table 3 summarizes
the total production costs.
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Table 3

Season

Summer Fall Winter Spring Year

Raw materials 1,870 2,160 2,070 1,960 8,060
Labor 3,450 3,940 3,810 3,580 14,780
Overhead and miscellaneous 1,670 1,900 1,830 1,740 7,140
Total production costs 6,990 8,000 7,710 7,280 29,980

Notational Rules
Just as in ordinary algebra, if an expression involves both multiplication and addition
and there are no parentheses to indicate the order of the operations, multiplications are
carried out before additions. This is true for both scalar and matrix multiplications.
For example, if

A =
⎧
⎪⎩3 4

1 2

⎫
⎪⎭ , B =

⎧
⎪⎩1 3

2 1

⎫
⎪⎭ , C =

⎧
⎪⎩−2 1

3 2

⎫
⎪⎭

then

A + BC =
⎧
⎪⎩3 4

1 2

⎫
⎪⎭ +

⎧
⎪⎩ 7 7

−1 4

⎫
⎪⎭ =

⎧
⎪⎩10 11

0 6

⎫
⎪⎭

and

3A + B =
⎧
⎪⎩9 12

3 6

⎫
⎪⎭ +

⎧
⎪⎩1 3

2 1

⎫
⎪⎭ =

⎧
⎪⎩10 15

5 7

⎫
⎪⎭

The Transpose of a Matrix
Given an m ×n matrix A, it is often useful to form a new n ×m matrix whose columns
are the rows of A.

Definition The transpose of an m × n matrix A is the n × m matrix B defined by

b ji = ai j (8)

for j = 1, . . . , n and i = 1, . . . , m. The transpose of A is denoted by AT .

It follows from (8) that the j th row of AT has the same entries, respectively, as the
j th column of A, and the i th column of AT has the same entries, respectively, as the
i th row of A.

EXAMPLE 11 (a) If A =
⎧
⎪⎩1 2 3

4 5 6

⎫
⎪⎭, then AT =

⎧
⎪⎪⎪⎪⎪⎩

1 4
2 5
3 6

⎫
⎪⎪⎪⎪⎪⎭.

(b) If B =
⎧
⎪⎪⎪⎪⎪⎩

−3 2 1
4 3 2
1 2 5

⎫
⎪⎪⎪⎪⎪⎭, then BT =

⎧
⎪⎪⎪⎪⎪⎩

−3 4 1
2 3 2
1 2 5

⎫
⎪⎪⎪⎪⎪⎭.
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(c) If C =
⎧
⎪⎩1 2

2 3

⎫
⎪⎭, then CT =

⎧
⎪⎩1 2

2 3

⎫
⎪⎭.

The matrix C in Example 11 is its own transpose. This frequently happens with
matrices that arise in applications.

Definition An n × n matrix A is said to be symmetric if AT = A.

The following are some examples of symmetric matrices:

⎧
⎪⎩1 0

0 −4

⎫
⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

2 3 4
3 1 5
4 5 3

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

0 1 2
1 1 −2
2 −2 −3

⎫
⎪⎪⎪⎪⎪⎭

APPLICATION 2 Information Retrieval
The growth of digital libraries on the Internet has led to dramatic improvements in the
storage and retrieval of information. Modern retrieval methods are based on matrix
theory and linear algebra.

In a typical situation, a database consists of a collection of documents and we wish
to search the collection and find the documents that best match some particular search
conditions. Depending on the type of database, we could search for such items as
research articles in journals, Web pages on the Internet, books in a library, or movies
in a film collection.

To see how the searches are done, let us assume that our database consists of m
documents and that there are n dictionary words that can be used as keywords for
searches. Not all words are allowable, since it would not be practical to search for
common words such as articles or prepositions. If the key dictionary words are or-
dered alphabetically, then we can represent the database by an m × n matrix A. Each
document is represented by a column of the matrix. The first entry in the j th column
of A would be a number representing the relative frequency of the first key dictionary
word in the j th document. The entry a2 j represents the relative frequency of the sec-
ond word in the j th document, and so on. The list of keywords to be used in the search
is represented by a vector x in Rm . The i th entry of x is taken to be 1 if the i th word
in the list of keywords is on our search list; otherwise, we set xi = 0. To carry out the
search, we simply multiply AT times x.

Simple Matching Searches
The simplest type of search determines how many of the key search words are in each
document; it does not take into account the relative frequencies of the words. Suppose,
for example, that our database consists of these book titles:

B1. Applied Linear Algebra
B2. Elementary Linear Algebra
B3. Elementary Linear Algebra with Applications
B4. Linear Algebra and Its Applications
B5. Linear Algebra with Applications
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B6. Matrix Algebra with Applications
B7. Matrix Theory

The collection of keywords is given by the following alphabetical list:

algebra, application, elementary, linear, matrix, theory

For a simple matching search, we just use 0’s and 1’s, rather than relative frequen-
cies for the entries of the database matrix. Thus, the (i, j) entry of the matrix will be 1
if the i th word appears in the title of the j th book and 0 if it does not. We will assume
that our search engine is sophisticated enough to equate various forms of a word. So,
for example, in our list of titles the words applied and applications are both counted
as forms of the word application. The database matrix for our list of books is the array
defined by Table 4.

Table 4 Array Representation for Database of Linear Algebra Books

Books

Key Words B1 B2 B3 B4 B5 B6 B7

algebra 1 1 1 1 1 1 0
application 1 0 1 1 1 1 0
elementary 0 1 1 0 0 0 0
linear 1 1 1 1 1 0 0
matrix 0 0 0 0 0 1 1
theory 0 0 0 0 0 0 1

If the words we are searching for are applied, linear, and algebra, then the database
matrix and search vector are respectively given by

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1 0
1 0 1 1 1 1 0
0 1 1 0 0 0 0
1 1 1 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
0
1
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

If we set y = AT x, then

y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 0 1 0 0
1 0 1 1 0 0
1 1 1 1 0 0
1 1 0 1 0 0
1 1 0 1 0 0
1 1 0 0 1 0
0 0 0 0 1 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
0
1
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2
3
3
3
2
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The value of y1 is the number of search word matches in the title of the first book,
the value of y2 is the number of matches in the second book title, and so on. Since
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y1 = y3 = y4 = y5 = 3, the titles of books B1, B3, B4, and B5 must contain all three
search words. If the search is set up to find titles matching all search words, then the
search engine will report the titles of the first, third, fourth, and fifth books.

Relative-Frequency Searches
Searches of noncommercial databases generally find all documents containing the key
search words and then order the documents based on the relative frequencies of the
keywords. In this case, the entries of the database matrix should represent the relative
frequencies of the keywords in the documents. For example, suppose that in the dic-
tionary of all key words of the database the 6th word is algebra and the 8th word is
applied, where all words are listed alphabetically. If, say, document 9 in the database
contains a total of 200 occurrences of keywords from the dictionary, and if the word al-
gebra occurred 10 times in the document and the word applied occurred 6 times, then
the relative frequencies for these words would be 10

200 and 6
200 , and the corresponding

entries in the database matrix would be

a69 = 0.05 and a89 = 0.03

To search for these two words, we take our search vector x to be the vector whose
entries x6 and x8 are both equal to 1 and whose remaining entries are all 0. We then
compute

y = AT x

The entry of y corresponding to document 9 is

y9 = a69 · 1 + a89 · 1 = 0.08

Note that 16 of the 200 words (8% of the words) in document 9 match the key search
words. If y j is the largest entry of y, this would indicate that the j th document in the
database is the one that contains the keywords with the greatest relative frequencies.

Advanced Search Methods
A search for the keywords linear and algebra could easily turn up hundreds of docu-
ments, some of which may not even be about linear algebra. If we were to increase the
number of search words and require that all search words be matched, then we would
run the risk of excluding some crucial linear algebra documents. Rather than match
all words of the expanded search list, our database search should give priority to those
documents which match most of the keywords with high relative frequencies. To ac-
complish this, we need to find the columns of the database matrix A that are “closest”
to the search vector x. One way to measure how close two vectors are is to define the
angle between the vectors. We will do this in Section 1 of Chapter 5.

We will also revisit the information retrieval application after we have learned
about the singular value decomposition (Chapter 6, Section 5). This decomposition
can be used to find a simpler approximation to the database matrix, which will speed up
the searches dramatically. Often it has the added advantage of filtering out noise; that
is, using the approximate version of the database matrix may automatically have the
effect of eliminating documents that use keywords in unwanted contexts. For example,
a dental student and a mathematics student could both use calculus as one of their
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search words. Since the list of mathematics search words does not contain any other
dental terms, a mathematics search using an approximate database matrix is likely to
eliminate all documents relating to dentistry. Similarly, the mathematics documents
would be filtered out in the dental student’s search.

Web Searches and Page Ranking
Modern Web searches could easily involve billions of documents with hundreds of
thousands of keywords. Indeed, as of July 2008, there were more than 1 trillion Web
pages on the Internet, and it is not uncommon for search engines to acquire or update
as many as 10 million Web pages in a single day. Although the database matrix for
pages on the Internet is extremely large, searches can be simplified dramatically, since
the matrices and search vectors are sparse; that is, most of the entries in any column
are 0’s.

For Internet searches, the better search engines will do simple matching searches
to find all pages matching the keywords, but they will not order them on the basis of the
relative frequencies of the keywords. Because of the commercial nature of the Internet,
people who want to sell products may deliberately make repeated use of keywords to
ensure that their Web site is highly ranked in any relative-frequency search. In fact, it
is easy to surreptitiously list a keyword hundreds of times. If the font color of the word
matches the background color of the page, then the viewer will not be aware that the
word is listed repeatedly.

For Web searches, a more sophisticated algorithm is necessary for ranking the
pages that contain all of the key search words. In Chapter 6, we will study a special
type of matrix model for assigning probabilities in certain random processes. This
type of model is referred to as a Markov process or a Markov chain. In Section 3
of Chapter 6, we will see how to use Markov chains to model Web surfing and obtain
rankings of Web pages.

References
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SECTION 1.3 EXERCISES
1. If

A =
⎧
⎪⎪⎪⎪⎪⎩

3 1 4
−2 0 1

1 2 2

⎫
⎪⎪⎪⎪⎪⎭ and B =

⎧
⎪⎪⎪⎪⎪⎩

1 0 2
−3 1 1

2 −4 1

⎫
⎪⎪⎪⎪⎪⎭

compute
(a) 2A (b) A + B
(c) 2A − 3B (d) (2A)T − (3B)T

(e) AB (f) BA
(g) ATBT (h) (BA)T

2. For each of the pairs of matrices that follow, de-
termine whether it is possible to multiply the first
matrix times the second. If it is possible, perform
the multiplication.

(a)
⎧
⎪⎩ 3 5 1

−2 0 2

⎫
⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

2 1
1 3
4 1

⎫
⎪⎪⎪⎪⎪⎭

(b)

⎧
⎪⎪⎪⎪⎪⎩

4 −2
6 −4
8 −6

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎩1 2 3

⎫
⎭
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(c)

⎧
⎪⎪⎪⎪⎪⎩

1 4 3
0 1 4
0 0 2

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

3 2
1 1
4 5

⎫
⎪⎪⎪⎪⎪⎭

(d)
⎧
⎪⎩4 6

2 1

⎫
⎪⎭

⎧
⎪⎩3 1 5

4 1 6

⎫
⎪⎭

(e)
⎧
⎪⎩4 6 1

2 1 1

⎫
⎪⎭

⎧
⎪⎩3 1 5

4 1 6

⎫
⎪⎭

(f)

⎧
⎪⎪⎪⎪⎪⎩

2
−1

3

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎩3 2 4 5

⎫
⎭

3. For which of the pairs in Exercise 2 is it possible to
multiply the second matrix times the first, and what
would the dimension of the product matrix be?

4. Write each of the following systems of equations as
a matrix equation.

(a) 3x1 + 2x2 = 1
2x1 − 3x2 = 5

(b) x1 + x2 = 5
2x1 + x2 − x3 = 6
3x1 − 2x2 + 2x3 = 7

(c) 2x1 + x2 + x3 = 4
x1 − x2 + 2x3 = 2

3x1 − 2x2 − x3 = 0

5. If

A =
⎧
⎪⎪⎪⎪⎪⎩

3 4
1 1
2 7

⎫
⎪⎪⎪⎪⎪⎭

verify that
(a) 5A = 3A + 2A (b) 6A = 3(2A)

(c) (AT )T = A

6. If

A =
⎧
⎪⎩4 1 6

2 3 5

⎫
⎪⎭ and B =

⎧
⎪⎩ 1 3 0

−2 2 −4

⎫
⎪⎭

verify that
(a) A + B = B + A
(b) 3(A + B) = 3A + 3B
(c) (A + B)T = AT + BT

7. If

A =
⎧
⎪⎪⎪⎪⎪⎩

2 1
6 3

−2 4

⎫
⎪⎪⎪⎪⎪⎭ and B =

⎧
⎪⎩2 4

1 6

⎫
⎪⎭

verify that
(a) 3(AB) = (3A)B = A(3B)

(b) (AB)T = BTAT

8. If

A =
⎧
⎪⎩2 4

1 3

⎫
⎪⎭ , B =

⎧
⎪⎩−2 1

0 4

⎫
⎪⎭ , C =

⎧
⎪⎩3 1

2 1

⎫
⎪⎭

verify that
(a) (A + B) + C = A + (B + C)

(b) (AB)C = A(BC)

(c) A(B + C) = AB + AC
(d) (A + B)C = AC + BC

9. Let

A =
⎧
⎪⎩1 2

1 −2

⎫
⎪⎭ , b =

⎧
⎪⎩4

0

⎫
⎪⎭ , c =

⎧
⎪⎩−3

−2

⎫
⎪⎭

(a) Write b as a linear combination of the column
vectors a1 and a2.

(b) Use the result from part (a) to determine a so-
lution of the linear system Ax = b. Does the
system have any other solutions? Explain.

(c) Write c as a linear combination of the column
vectors a1 and a2.

10. For each of the choices of A and b that follow, de-
termine whether the system Ax = b is consistent
by examining how b relates to the column vectors
of A. Explain your answers in each case.

(a) A =
⎧
⎪⎩ 2 1

−2 −1

⎫
⎪⎭ , b =

⎧
⎪⎩3

1

⎫
⎪⎭

(b) A =
⎧
⎪⎩1 4

2 3

⎫
⎪⎭ , b =

⎧
⎪⎩5

5

⎫
⎪⎭

(c) A =
⎧
⎪⎪⎪⎪⎪⎩

3 2 1
3 2 1
3 2 1

⎫
⎪⎪⎪⎪⎪⎭ , b =

⎧
⎪⎪⎪⎪⎪⎩

1
0

−1

⎫
⎪⎪⎪⎪⎪⎭

11. Let A be a 5 × 3 matrix. If

b = a1 + a2 = a2 + a3

then what can you conclude about the number of
solutions of the linear system Ax = b? Explain.

12. Let A be a 3 × 4 matrix. If

b = a1 + a2 + a3 + a4

then what can you conclude about the number of
solutions of the linear system Ax = b? Explain.

13. Let Ax = b be a linear system whose augmented
matrix (A |b) has reduced row echelon form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 0 3 1 −2
0 0 1 2 4 5
0 0 0 0 0 0
0 0 0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(a) Find all solutions to the system.
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(b) If

a1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
3
4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

and a3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
−1

1
3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

determine b.

14. Let A be an m × n matrix. Explain why the matrix
multiplications ATA and AAT are possible.

15. A matrix A is said to be skew symmetric if AT =
−A. Show that if a matrix is skew symmetric, then
its diagonal entries must all be 0.

16. In Application 2, suppose that we are searching
the database of seven linear algebra books for the
search words elementary, matrix, algebra. Form
a search vector x, and then compute a vector y that
represents the results of the search. Explain the sig-
nificance of the entries of the vector y.

17. Let A be a 2 × 2 matrix with a11 ̸= 0 and let
α = a21/a11. Show that A can be factored into a
product of the form

⎧
⎪⎩ 1 0

α 1

⎫
⎪⎭

⎧
⎪⎩a11 a12

0 b

⎫
⎪⎭

What is the value of b?

1.4 Matrix Algebra

The algebraic rules used for real numbers may or may not work when matrices are
used. For example, if a and b are real numbers then

a + b = b + a and ab = ba

For real numbers, the operations of addition and multiplication are both commutative.
The first of these algebraic rules works when we replace a and b by square matrices A
and B; that is,

A + B = B + A

However, we have already seen that matrix multiplication is not commutative. This
fact deserves special emphasis.

Warning: In general, AB ̸= BA. Matrix multiplication is not commutative.

In this section we examine which algebraic rules work for matrices and which do not.

Algebraic Rules
The following theorem provides some useful rules for doing matrix algebra:

Theorem 1.4.1 Each of the following statements is valid for any scalars α and β and for any matrices
A, B, and C for which the indicated operations are defined.

1. A + B = B + A
2. (A + B) + C = A + (B + C)

3. (AB)C = A(BC)

4. A(B + C) = AB + AC
5. (A + B)C = AC + BC
6. (αβ)A = α(βA)
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(b) If

a1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
3
4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

and a3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
−1

1
3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

determine b.

14. Let A be an m × n matrix. Explain why the matrix
multiplications ATA and AAT are possible.

15. A matrix A is said to be skew symmetric if AT =
−A. Show that if a matrix is skew symmetric, then
its diagonal entries must all be 0.

16. In Application 2, suppose that we are searching
the database of seven linear algebra books for the
search words elementary, matrix, algebra. Form
a search vector x, and then compute a vector y that
represents the results of the search. Explain the sig-
nificance of the entries of the vector y.

17. Let A be a 2 × 2 matrix with a11 ̸= 0 and let
α = a21/a11. Show that A can be factored into a
product of the form

⎧
⎪⎩ 1 0

α 1

⎫
⎪⎭

⎧
⎪⎩a11 a12

0 b

⎫
⎪⎭

What is the value of b?

1.4 Matrix Algebra

The algebraic rules used for real numbers may or may not work when matrices are
used. For example, if a and b are real numbers then

a + b = b + a and ab = ba

For real numbers, the operations of addition and multiplication are both commutative.
The first of these algebraic rules works when we replace a and b by square matrices A
and B; that is,

A + B = B + A

However, we have already seen that matrix multiplication is not commutative. This
fact deserves special emphasis.

Warning: In general, AB ̸= BA. Matrix multiplication is not commutative.

In this section we examine which algebraic rules work for matrices and which do not.

Algebraic Rules
The following theorem provides some useful rules for doing matrix algebra:

Theorem 1.4.1 Each of the following statements is valid for any scalars α and β and for any matrices
A, B, and C for which the indicated operations are defined.

1. A + B = B + A
2. (A + B) + C = A + (B + C)

3. (AB)C = A(BC)

4. A(B + C) = AB + AC
5. (A + B)C = AC + BC
6. (αβ)A = α(βA)
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7. α(AB) = (αA)B = A(αB)

8. (α + β)A = αA + βA
9. α(A + B) = αA + αB

We will prove two of the rules and leave the rest for the reader to verify.

Proof of
Rule 4

Assume that A = (ai j ) is an m × n matrix and B = (bi j ) and C = (ci j ) are both n × r
matrices. Let D = A(B + C) and E = AB + AC . It follows that

di j =
n∑

k=1

aik(bkj + ck j )

and

ei j =
n∑

k=1

aikbk j +
n∑

k=1

aikck j

But
n∑

k=1

aik(bkj + ck j ) =
n∑

k=1

aikbk j +
n∑

k=1

aikck j

so that di j = ei j and hence A(B + C) = AB + AC .

Proof of
Rule 3

Let A be an m × n matrix, B an n × r matrix, and C an r × s matrix. Let D = AB and
E = BC . We must show that DC = AE . By the definition of matrix multiplication,

dil =
n∑

k=1

aikbkl and ek j =
r∑

l=1

bklcl j

The (i, j) entry of DC is

r∑

l=1

dilcl j =
r∑

l=1

(
n∑

k=1

aikbkl

)

cl j

and the (i, j) entry of AE is

n∑

k=1

aikek j =
n∑

k=1

aik

(
r∑

l=1

bklcl j

)

Since

r∑

l=1

(
n∑

k=1

aikbkl

)

cl j =
r∑

l=1

(
n∑

k=1

aikbklcl j

)

=
n∑

k=1

aik

(
r∑

l=1

bklcl j

)

it follows that

(AB)C = DC = AE = A(BC)
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The algebraic rules given in Theorem 1.4.1 seem quite natural, since they are simi-
lar to the rules that we use with real numbers. However, there are important differences
between the rules for matrix algebra and the algebraic rules for real numbers. Some of
these differences are illustrated in Exercises 1 through 5 at the end of this section.

EXAMPLE 1 If

A =
⎧
⎪⎩1 2

3 4

⎫
⎪⎭ , and B =

⎧
⎪⎩ 2 1

−3 2

⎫
⎪⎭ , and C =

⎧
⎪⎩1 0

2 1

⎫
⎪⎭

verify that A(BC) = (AB)C and A(B + C) = AB + AC .

Solution

A(BC) =
⎧
⎪⎩1 2

3 4

⎫
⎪⎭

⎧
⎪⎩4 1

1 2

⎫
⎪⎭ =

⎧
⎪⎩ 6 5

16 11

⎫
⎪⎭

(AB)C =
⎧
⎪⎩−4 5

−6 11

⎫
⎪⎭

⎧
⎪⎩1 0

2 1

⎫
⎪⎭ =

⎧
⎪⎩ 6 5

16 11

⎫
⎪⎭

Thus,

A(BC) =
⎧
⎪⎩ 6 5

16 11

⎫
⎪⎭ = (AB)C

A(B + C) =
⎧
⎪⎩1 2

3 4

⎫
⎪⎭

⎧
⎪⎩ 3 1

−1 3

⎫
⎪⎭ =

⎧
⎪⎩1 7

5 15

⎫
⎪⎭

AB + AC =
⎧
⎪⎩−4 5

−6 11

⎫
⎪⎭ +

⎧
⎪⎩ 5 2

11 4

⎫
⎪⎭ =

⎧
⎪⎩1 7

5 15

⎫
⎪⎭

Therefore,

A(B + C) = AB + AC

Notation

Since (AB)C = A(BC), we may simply omit the parentheses and write ABC . The
same is true for a product of four or more matrices. In the case where an n × n matrix
is multiplied by itself a number of times, it is convenient to use exponential notation.
Thus, if k is a positive integer, then

Ak = AA · · · A︸ ︷︷ ︸
k times

EXAMPLE 2 If

A =
⎧
⎪⎩1 1

1 1

⎫
⎪⎭
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then

A2 =
⎧
⎪⎩1 1

1 1

⎫
⎪⎭

⎧
⎪⎩1 1

1 1

⎫
⎪⎭ =

⎧
⎪⎩2 2

2 2

⎫
⎪⎭

A3 = AAA = AA2 =
⎧
⎪⎩1 1

1 1

⎫
⎪⎭

⎧
⎪⎩2 2

2 2

⎫
⎪⎭ =

⎧
⎪⎩4 4

4 4

⎫
⎪⎭

and, in general,

An =
⎧
⎪⎪⎩2n−1 2n−1

2n−1 2n−1

⎫
⎪⎪⎭

APPLICATION 1 A Simple Model for Marital Status Computations
In a certain town, 30 percent of the married women get divorced each year and 20
percent of the single women get married each year. There are 8000 married women and
2000 single women. Assuming that the total population of women remains constant,
how many married women and how many single women will there be after 1 year?
After 2 years?

Solution
Form a matrix A as follows: The entries in the first row of A will be the percentages
of married and single women, respectively, who are married after 1 year. The entries
in the second row will be the percentages of women who are single after 1 year. Thus,

A =
⎧
⎪⎩0.70 0.20

0.30 0.80

⎫
⎪⎭

If we let x =
⎧
⎪⎩8000

2000

⎫
⎪⎭, the number of married and single women after 1 year can be

computed by multiplying A times x.

Ax =
⎧
⎪⎩0.70 0.20

0.30 0.80

⎫
⎪⎭

⎧
⎪⎩8000

2000

⎫
⎪⎭ =

⎧
⎪⎩6000

4000

⎫
⎪⎭

After 1 year, there will be 6000 married women and 4000 single women. To find the
number of married and single women after 2 years, compute

A2x = A(Ax) =
⎧
⎪⎩0.70 0.20

0.30 0.80

⎫
⎪⎭

⎧
⎪⎩6000

4000

⎫
⎪⎭ =

⎧
⎪⎩5000

5000

⎫
⎪⎭

After 2 years, half of the women will be married and half will be single. In general, the
number of married and single women after n years can be determined by computing
Anx.
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APPLICATION 2 Ecology: Demographics of the Loggerhead Sea Turtle
The management and preservation of many wildlife species depends on our ability to
model population dynamics. A standard modeling technique is to divide the life cycle
of a species into a number of stages. The models assume that the population sizes for
each stage depend only on the female population and that the probability of survival
of an individual female from one year to the next depends only on the stage of the
life cycle and not on the actual age of an individual. For example, let us consider a
four-stage model for analyzing the population dynamics of the loggerhead sea turtle
(see Figure 1.4.1).

Figure 1.4.1. Loggerhead Sea Turtle

At each stage, we estimate the probability of survival over a 1-year period. We
also estimate the ability to reproduce in terms of the expected number of eggs laid in
a given year. The results are summarized in Table 1. The approximate ages for each
stage are listed in parentheses next to the stage description.

Table 1 Four-Stage Model for Loggerhead Sea Turtle Demographics

Stage Description Annual Eggs laid
Number (age in years) survivorship per year

1 Eggs, hatchlings (<1) 0.67 0
2 Juveniles and subadults (1–21) 0.74 0
3 Novice breeders (22) 0.81 127
4 Mature breeders (23–54) 0.81 79

If di represents the duration of the i th stage and si is the annual survivorship rate for
that stage, then it can be shown that the proportion remaining in stage i the following
year will be

pi =
(

1 − sdi −1
i

1 − sdi
i

)

si (1)

and the proportion of the population that will survive and move into stage i + 1 the
following year will be

qi = sdi
i (1 − si )

1 − sdi
i

(2)
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If we let ei denote the average number of eggs laid by a member of stage i (i = 2, 3, 4)
in 1 year and form the matrix

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 e2 e3 e4
q1 p2 0 0
0 q2 p3 0
0 0 q3 p4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

then L can be used to predict the turtle populations at each stage in future years. A
matrix of the form (3) is called a Leslie matrix, and the corresponding population
model is sometimes referred to as a Leslie population model. Using the figures from
Table 1, the Leslie matrix for our model is

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 127 79
0.67 0.7394 0 0

0 0.0006 0 0
0 0 0.81 0.8077

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Suppose that the initial populations at each stage were 200,000, 300,000, 500,
and 1500, respectively. If we represent these initial populations by a vector x0, the
populations at each stage after 1 year are determined with the matrix equation

x1 = Lx0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 127 79
0.67 0.7394 0 0

0 0.0006 0 0
0 0 0.81 0.8077

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

200,000
300,000

500
1,500

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

182,000
355,820

180
1,617

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(The computations have been rounded to the nearest integer.) To determine the popu-
lation vector after 2 years, we multiply again by the matrix L:

x2 = Lx1 = L2x0

In general, the population after k years is determined by computing xk = Lkx0. To
see longer range trends, we compute x10, x25, and x50. The results are summarized in
Table 2. The model predicts that the total number of breeding-age turtles will decrease
by 80 percent over a 50-year period.

Table 2 Loggerhead Sea Turtle Population Projections

Stage Initial 10 25 50
Number population years years years

1 200,000 114,264 74,039 35,966
2 300,000 329,212 213,669 103,795
3 500 214 139 68
4 1,500 1,061 687 334

A seven-stage model describing the population dynamics is presented in refer-
ence [1] to follow. We will use the seven-stage model in the computer exercises at the
end of this chapter. Reference [2] is the original paper by Leslie.
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The Identity Matrix

Just as the number 1 acts as an identity for the multiplication of real numbers, there is
a special matrix I that acts as an identity for matrix multiplication; that is,

I A = AI = A (4)

for any n × n matrix A. It is easy to verify that, if we define I to be an n × n matrix
with 1’s on the main diagonal and 0’s elsewhere, then I satisfies equation (4) for any
n × n matrix A. More formally, we have the following definition:

Definition The n × n identity matrix is the matrix I = (δi j ), where

δi j =
{

1 if i = j
0 if i ̸= j

As an example, let us verify equation (4) in the case n = 3. We have

⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫
⎪⎪⎪⎪⎪⎭

and ⎧
⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫
⎪⎪⎪⎪⎪⎭

In general, if B is any m × n matrix and C is any n × r matrix, then

B I = B and I C = C

The column vectors of the n × n identity matrix I are the standard vectors used
to define a coordinate system in Euclidean n-space. The standard notation for the j th
column vector of I is e j , rather than the usual i j . Thus, the n × n identity matrix can
be written

I = (e1, e2, . . . , en)
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Matrix Inversion
A real number a is said to have a multiplicative inverse if there exists a number b such
that ab = 1. Any nonzero number a has a multiplicative inverse b = 1

a . We generalize
the concept of multiplicative inverses to matrices with the following definition:

Definition An n × n matrix A is said to be nonsingular or invertible if there exists a matrix
B such that AB = B A = I . The matrix B is said to be a multiplicative inverse of
A.

If B and C are both multiplicative inverses of A, then

B = B I = B(AC) = (B A)C = I C = C

Thus, a matrix can have at most one multiplicative inverse. We will refer to the multi-
plicative inverse of a nonsingular matrix A as simply the inverse of A and denote it by
A−1.

EXAMPLE 3 The matrices
⎧
⎪⎩2 4

3 1

⎫
⎪⎭ and

⎧
⎪⎪⎪⎪⎪⎩

− 1
10

2
5

3
10 − 1

5

⎫
⎪⎪⎪⎪⎪⎭

are inverses of each other, since

⎧
⎪⎩2 4

3 1

⎫
⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

− 1
10

2
5

3
10 − 1

5

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎩1 0

0 1

⎫
⎪⎭

and
⎧
⎪⎪⎪⎪⎪⎩

− 1
10

2
5

3
10 − 1

5

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎩2 4

3 1

⎫
⎪⎭ =

⎧
⎪⎩1 0

0 1

⎫
⎪⎭

EXAMPLE 4 The 3 × 3 matrices
⎧
⎪⎪⎪⎪⎪⎩

1 2 3
0 1 4
0 0 1

⎫
⎪⎪⎪⎪⎪⎭ and

⎧
⎪⎪⎪⎪⎪⎩

1 −2 5
0 1 −4
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

are inverses, since
⎧
⎪⎪⎪⎪⎪⎩

1 2 3
0 1 4
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

1 −2 5
0 1 −4
0 0 1

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

and
⎧
⎪⎪⎪⎪⎪⎩

1 −2 5
0 1 −4
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

1 2 3
0 1 4
0 0 1

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭
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EXAMPLE 5 The matrix

A =
⎧
⎪⎩1 0

0 0

⎫
⎪⎭

has no inverse. Indeed, if B is any 2 × 2 matrix, then

BA =
⎧
⎪⎩b11 b12

b21 b22

⎫
⎪⎭

⎧
⎪⎩1 0

0 0

⎫
⎪⎭ =

⎧
⎪⎩b11 0

b21 0

⎫
⎪⎭

Thus, BA cannot equal I .

Definition An n × n matrix is said to be singular if it does not have a multiplicative inverse.

Note

Only square matrices have multiplicative inverses. One should not use the terms sin-
gular and nonsingular when referring to nonsquare matrices.

Often we will be working with products of nonsingular matrices. It turns out that
any product of nonsingular matrices is nonsingular. The following theorem character-
izes how the inverse of the product of a pair of nonsingular matrices A and B is related
to the inverses of A and B:

Theorem 1.4.2 If A and B are nonsingular n × n matrices, then AB is also nonsingular and
(AB)−1 = B−1 A−1.

Proof (B−1 A−1)AB = B−1(A−1 A)B = B−1 B = I

(AB)(B−1 A−1) = A(B B−1)A−1 = AA−1 = I

It follows by induction that, if A1, . . . , Ak are all nonsingular n × n matrices, then
the product A1 A2 · · · Ak is nonsingular and

(A1 A2 · · · Ak)
−1 = A−1

k · · · A−1
2 A−1

1

In the next section, we will learn how to determine whether a matrix has a multi-
plicative inverse. We will also learn a method for computing the inverse of a nonsin-
gular matrix.

Algebraic Rules for Transposes
There are four basic algebraic rules involving transposes:

Algebraic Rules for Transposes

1. (AT )T = A
2. (αA)T = αAT

3. (A + B)T = AT + BT

4. (AB)T = BTAT
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The first three rules are straightforward. We leave it to the reader to verify that they are
valid. To prove the fourth rule, we need only show that the (i, j) entries of (AB)T and
BTAT are equal. If A is an m ×n matrix, then, for the multiplications to be possible, B
must have n rows. The (i, j) entry of (AB)T is the ( j, i) entry of AB. It is computed
by multiplying the j th row vector of A times the i th column vector of B:

a⃗ j bi = (a j1, a j2, . . . , a jn)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1i
b2i
...

bni

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= a j1b1i + a j2b2i + · · · + a jnbni (5)

The (i, j) entry of BTAT is computed by multiplying the i th row of BT times the j th
column of AT . Since the i th row of BT is the transpose of the i th column of B and the
j th column of AT is the transpose of the j th row of A, it follows that the (i, j) entry
of BTAT is given by

bT
i a⃗T

j = (b1i , b2i , . . . , bni )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a j1
a j2
...

a jn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= b1i a j1 + b2i a j2 + · · · + bni a jn (6)

It follows from (5) and (6) that the (i, j) entries of (AB)T and BTAT are equal.
The next example illustrates the idea behind the last proof.

EXAMPLE 6 Let

A =
⎧
⎪⎪⎪⎪⎪⎩

1 2 1
3 3 5
2 4 1

⎫
⎪⎪⎪⎪⎪⎭ , B =

⎧
⎪⎪⎪⎪⎪⎩

1 0 2
2 1 1
5 4 1

⎫
⎪⎪⎪⎪⎪⎭

Note that, on the one hand, the (3, 2) entry of AB is computed taking the scalar product
of the third row of A and the second column of B:

AB =
⎧
⎪⎪⎪⎪⎪⎩

1 2 1
3 3 5
2 4 1

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

1 0 2
2 1 1
5 4 1

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

10 6 5
34 23 14
15 8 9

⎫
⎪⎪⎪⎪⎪⎭

When the product is transposed, the (3, 2) entry of AB becomes the (2, 3) entry
of (AB)T :

(AB)T =
⎧
⎪⎪⎪⎪⎪⎩

10 34 15
6 23 8
5 14 9

⎫
⎪⎪⎪⎪⎪⎭

On the other hand, the (2, 3) entry of BT AT is computed taking the scalar product of
the second row of BT and the third column of AT :

BT AT =
⎧
⎪⎪⎪⎪⎪⎩

1 2 5
0 1 4
2 1 1

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

1 3 2
2 3 4
1 5 1

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

10 34 15
6 23 8
5 14 9

⎫
⎪⎪⎪⎪⎪⎭

In both cases, the arithmetic for computing the (3, 2) entry is the same.
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Symmetric Matrices and Networks

Recall that a matrix A is symmetric if AT = A. One type of application that leads to
symmetric matrices is problems involving networks. These problems are often solved
with the techniques of an area of mathematics called graph theory.

APPLICATION 3 Networks and Graphs
Graph theory is an important areas of applied mathematics. It is used to model prob-
lems in virtually all the applied sciences. Graph theory is particularly useful in appli-
cations involving communication networks.

A graph is defined to be a set of points called vertices, together with a set of
unordered pairs of vertices, which are referred to as edges. Figure 1.4.2 gives a geo-
metrical representation of a graph. We can think of the vertices V1, V2, V3, V4, and V5
as corresponding to the nodes in a communication network.

V1 V2

V3

V4V5

Figure 1.4.2.

The line segments joining the vertices correspond to the edges:

{V1, V2}, {V2, V5}, {V3, V4}, {V3, V5}, {V4, V5}

Each edge represents a direct communication link between two nodes of the network.
An actual communication network could involve a large number of vertices and

edges. Indeed, if there are millions of vertices, a graphical picture of the network would
be quite confusing. An alternative is to use a matrix representation for the network. If
the graph contains a total of n vertices, we can define an n × n matrix A by

ai j =
{

1 if {Vi , Vj } is an edge of the graph
0 if there is no edge joining Vi and Vj

The matrix A is called the adjacency matrix of the graph. The adjacency matrix for the
graph in Figure 1.4.2 is given by

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0 0
1 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 1 1 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Note that the matrix A is symmetric. Indeed, any adjacency matrix must be symmetric,
for if {Vi , Vj } is an edge of the graph, then ai j = a ji = 1 and ai j = a ji = 0 if there is
no edge joining Vi and Vj . In either case, ai j = a ji .

We can think of a walk in a graph as a sequence of edges linking one vertex to
another. For example, in Figure 1.4.2 the edges {V1, V2}, {V2, V5} represent a walk
from vertex V1 to vertex V5. The length of the walk is said to be 2, since it consists
of two edges. A simple way to describe the walk is to indicate the movement between
vertices by arrows. Thus, V1 → V2 → V5 denotes a walk of length 2 from V1 to
V5. Similarly, V4 → V5 → V2 → V1 represents a walk of length 3 from V4 to
V1. It is possible to traverse the same edges more than once in a walk. For example,
V5 → V3 → V5 → V3 is a walk of length 3 from V5 to V3. In general, by taking powers
of the adjacency matrix, we can determine the number of walks of any specified length
between two vertices.

Theorem 1.4.3 If A is an n × n adjacency matrix of a graph and a(k)
i j represents the (i, j) entry of Ak ,

then a(k)
i j is equal to the number of walks of length k from Vi to Vj .

Proof The proof is by mathematical induction. In the case k = 1, it follows from the defini-
tion of the adjacency matrix that ai j represents the number of walks of length 1 from
Vi to Vj . Assume for some m that each entry of Am is equal to the number of walks
of length m between the corresponding vertices. Thus, a(m)

il is the number of walks
of length m from Vi to Vl . Now, on the one hand, if there is an edge {Vl, Vj }, then
a(m)

il al j = a(m)
il is the number of walks of length m + 1 from Vi to Vj of the form

Vi → · · · → Vl → Vj

On the other hand, if {Vl, Vj } is not an edge, then there are no walks of length m + 1
of this form from Vi to Vj and

a(m)
il al j = a(m)

il · 0 = 0

It follows that the total number of walks of length m + 1 from Vi to Vj is given by

a(m)
i1 a1 j + a(m)

i2 a2 j + · · · + a(m)
in anj

But this is just the (i, j) entry of Am+1.

EXAMPLE 7 To determine the number of walks of length 3 between any two vertices of the graph
in Figure 1.4.2, we need only compute

A3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 2 1 1 0
2 0 1 1 4
1 1 2 3 4
1 1 3 2 4
0 4 4 4 2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Thus, the number of walks of length 3 from V3 to V5 is a(3)
35 = 4. Note that the matrix

A3 is symmetric. This reflects the fact that there are the same number of walks of
length 3 from Vi to Vj as there are from Vj to Vi .
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SECTION 1.4 EXERCISES
1. Explain why each of the following algebraic rules

will not work in general when the real numbers a
and b are replaced by n × n matrices A and B.
(a) (a + b)2 = a2 + 2ab + b2

(b) (a + b)(a − b) = a2 − b2

2. Will the rules in Exercise 1 work if a is replaced by
an n × n matrix A and b is replaced by the n × n
identity matrix I ?

3. Find nonzero 2 × 2 matrices A and B such that
AB = O .

4. Find nonzero matrices A, B, and C such that

AC = BC and A ̸= B

5. The matrix

A =
⎧
⎪⎩1 −1

1 −1

⎫
⎪⎭

has the property that A2 = O . Is it possible for a
nonzero symmetric 2 × 2 matrix to have this prop-
erty? Prove your answer.

6. Prove the associative law of multiplication for 2×2
matrices; that is, let

A =
⎧
⎪⎩a11 a12

a21 a22

⎫
⎪⎭ , B =

⎧
⎪⎩b11 b12

b21 b22

⎫
⎪⎭ ,

C =
⎧
⎪⎩c11 c12

c21 c22

⎫
⎪⎭

and show that

(AB)C = A(BC)

7. Let

A =
⎧
⎪⎪⎪⎪⎪⎩

1
2 − 1

2

− 1
2

1
2

⎫
⎪⎪⎪⎪⎪⎭

Compute A2 and A3 . What will An turn out to be?

8. Let

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2 − 1
2 − 1

2

− 1
2

1
2 − 1

2 − 1
2

− 1
2 − 1

2
1
2 − 1

2

− 1
2 − 1

2 − 1
2

1
2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Compute A2 and A3. What will A2n and A2n+1 turn
out to be?

9. Let

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Show that An = O for n ≥ 4.

10. Let A and B be symmetric n × n matrices. For
each of the following, determine whether the given
matrix must be symmetric or could be nonsymmet-
ric:
(a) C = A + B (b) D = A2

(c) E = AB (d) F = AB A

(e) G = AB + B A (f) H = AB − B A

11. Let C be a nonsymmetric n × n matrix. For each of
the following, determine whether the given matrix
must be symmetric or could be nonsymmetric:
(a) A = C + CT (b) B = C − CT

(c) D = CT C (d) E = CT C − CCT

(e) F = (I + C)(I + CT )

(f) G = (I + C)(I − CT )

12. Let

A =
⎧
⎪⎩a11 a12

a21 a22

⎫
⎪⎭

Show that if d = a11a22 − a21a12 ̸= 0, then

A−1 = 1
d

⎧
⎪⎩ a22 −a12

−a21 a11

⎫
⎪⎭

13. Use the result from Exercise 12 to find the inverse
of each of the following matrices:

(a)
⎧
⎪⎩7 2

3 1

⎫
⎪⎭ (b)

⎧
⎪⎩3 5

2 3

⎫
⎪⎭ (c)

⎧
⎪⎩4 3

2 2

⎫
⎪⎭

14. Let A and B be n × n matrices. Show that if

AB = A and B ̸= I

then A must be singular.

15. Let A be a nonsingular matrix. Show that A−1 is
also nonsingular and (A−1)−1 = A.

16. Prove that if A is nonsingular, then AT is nonsin-
gular and

(AT )−1 = (A−1)T

[Hint: (AB)T = BTAT .]

17. Let A be an n × n matrix and let x and y be vectors
in Rn . Show that if Ax = Ay and x ̸= y, then the
matrix A must be singular.
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18. Let A be a nonsingular n × n matrix. Use math-
ematical induction to prove that Am is nonsingular
and

(Am)−1 = (A−1)m

for m = 1, 2, 3, . . . .

19. Let A be an n × n matrix. Show that if A2 = O ,
then I − A is nonsingular and (I − A)−1 = I + A.

20. Let A be an n × n matrix. Show that if Ak+1 = O ,
then I − A is nonsingular and

(I − A)−1 = I + A + A2 + · · · + Ak

21. Given

R =
⎧
⎪⎩cos θ − sin θ

sin θ cos θ

⎫
⎪⎭

show that R is nonsingular and R−1 = RT .
22. An n × n matrix A is said to be an involution if

A2 = I . Show that if G is any matrix of the form

G =
⎧
⎪⎩cos θ sin θ

sin θ − cos θ

⎫
⎪⎭

then G is an involution.
23. Let u be a unit vector in Rn (i.e., uT u = 1) and let

H = I − 2uuT . Show that H is an involution.
24. A matrix A is said to be idempotent if A2 = A.

Show that each of the following matrices are idem-
potent:

(a)
⎧
⎪⎩1 0

1 0

⎫
⎪⎭ (b)

⎧
⎪⎪⎪⎪⎪⎩

2
3

1
3

2
3

1
3

⎫
⎪⎪⎪⎪⎪⎭

(c)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

25. Let A be an idempotent matrix.
(a) Show that I − A is also idempotent.
(b) Show that I + A is nonsingular and

(I + A)−1 = I − 1
2 A

26. Let D be an n × n diagonal matrix whose diagonal
entries are either 0 or 1.
(a) Show that D is idempotent.
(b) Show that if X is a nonsingular matrix and

A = X DX−1, then A is idempotent.
27. Let A be an involution matrix, and let

B = 1
2
(I + A) and C = 1

2
(I − A)

Show that B and C are both idempotent and BC =
O .

28. Let A be an m ×n matrix. Show that ATA and AAT

are both symmetric.
29. Let A and B be symmetric n × n matrices. Prove

that AB = B A if and only if AB is also symmetric.

30. Let A be an n × n matrix and let

B = A + AT and C = A − AT

(a) Show that B is symmetric and C is skew sym-
metric.

(b) Show that every n × n matrix can be repre-
sented as a sum of a symmetric matrix and a
skew-symmetric matrix.

31. In Application 1, how many married women and
how many single women will there be after 3 years?

32. Consider the matrix

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1 0 1 1
1 0 1 1 0
0 1 0 0 1
1 1 0 0 1
1 0 1 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(a) Draw a graph that has A as its adjacency ma-
trix. Be sure to label the vertices of the graph.

(b) By inspecting the graph, determine the number
of walks of length 2 from V2 to V3 and from V2

to V5.
(c) Compute the second row of A3, and use it to

determine the number of walks of length 3
from V2 to V3 and from V2 to V5.

33. Consider the graph

V2 V3

V5

V4V1

(a) Determine the adjacency matrix A of the
graph.

(b) Compute A2. What do the entries in the first
row of A2 tell you about walks of length 2 that
start from V1?

(c) Compute A3. How many walks of length 3
are there from V2 to V4? How many walks of
length less than or equal to 3 are there from V2

to V4?
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For each of the conditional statements that follow, an-
swer true if the statement is always true and answer
false otherwise. In the case of a true statement, explain
or prove your answer. In the case of a false statement,
give an example to show that the statement is not always
true.

34. If Ax = Bx for some nonzero vector x, then the

matrices A and B must be equal.

35. If A and B are singular n × n matrices, then A + B
is also singular.

36. If A and B are nonsingular matrices, then (AB)T is
nonsingular and

((AB)T )−1 = (A−1)T (B−1)T

1.5 Elementary Matrices

In this section, we view the process of solving a linear system in terms of matrix
multiplications rather than row operations. Given a linear system Ax = b, we can
multiply both sides by a sequence of special matrices to obtain an equivalent system
in row echelon form. The special matrices we will use are called elementary matrices.
We will use them to see how to compute the inverse of a nonsingular matrix and also
to obtain an important matrix factorization. We begin by considering the effects of
multiplying both sides of a linear system by a nonsingular matrix.

Equivalent Systems
Given an m × n linear system Ax = b, we can obtain an equivalent system by multi-
plying both sides of the equation by a nonsingular m × m matrix M :

Ax = b (1)
MAx = Mb (2)

Clearly, any solution of (1) will also be a solution of (2). On the other hand, if x̂ is a
solution of (2), then

M−1(MAx̂) = M−1(Mb)

Ax̂ = b

and it follows that the two systems are equivalent.
To transform the system Ax = b to a simpler form that is easier to solve, we can

apply a sequence of nonsingular matrices E1, . . . , Ek to both sides of the equation.
The new system will then be of the form

Ux = c

where U = Ek · · · E1 A and c = Ek · · · E2 E1b. The transformed system will be equiv-
alent to the original, provided that M = Ek · · · E1 is nonsingular. However, M is
nonsingular, since it is a product of nonsingular matrices.

We will show next that any of the three elementary row operations can be accom-
plished by multiplying A on the left by a nonsingular matrix.

Elementary Matrices
If we start with the identity matrix I and then perform exactly one elementary row
operation, the resulting matrix is called an elementary matrix.

There are three types of elementary matrices corresponding to the three types of
elementary row operations.
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Type I An elementary matrix of type I is a matrix obtained by interchanging two rows
of I .

EXAMPLE 1 The matrix

E1 =
⎧
⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

is an elementary matrix of type I since it was obtained by interchanging the first two
rows of I . If A is a 3 × 3 matrix, then

E1 A =
⎧
⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

a21 a22 a23
a11 a12 a13
a31 a32 a33

⎫
⎪⎪⎪⎪⎪⎭

AE1 =
⎧
⎪⎪⎪⎪⎪⎩

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

a12 a11 a13
a22 a21 a23
a32 a31 a33

⎫
⎪⎪⎪⎪⎪⎭

Multiplying A on the left by E1 interchanges the first and second rows of A. Right
multiplication of A by E1 is equivalent to the elementary column operation of inter-
changing the first and second columns.

Type II An elementary matrix of type II is a matrix obtained by multiplying a row of
I by a nonzero constant.

EXAMPLE 2

E2 =
⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 3

⎫
⎪⎪⎪⎪⎪⎭

is an elementary matrix of type II. If A is a 3 × 3 matrix, then

E2 A =
⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 3

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

a11 a12 a13
a21 a22 a23

3a31 3a32 3a33

⎫
⎪⎪⎪⎪⎪⎭

AE2 =
⎧
⎪⎪⎪⎪⎪⎩

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 3

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎩

a11 a12 3a13
a21 a22 3a23
a31 a32 3a33

⎫
⎪⎪⎪⎪⎪⎭

Multiplication on the left by E2 performs the elementary row operation of multiplying
the third row by 3, while multiplication on the right by E2 performs the elementary
column operation of multiplying the third column by 3.

Type III An elementary matrix of type III is a matrix obtained from I by adding a
multiple of one row to another row.
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EXAMPLE 3

E3 =
⎧
⎪⎪⎪⎪⎪⎩

1 0 3
0 1 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

is an elementary matrix of type III. If A is a 3 × 3 matrix, then

E3 A =
⎧
⎪⎪⎪⎪⎪⎩

a11 + 3a31 a12 + 3a32 a13 + 3a33
a21 a22 a23
a31 a32 a33

⎫
⎪⎪⎪⎪⎪⎭

AE3 =
⎧
⎪⎪⎪⎪⎪⎩

a11 a12 3a11 + a13
a21 a22 3a21 + a23
a31 a32 3a31 + a33

⎫
⎪⎪⎪⎪⎪⎭

Multiplication on the left by E3 adds 3 times the third row to the first row. Multiplica-
tion on the right adds 3 times the first column to the third column.

In general, suppose that E is an n × n elementary matrix. We can think of E as
being obtained from I by either a row operation or a column operation. If A is an n ×r
matrix, premultiplying A by E has the effect of performing that same row operation on
A. If B is an m × n matrix, postmultiplying B by E is equivalent to performing that
same column operation on B.

Theorem 1.5.1 If E is an elementary matrix, then E is nonsingular and E−1 is an elementary matrix
of the same type.

Proof If E is the elementary matrix of type I formed from I by interchanging the i th and j th
rows, then E can be transformed back into I by interchanging these same rows again.
Therefore, E E = I and hence E is its own inverse. If E is the elementary matrix of
type II formed by multiplying the i th row of I by a nonzero scalar α, then E can be
transformed into the identity matrix by multiplying either its i th row or its i th column
by 1/α. Thus,

E−1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
. . . O

1
1/α

1

O
. . .

1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i th row

Finally, if E is the elementary matrix of type III formed from I by adding m times the
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i th row to the j th row, that is,

E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
...

. . . O
0 · · · 1
...

. . .

0 · · · m · · · 1
...

. . .

0 · · · 0 · · · 0 · · · 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i th row

j th row

then E can be transformed back into I either by subtracting m times the i th row from
the j th row or by subtracting m times the j th column from the i th column. Thus,

E−1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
...

. . . O
0 · · · 1
...

. . .

0 · · · −m · · · 1
...

. . .

0 · · · 0 · · · 0 · · · 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition A matrix B is row equivalent to a matrix A if there exists a finite sequence
E1, E2, . . . , Ek of elementary matrices such that

B = Ek Ek−1 · · · E1 A

In other words, B is row equivalent to A if B can be obtained from A by a finite
number of row operations. In particular, if two augmented matrices (A | b) and (B | c)
are row equivalent, then Ax = b and Bx = c are equivalent systems.

The following properties of row equivalent matrices are easily established:

I. If A is row equivalent to B, then B is row equivalent to A.
II. If A is row equivalent to B, and B is row equivalent to C , then A is row

equivalent to C .

Property (I) can be proved using Theorem 1.5.1. The details of the proofs of (I) and
(II) are left as an exercise for the reader.

Theorem 1.5.2 Equivalent Conditions for Nonsingularity
Let A be an n × n matrix. The following are equivalent:

(a) A is nonsingular.
(b) Ax = 0 has only the trivial solution 0.
(c) A is row equivalent to I .
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Proof We prove first that statement (a) implies statement (b). If A is nonsingular and x̂ is a
solution of Ax = 0, then

x̂ = I x̂ = (A−1 A)x̂ = A−1(Ax̂) = A−10 = 0

Thus, Ax = 0 has only the trivial solution. Next, we show that statement (b) implies
statement (c). If we use elementary row operations, the system can be transformed
into the form Ux = 0, where U is in row echelon form. If one of the diagonal ele-
ments of U were 0, the last row of U would consist entirely of 0’s. But then Ax = 0
would be equivalent to a system with more unknowns than equations and, hence, by
Theorem 1.2.1, would have a nontrivial solution. Thus, U must be a strictly triangular
matrix with diagonal elements all equal to 1. It then follows that I is the reduced row
echelon form of A and hence A is row equivalent to I .

Finally, we will show that statement (c) implies statement (a). If A is row equiva-
lent to I , there exist elementary matrices E1, E2, . . . , Ek such that

A = Ek Ek−1 · · · E1 I = Ek Ek−1 · · · E1

But since Ei is invertible, i = 1, . . . , k, the product Ek Ek−1 · · · E1 is also invertible.
Hence, A is nonsingular and

A−1 = (Ek Ek−1 · · · E1)
−1 = E−1

1 E−1
2 · · · E−1

k

Corollary 1.5.3 The system Ax = b of n linear equations in n unknowns has a unique solution if and
only if A is nonsingular.

Proof If A is nonsingular and x̂ is any solution of Ax = b, then

Ax̂ = b

Multiplying both sides of this equation by A−1, we see that x̂ must be equal to A−1b.
Conversely, if Ax = b has a unique solution x̂, then we claim that A cannot be

singular. Indeed, if A were singular, then the equation Ax = 0 would have a solution
z ̸= 0. But this would imply that y = x̂ + z is a second solution of Ax = b, since

Ay = A(x̂ + z) = Ax̂ + Az = b + 0 = b

Therefore, if Ax = b has a unique solution, then A must be nonsingular.

If A is nonsingular, then A is row equivalent to I and hence there exist elementary
matrices E1, . . . , Ek such that

Ek Ek−1 · · · E1 A = I

Multiplying both sides of this equation on the right by A−1, we obtain

Ek Ek−1 · · · E1 I = A−1

Thus, the same series of elementary row operations that transforms a nonsingular ma-
trix A into I will transform I into A−1. This gives us a method for computing A−1. If
we augment A by I and perform the elementary row operations that transform A into
I on the augmented matrix, then I will be transformed into A−1. That is, the reduced
row echelon form of the augmented matrix (A | I ) will be

(
I |A−1

)
.
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EXAMPLE 4 Compute A−1 if

A =
⎧
⎪⎪⎪⎪⎪⎩

1 4 3
−1 −2 0

2 2 3

⎫
⎪⎪⎪⎪⎪⎭

Solution
⎧
⎪⎪⎪⎪⎪⎩

1 4 3 1 0 0
−1 −2 0 0 1 0

2 2 3 0 0 1

⎫
⎪⎪⎪⎪⎪⎭ →

⎧
⎪⎪⎪⎪⎪⎩

1 4 3 1 0 0
0 2 3 1 1 0
0 −6 −3 −2 0 1

⎫
⎪⎪⎪⎪⎪⎭

→
⎧
⎪⎪⎪⎪⎪⎩

1 4 3 1 0 0
0 2 3 1 1 0
0 0 6 1 3 1

⎫
⎪⎪⎪⎪⎪⎭ →

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 4 0 1
2 − 3

2 − 1
2

0 2 0 1
2 − 1

2 − 1
2

0 0 6 1 3 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 − 1
2 − 1

2
1
2

0 2 0 1
2 − 1

2 − 1
2

0 0 6 1 3 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 − 1
2 − 1

2
1
2

0 1 0 1
4 − 1

4 − 1
4

0 0 1 1
6

1
2

1
6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Thus,

A−1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2 − 1

2
1
2

1
4 − 1

4 − 1
4

1
6

1
2

1
6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EXAMPLE 5 Solve the system

x1 + 4x2 + 3x3 = 12
−x1 − 2x2 = −12
2x1 + 2x2 + 3x3 = 8

Solution
The coefficient matrix of this system is the matrix A of the last example. The solution
of the system is then

x = A−1b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2 − 1

2
1
2

1
4 − 1

4 − 1
4

1
6

1
2

1
6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

12
−12

8

⎫
⎪⎪⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

4
4

− 8
3

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

Diagonal and Triangular Matrices

An n × n matrix A is said to be upper triangular if ai j = 0 for i > j and lower
triangular if ai j = 0 for i < j . Also, A is said to be triangular if it is either upper
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triangular or lower triangular. For example, the 3 × 3 matrices
⎧
⎪⎪⎪⎪⎪⎩

3 2 1
0 2 1
0 0 5

⎫
⎪⎪⎪⎪⎪⎭ and

⎧
⎪⎪⎪⎪⎪⎩

1 0 0
6 0 0
1 4 3

⎫
⎪⎪⎪⎪⎪⎭

are both triangular. The first is upper triangular and the second is lower triangular.
A triangular matrix may have 0’s on the diagonal. However, for a linear system

Ax = b to be in strict triangular form, the coefficient matrix A must be upper triangular
with nonzero diagonal entries.

An n × n matrix A is diagonal if ai j = 0 whenever i ̸= j . The matrices

⎧
⎪⎩1 0

0 2

⎫
⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 3 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎩

0 0 0
0 2 0
0 0 0

⎫
⎪⎪⎪⎪⎪⎭

are all diagonal. A diagonal matrix is both upper triangular and lower triangular.

Triangular Factorization
If an n × n matrix A can be reduced to strict upper triangular form using only row
operation III, then it is possible to represent the reduction process in terms of a matrix
factorization. We illustrate how this is done in the next example.

EXAMPLE 6 Let

A =
⎧
⎪⎪⎪⎪⎪⎩

2 4 2
1 5 2
4 −1 9

⎫
⎪⎪⎪⎪⎪⎭

and let us use only row operation III to carry out the reduction process. At the first
step, we subtract 1

2 times the first row from the second and then we subtract twice the
first row from the third.

⎧
⎪⎪⎪⎪⎪⎩

2 4 2
1 5 2
4 −1 9

⎫
⎪⎪⎪⎪⎪⎭ →

⎧
⎪⎪⎪⎪⎪⎩

2 4 2
0 3 1
0 −9 5

⎫
⎪⎪⎪⎪⎪⎭

To keep track of the multiples of the first row that were subtracted, we set l21 = 1
2

and l31 = 2. We complete the elimination process by eliminating the −9 in the (3, 2)
position: ⎧

⎪⎪⎪⎪⎪⎩
2 4 2
0 3 1
0 −9 5

⎫
⎪⎪⎪⎪⎪⎭ →

⎧
⎪⎪⎪⎪⎪⎩

2 4 2
0 3 1
0 0 8

⎫
⎪⎪⎪⎪⎪⎭

Let l32 = −3, the multiple of the second row subtracted from the third row. If we call
the resulting matrix U and set

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
l21 1 0
l31 l32 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1
2 1 0
2 −3 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎭
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then it is easily verified that

LU =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1
2 1 0
2 −3 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

2 4 2
0 3 1
0 0 8

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

2 4 2
1 5 2
4 −1 9

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

= A

The matrix L in the previous example is lower triangular with 1’s on the diagonal.
We say that L is unit lower triangular. The factorization of the matrix A into a product
of a unit lower triangular matrix L times a strictly upper triangular matrix U is often
referred to as an LU factorization.

To see why the factorization in Example 6 works, let us view the reduction process
in terms of elementary matrices. The three row operations that were applied to the
matrix A can be represented in terms of multiplications by elementary matrices

E3 E2 E1 A = U (3)

where

E1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
− 1

2 1 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

, E2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0

−2 0 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

, E3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 3 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

correspond to the row operations in the reduction process. Since each of the elementary
matrices is nonsingular, we can multiply equation (3) by their inverses.

A = E−1
1 E−1

2 E−1
3 U

[We multiply in reverse order because (E3 E2 E1)
−1 = E−1

1 E−1
2 E−1

3 .] However, when
the inverses are multiplied in this order, the multipliers l21, l31, l32 fill in below the
diagonal in the product:

E−1
1 E−1

2 E−1
3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1
2 1 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
2 0 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 −3 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

= L

In general, if an n × n matrix A can be reduced to strict upper triangular form using
only row operation III, then A has an LU factorization. The matrix L is unit lower
triangular, and if i > j , then li j is the multiple of the j th row subtracted from the i th
row during the reduction process.

The LU factorization is a very useful way of viewing the elimination process. We
will find it particularly useful in Chapter 7 when we study computer methods for solv-
ing linear systems. Many of the major topics in linear algebra can be viewed in terms
of matrix factorizations. We will study other interesting and important factorizations
in Chapters 5 through 7.
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SECTION 1.5 EXERCISES
1. Which of the matrices that follow are elementary

matrices? Classify each elementary matrix by type.

(a)
⎧
⎪⎩0 1

1 0

⎫
⎪⎭ (b)

⎧
⎪⎩2 0

0 3

⎫
⎪⎭

(c)

⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
5 0 1

⎫
⎪⎪⎪⎪⎪⎭ (d)

⎧
⎪⎪⎪⎪⎪⎩

1 0 0
0 5 0
0 0 1

⎫
⎪⎪⎪⎪⎪⎭

2. Find the inverse of each matrix in Exercise 1. For
each elementary matrix, verify that its inverse is an
elementary matrix of the same type.

3. For each of the following pairs of matrices, find an
elementary matrix E such that EA = B:

(a) A =
⎧
⎪⎩2 −1

5 3

⎫
⎪⎭, B =

⎧
⎪⎩−4 2

5 3

⎫
⎪⎭

(b) A =
⎧
⎪⎪⎪⎪⎪⎩

2 1 3
−2 4 5

3 1 4

⎫
⎪⎪⎪⎪⎪⎭, B =

⎧
⎪⎪⎪⎪⎪⎩

2 1 3
3 1 4

−2 4 5

⎫
⎪⎪⎪⎪⎪⎭

(c) A =
⎧
⎪⎪⎪⎪⎪⎩

4 −2 3
1 0 2

−2 3 1

⎫
⎪⎪⎪⎪⎪⎭ ,

B =
⎧
⎪⎪⎪⎪⎪⎩

4 −2 3
1 0 2
0 3 5

⎫
⎪⎪⎪⎪⎪⎭

4. For each of the following pairs of matrices, find an
elementary matrix E such that AE = B:

(a) A =
⎧
⎪⎪⎪⎪⎪⎩

4 1 3
2 1 4
1 3 2

⎫
⎪⎪⎪⎪⎪⎭, B =

⎧
⎪⎪⎪⎪⎪⎩

3 1 4
4 1 2
2 3 1

⎫
⎪⎪⎪⎪⎪⎭

(b) A =
⎧
⎪⎩2 4

1 6

⎫
⎪⎭, B =

⎧
⎪⎩2 −2

1 3

⎫
⎪⎭

(c) A =
⎧
⎪⎪⎪⎪⎪⎩

4 −2 3
−2 4 2

6 1 −2

⎫
⎪⎪⎪⎪⎪⎭,

B =
⎧
⎪⎪⎪⎪⎪⎩

2 −2 3
−1 4 2

3 1 −2

⎫
⎪⎪⎪⎪⎪⎭

5. Let

A =
⎧
⎪⎪⎪⎪⎪⎩

1 2 4
2 1 3
1 0 2

⎫
⎪⎪⎪⎪⎪⎭ , B =

⎧
⎪⎪⎪⎪⎪⎩

1 2 4
2 1 3
2 2 6

⎫
⎪⎪⎪⎪⎪⎭ ,

C =
⎧
⎪⎪⎪⎪⎪⎩

1 2 4
0 −1 −3
2 2 6

⎫
⎪⎪⎪⎪⎪⎭

(a) Find an elementary matrix E such that
EA = B.

(b) Find an elementary matrix F such that
FB = C .

(c) Is C row equivalent to A? Explain.
6. Let

A =
⎧
⎪⎪⎪⎪⎪⎩

2 1 1
6 4 5
4 1 3

⎫
⎪⎪⎪⎪⎪⎭

(a) Find elementary matrices E1, E2, E3 such that

E3 E2 E1 A = U

where U is an upper triangular matrix.
(b) Determine the inverses of E1, E2, E3 and set

L = E−1
1 E−1

2 E−1
3 . What type of matrix is L?

Verify that A = LU .
7. Let

A =
⎧
⎪⎩2 1

6 4

⎫
⎪⎭

(a) Express A as a product of elementary matrices.
(b) Express A−1 as a product of elementary matri-

ces.
8. Compute the LU factorization of each of the fol-

lowing matrices:

(a)
⎧
⎪⎩3 1

9 5

⎫
⎪⎭ (b)

⎧
⎪⎩ 2 4

−2 1

⎫
⎪⎭

(c)

⎧
⎪⎪⎪⎪⎪⎩

1 1 1
3 5 6

−2 2 7

⎫
⎪⎪⎪⎪⎪⎭ (d)

⎧
⎪⎪⎪⎪⎪⎩

−2 1 2
4 1 −2

−6 −3 4

⎫
⎪⎪⎪⎪⎪⎭

9. Let

A =
⎧
⎪⎪⎪⎪⎪⎩

1 0 1
3 3 4
2 2 3

⎫
⎪⎪⎪⎪⎪⎭

(a) Verify that

A−1 =
⎧
⎪⎪⎪⎪⎪⎩

1 2 −3
−1 1 −1

0 −2 3

⎫
⎪⎪⎪⎪⎪⎭

(b) Use A−1 to solve Ax = b for the following
choices of b:

(i) b = (1, 1, 1)T (ii) b = (1, 2, 3)T

(iii) b = (−2, 1, 0)T

10. Find the inverse of each of the following matrices:

(a)
⎧
⎪⎩−1 1

1 0

⎫
⎪⎭ (b)

⎧
⎪⎩2 5

1 3

⎫
⎪⎭

(c)
⎧
⎪⎩2 6

3 8

⎫
⎪⎭ (d)

⎧
⎪⎩3 0

9 3

⎫
⎪⎭

(e)

⎧
⎪⎪⎪⎪⎪⎩

1 1 1
0 1 1
0 0 1

⎫
⎪⎪⎪⎪⎪⎭ (f)

⎧
⎪⎪⎪⎪⎪⎩

2 0 5
0 3 0
1 0 3

⎫
⎪⎪⎪⎪⎪⎭
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(g)

⎧
⎪⎪⎪⎪⎪⎩

−1 −3 −3
2 6 1
3 8 3

⎫
⎪⎪⎪⎪⎪⎭ (h)

⎧
⎪⎪⎪⎪⎪⎩

1 0 1
−1 1 1
−1 −2 −3

⎫
⎪⎪⎪⎪⎪⎭

11. Given

A =
⎧
⎪⎩3 1

5 2

⎫
⎪⎭ and B =

⎧
⎪⎩1 2

3 4

⎫
⎪⎭

compute A−1 and use it to
(a) find a 2 × 2 matrix X such that AX = B.
(b) find a 2 × 2 matrix Y such that Y A = B.

12. Let

A =
⎧
⎪⎩5 3

3 2

⎫
⎪⎭ , B =

⎧
⎪⎩6 2

2 4

⎫
⎪⎭ , C =

⎧
⎪⎩ 4 −2

−6 3

⎫
⎪⎭

Solve each of the following matrix equations:
(a) AX + B = C (b) XA + B = C

(c) AX + B = X (d) XA + C = X

13. Is the transpose of an elementary matrix an elemen-
tary matrix of the same type? Is the product of two
elementary matrices an elementary matrix?

14. Let U and R be n ×n upper triangular matrices and
set T = UR. Show that T is also upper triangular
and that t j j = u j jr j j for j = 1, . . . , n.

15. Let A be a 3 × 3 matrix and suppose that

2a1 + a2 − 4a3 = 0

How many solutions will the system Ax = 0 have?
Explain. Is A nonsingular? Explain.

16. Let A be a 3 × 3 matrix and suppose that

a1 = 3a2 − 2a3

Will the system Ax = 0 have a nontrivial solution?
Is A nonsingular? Explain your answers.

17. Let A and B be n × n matrices and let C = A − B.
Show that if Ax0 = Bx0 and x0 ̸= 0, then C must
be singular.

18. Let A and B be n × n matrices and let C = AB.
Prove that if B is singular, then C must be singular.
[Hint: Use Theorem 1.5.2.]

19. Let U be an n × n upper triangular matrix with
nonzero diagonal entries.
(a) Explain why U must be nonsingular.
(b) Explain why U−1 must be upper triangular.

20. Let A be a nonsingular n ×n matrix and let B be an
n × r matrix. Show that the reduced row echelon
form of (A |B) is (I |C), where C = A−1 B.

21. In general, matrix multiplication is not commuta-
tive (i.e., AB ̸= B A). However, in certain special
cases the commutative property does hold. Show
that
(a) if D1 and D2 are n × n diagonal matrices, then

D1 D2 = D2 D1.
(b) if A is an n × n matrix and

B = a0 I + a1 A + a2 A2 + · · · + ak Ak

where a0, a1, . . . , ak are scalars, then
AB = B A.

22. Show that if A is a symmetric nonsingular matrix,
then A−1 is also symmetric.

23. Prove that if A is row equivalent to B, then B is
row equivalent to A.

24. (a) Prove that if A is row equivalent to B and B is
row equivalent to C , then A is row equivalent
to C .

(b) Prove that any two nonsingular n × n matrices
are row equivalent.

25. Let A and B be m × n matrices. Prove that if B is
row equivalent to A and U is any row echelon form
A, then B is row equivalent to U .

26. Prove that B is row equivalent to A if and only
if there exists a nonsingular matrix M such that
B = MA.

27. Is it possible for a singular matrix B to be row
equivalent to a nonsingular matrix A? Explain.

28. Given a vector x ∈ Rn+1, the (n + 1) × (n + 1)
matrix V defined by

vi j =
{

1 if j = 1
x j−1

i for j = 2, . . . , n + 1

is called the Vandermonde matrix.
(a) Show that if

V c = y

and

p(x) = c1 + c2x + · · · + cn+1xn

then

p(xi ) = yi , i = 1, 2, . . . , n + 1

(b) Suppose that x1, x2, . . . , xn+1 are all distinct.
Show that if c is a solution to V x = 0, then the
coefficients c1, c2, . . . , cn must all be zero and
hence V must be nonsingular.
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For each of the following, answer true if the statement
is always true and answer false otherwise. In the case
of a true statement, explain or prove your answer. In the
case of a false statement, give an example to show that
the statement is not always true.

29. If A is row equivalent to I and AB = AC , then B
must equal C .

30. If E and F are elementary matrices and G = E F ,
then G is nonsingular.

31. If A is a 4 × 4 matrix and a1 + a2 = a3 + 2a4, then
A must be singular.

32. If A is row equivalent to both B and C , then A is
row equivalent to B + C .

1.6 Partitioned Matrices

Often it is useful to think of a matrix as being composed of a number of submatrices.
A matrix C can be partitioned into smaller matrices by drawing horizontal lines be-
tween the rows and vertical lines between the columns. The smaller matrices are often
referred to as blocks. For example, let

C =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −2 4 1 3
2 1 1 1 1
3 3 2 −1 2
4 6 2 2 4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

If lines are drawn between the second and third rows and between the third and fourth
columns, then C will be divided into four submatrices, C11, C12, C21, and C22:

⎧
⎪⎪⎪⎩

C11 C12

C21 C22

⎫
⎪⎪⎪⎭ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −2 4 1 3
2 1 1 1 1
3 3 2 −1 2
4 6 2 2 4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

One useful way of partitioning a matrix is into columns. For example, if

B =
⎧
⎪⎪⎪⎪⎪⎩

−1 2 1
2 3 1
1 4 1

⎫
⎪⎪⎪⎪⎪⎭

then we can partition B into three column submatrices:

B = (b1, b2, b3) =
⎧
⎪⎪⎪⎪⎪⎩

−1 2 1
2 3 1
1 4 1

⎫
⎪⎪⎪⎪⎪⎭

Suppose that we are given a matrix A with three columns; then the product AB
can be viewed as a block multiplication. Each block of B is multiplied by A, and the
result is a matrix with three blocks: Ab1, Ab2, and Ab3; that is,

AB = A(b1, b2, b3) = (Ab1, Ab2, Ab3)

For example, if

A =
⎧
⎪⎩1 3 1

2 1 −2

⎫
⎪⎭

parker
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